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ABSTRACT

The underlying mechanism of curvature induced helicoidal flow in a weakly curved channel intrigues researchers. Here, we explore the
hydrodynamics of weakly curved channels, defined by the limiting values of the curvature ratio (ratio of channel half-width to radius of
curvature) and aspect ratio (ratio of channel half-width to average flow depth) as 0.1 and 10, respectively. The three-dimensional continuity
and momentum equations are solved analytically, involving the appropriate boundary conditions and closing the system by means of the
turbulence closure model and the indispensable fluid constitutive formulations. The skewed filament of the azimuthal velocity component,
emanating from the effects of curvilinear streamlines, is introduced into the analysis, for the first time, to address the flow asymmetry across
the flow cross section. The modification of the radial slope due to the presence of the stress term in the radial momentum balance is accom-
plished by a slope correction factor, which turns out to be a weak function of the reciprocal of the power-law exponent. The attenuation
of the azimuthal shear stress component, resulting from the skewed velocity profile, is characterized by the damping function to provide a
quantitative insight into the redistribution of the primary flow momentum. The velocity field reveals that the flow circulation (on the flow
cross-sectional plane) about the azimuthal axis and the flow helicity strengthen with an increase in the curvature ratio. The variation of the
radial free surface profile is more sensitive to the flow Froude number than to the curvature ratio. The evolutions of the stress field with several
key parameters are also examined.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098827

I. INTRODUCTION

The flow in a curved channel remains one of the fascinating
and sparking topics of classical fluid dynamics. Owing to the pro-
found effects of curvilinear streamlines on many natural and indus-
trial flows, the subject has been largely studied in the past decades
not only from the perspective of intrinsic scientific rationales but
also from the standpoint of ample engineering applications. In this
context, it is worth highlighting that Dean1,2 was the pioneer to ana-
lytically solve the laminar flow in a weakly curved pipe. Momentous
advances in experimental techniques and numerical simulations to
analyze the flow in a curved pipe were reviewed elsewhere.3 This
study, however, puts into focus the flow in a weakly curved open
channel. Modeling of flow, in particular, in a curved channel has so
far received a lot of attention, in quest of new motifs to smoothly
maneuver a channel flow. In the realm of hydrodynamics, accurate
estimations of velocity and bed shear stress components, even for

the most simplified flow geometry, are the central prerequisite to
assess the stability of a natural riverbed. Moreover, the topic has
far-reaching applications from the environmental perspective, for
instance in anticipating the dispersion of nutrients and pollutants
in a fluvial system.4 Before going into the relevant literature survey
on the topic, a succinct description of the underlying mechanism of
a curved channel flow is furnished below.

When a fluid flows in a curved channel, the primary flow is
affected owing to the centrifugal acceleration, leading to the sec-
ondary current of Prandtl’s first kind, which results from the skew-
ing of the mean flow due to the curvilinear streamlines.5,6 The
secondary current, in conjunction with the primary flow, form a
helicoidal motion that evolves in three dimensions. The helicoidal
flow eventually attains an equilibrium state, recognized as the fully
developed flow, in which the flow structure does not alter from one
cross section to another. The helicoidal motion can be readily envis-
aged as a secondary circulation across a given cross-sectional area
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FIG. 1. Schematic illustration of flow in a weakly curved
channel: (a) cross-sectional and plan views and (b) three-
dimensional velocity components (ur , uθ , uz) in a cylindrical
polar coordinate system (r, θ, z). Here, b is the channel half-
width, h(r) is the local flow depth at a radial distance r, rc is
the radius of curvature of the channel centerline, s is the
azimuthal distance given by rθ, θ is the azimuthal angle,
and zb and zs are the elevations of the channel bed and the
free surface, respectively.

[Fig. 1(a)]. The emergence of the secondary circulation is inextri-
cably linked with the differential centrifugal acceleration over the
entire vertical fluid column, resulting from the vertical variation of
the azimuthal velocity. It follows that the centrifugal acceleration
is maximum at the free surface, while it reduces toward the bed.
This leads to a fluid motion being radially outward, transporting and
amassing the fluid toward the outer sidewall. In consequence, there
appears a striking phenomenon, called the superelevated free sur-
face, implying that the free surface elevation at the outer sidewall
exceeds that at the inner sidewall [Fig. 1(a)]. To partially balance the
centrifugal force, a radial pressure gradient is generated, giving rise
to a radial force that acts toward the inner sidewall. Under hydro-
static pressure assumption, the radial pressure gradient is linearly
scaled with the radial free surface slope, revealing that at a given
radial distance, the radial force remains constant over the entire
flow depth. On the contrary, at a given radial distance, the centrifu-
gal force significantly varies with the vertical distance owing to the
differential azimuthal velocity. Thus, the imbalance between the cen-
trifugal force and the radial force triggers a net radial force, which
changes its sign at a specific vertical distance, leaving a generic sig-
nature of the origin of secondary circulation. Another consequence
of the secondary circulation is that the near-bed streamlines are
swerved toward the inner sidewall, while the surface streamlines are
directed toward the outer sidewall [Fig. 1(b)].

A plethora of studies was reported in the past years to grasp
the flow field in a curved channel. Including the earlier pioneering
studies on the topic,7–10 the state-of-the-art of flow in a curved chan-
nel was thoroughly reviewed by Rozovskii11 and Falcón.12 There

remain several analytical studies that were primarily dedicated to
the flow field and bed topography in a curved channel.13–17 Impor-
tantly, the flow structure in the vertical direction was mostly studied
either by solving the momentum equations or by employing the
moment of momentum equations.11,14,18,19 Myriads of experimental
and field studies were reported to explore the flow and turbulence
characteristics in both weakly and strongly curved channels.20–27

Besides, several numerical experiments were conducted to simulate
the flow structure in a curved channel.28–32 Specifically, a few mod-
els, based on the depth-averaged assumptions, were developed to
study the flow and sediment dynamics in a curved channel.16,33,34

However, these depth-averaged models fall short to vividly repre-
sent the most essential elements of the helicoidal flow, for instance,
the flow structure in the vertical direction and the secondary
circulation.

Although there remain significant studies stemming from a rich
heritage of analytical, experimental, and numerical frameworks, sev-
eral key questions are yet to be answered, at least analytically, con-
cerning even with the most fundamental problem of flow in a weakly
curved channel. Some of these questions include how does an asym-
metrical radial profile of azimuthal velocity affect the velocity and
the shear stress fields in a curved channel; how could an encouraging
theoretical foundation be developed to unravel the innate response
of a weakly curved channel flow to the key parameters; which are
the parameters that principally govern the evolutions of secondary
circulation and the flow helicity; and what are the exact depen-
dencies of the free surface profile on the key parameters. Despite
several attempts,6,11 the sensitivity of the helicoidal flow structure
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in a weakly curved channel flow to the key parameters is largely
unknown analytically. It is worth mentioning that in most of the
analytical studies, the radially skewed (asymmetry across the channel
centerline) azimuthal velocity was surprisingly overlooked.11,14,23,35

This strong assumption can afflict the analysis since the azimuthal
velocity must be radially skewed from the fundamental tenet of
curvilinear flow in a curved channel, as is evident from experimen-
tal observations and numerical simulations.11,22,29 Therefore, pre-
cise determinations of velocity and shear stress components essen-
tially require an asymmetrical radial profile of azimuthal velocity to
mimic most of the real flow situation. The subtle role of the cen-
trifugal acceleration in supervising the radial free surface profile is
well-recognized.6 Nevertheless, little is known about how the free
surface profile is precisely controlled by the flow Froude number
and the curvature ratio. Although the redistribution of the primary
flow momentum owing to the secondary circulation in a curved
channel has been well documented,29 its impact on the velocity and
stress fields has so far been scarcely studied. In addition, the vari-
ations of secondary circulation and flow helicity in a curved chan-
nel with the curvature ratio remain unexplored from the analytical
perspective.

This study therefore aims at exploring the flow field in a
weakly curved channel by analytically solving the continuity and
the momentum equations, to seek the basic response of the flow
to the key parameters. In the theoretical analysis, the weak curva-
ture approximations are sought, facilitating a promising framework
that effectively solves the set of governing equations by entreating
the turbulence closure relationships and the appropriate boundary
conditions. The effects of curvilinear streamlines on the azimuthal
velocity are addressed by considering a radially skewed profile of
depth-averaged azimuthal velocity. The imbalance between the cen-
trifugal force and the radial force is addressed by the radial slope
correction factor. The reduction in the azimuthal shear stress owing
to curvilinear streamlines is explicitly considered by introducing the
damping function.

The paper is structured as follows. In Sec. II, the theoretical
analysis is presented. Starting with the set of governing equations
and the boundary conditions (Sec. II A), the modeling strategies
together with the constitutive formulations are described (Sec. II B).
Then, the radial free surface profile (Sec. II C), radial slope correction
factor (Sec. II D), damping function (Sec. II E), and flow circulation
about azimuthal axis and flow helicity (Sec. II F) are deduced. The
model results are emphasized in Sec. III, including the velocity field
(Sec. III A), radial free surface profile (Sec. III B), and stress field
(Sec. III C). Finally, conclusions are drawn in Sec. IV, enlightening
a brief description of the proposed methodology and a summary of
the important results.

II. THEORETICAL ANALYSIS

The physical system of this study describes an incompressible
fluid motion in a weakly curved rigid channel, having a rectangular
cross section of constant width 2b [Fig. 1(c)]. In fact, a rectangular
channel is classically treated as the most fundamental channel cross
section because the actual cross sectional shape of a natural channel
is arbitrary. To analyze the flow field, a cylindrical polar coordinate
system (r, θ, z) is considered, where r is the radial distance from
the center of curvature, θ is the azimuthal angle along the channel

centerline given by s/r, s is the azimuthal distance, and z is the verti-
cal distance from a fixed horizontal plane. Let the radius of curvature
of the channel centerline be rc. We define the curvature ratio of
the channel as C = b/rc, being of the order of 0.1 (C ≤ 0.1). In the
schematic illustration [Fig. 1(c)], the elevations of the channel bed
and the free surface are denoted by z = zb and zs, respectively. Thus,
the local flow depth at a radial distance r is given by h(r) = zs − zb.
We define the aspect ratio of channel flow as A = b/⟨h⟩, where ⟨h⟩
is the average flow depth over the flow cross section. The channel
width is considered to be much larger than the average flow depth,
specificallyA ≥ 10, in order to avoid the dip phenomenon.

A. Governing equations

The continuity and the momentum equations for an incom-
pressible fluid in the cylindrical polar coordinate system (r, θ, z)
read

1

r

∂(rur)
∂r

+
1

r

∂uθ
∂θ

+
∂uz

∂z
= 0, (1a)

Dur
Dt
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r
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ρ
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− 2

r2
∂uθ
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), (1b)
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), (1c)

Duz
Dt
= fz − 1

ρ

∂p

∂z
+ υ∇2

uz , (1d)

where u is the velocity vector (=ur , uθ , uz), t is the time, f is the body
force vector per unit mass density of fluid (=f r , fθ , fz), ρ is the mass
density of fluid, p is the static pressure intensity, υ is the coefficient
of kinematic viscosity of fluid, and the operators D/Dt and∇2 are as
follows:

D

Dt
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∂t
+ ur

∂
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+
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r

∂

∂θ
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∂

∂z
, (1e)
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+
1
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+
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+

∂
2

∂z2
. (1f)

The above set of governing equations can be simplified by
applying the weak curvature approximation. To this end, we con-
sider the characteristic length scale to be the radius of curvature
of the channel centerline rc and the characteristic time scale to be
rc/Um, whereUm is the maximum flow velocity. Under such consid-
erations, we introduce the following nondimensional variables:

t̃ = t Um

rc
, r̃ = r

rc
, z̃ = z

rc
, (ũr , ũθ , ũz) = (ur ,uθ ,uz)

Um
,

(f̃r , f̃θ , f̃z) = (fr , fθ , fz) rc

U2
m

, p̃ = p

ρU2
m

.

(2)

We also define ε = h/rc (≪1). Since r = O(rc), z = O(h), uθ
= O(Um), and p = O(ρU2

m), it follows that r̃ = O(1), z̃ = O(ε),
ũθ = O(1), and p̃ = O(1). In addition, experimental observations
in weakly curved channels evidenced that ũr = O(ε).11,23 However,
exact orders of magnitude of θ and uz can be obtained from the
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continuity equation [Eq. (1a)]. Substituting Eq. (2) into Eqs. (1a)
–(1d) and performing the order of magnitude analysis yield

1
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∂ũz

∂z̃±
O(ũz)
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+ ũr
∂ũθ
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where RN is Umrc/υ (≫1).
Equation (3a) reveals that since r̃ = O(1), z̃ = O(ε), and

ũr = O(ε), the orders of magnitude of θ and ũz must be θ = O(ε−1)
and ũz =O(ε2). The possible explanation for θ to be large [=O(ε−1)]
is that the channel is weakly curved, and therefore, a change in
velocity occurs on large scales of θ. Besides, as the local accelera-
tion term must be of the same order of magnitude of the associated
convective acceleration terms, Eq. (3b) suggests that the order of
magnitude of t̃ should be t̃ = O(ε−1). Therefore, in the left-hand
side of Eq. (3b), all the terms except the last one [=O(1)] can be
ignored. On the other hand, the fourth term [=O(ε−1)] within the
parentheses is much larger than the remaining terms. Hence, they
can be dropped because RN is a large number. Equation (3b) sug-
gests that RN should be of the order of RN = O(ε−1). In a similar
way, in Eq. (3c), the terms in the left-hand side [=O(ε)] cannot be
ignored, while the terms within the parentheses, except the fourth
term [=O(ε−2)], are trivial. This indicates that RN should be of the
order of RN = O(ε−3). Here, one should not be confused with two
different orders of magnitude of RN as RN = O(ε−1) and O(ε−3),
anticipated from Eqs. (3b) and (3c), respectively, because for both
the cases, another variable Rh (=Umh/υ) is adjusted spontaneously
in such a way in order to keep the Rh/RN ratio as a constant of

ε (=h/rc). Furthermore, Eq. (3d) indicates that the terms in the left-
hand side and that within the parentheses can be fairly neglected.
Therefore, the set of governing equations [see Eqs. (1a)–(1d)], hav-
ing considered the weak curvature approximation, can be rewritten
as
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+
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∂
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fz − 1

ρ

∂p

∂z
= 0. (4d)

For a turbulent flow, the set of governing equations of fluid
dynamics [see Eqs. (1a)–(1d)] can be time averaged by employing
the Reynolds decomposition for a turbulent flow.36 In doing so, we
note that the gradients of the Reynolds shear stresses surpass those
of the Reynolds normal stresses.11 In addition, integrating Eq. (4d),
the vertical momentum balance is expected to be primarily governed
by the hydrostatic pressure intensity as ρ−1∂p/∂z = fz = −g, where
g is the gravitational acceleration. Therefore, under a steady flow
condition and setting f r = fθ = 0, the set of governing equations
under the weak curvature approximation [see Eqs. (4a)–(4d)] finally
reduces to the Reynolds-averaged Navier–Stokes (RANS) equations.
For brevity, keeping the symbols for the time-averaged quantities
identical as in Eq. (1), the set of equations reduces to

∂ur

∂r
+
ur

r
+
∂uθ
∂s

+
∂uz

∂z
= 0, (5a)

− u2θ
r
= −gSr + 1

ρ
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∂z
, (5b)

ur
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+ uθ
∂uθ
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∂uθ
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+
uθur

r
= gSθ + 1

ρ

∂τθz
∂z

, (5c)

where (Sr , Sθ) and (τrz , τθz) are the radial and azimuthal components
of the free surface slope and the total fluid shear stress, respectively.
Note that the total fluid shear stress (henceforth called the shear
stress, for brevity) comprises of the Reynolds shear stress and the
viscous shear stress. Importantly, in the above formulation, the ver-
tical momentum balance driven by the hydrostatic pressure inten-
sity makes it possible to reduce the momentum equations to two
dimensions.

The boundary conditions associated with the above set of
equations are as follows:

(i) No-slip at the bed and the sidewalls:

ur = uθ = uz = 0 at z = zb and r = rc ± b, (6a)

(ii) Vanishing radial flux condition:

zb+h

∫
zb

urdz = 0. (6b)

However, the set of equations [see Eqs. (5a)–(5c)] falls short
to close the system. Hence, appropriate turbulence closure
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relationships, embodying reasonable approximations based on the
physical ground, are sought to close the system.

B. Modeling strategies and constitutive formulations

The azimuthal shear stress can be modeled by applying the
Boussinesq hypothesis, which expresses the fluid shear stress per
unit mass density as a linear function of the local fluid strain rate via
the turbulent diffusivity. It follows: τθz = ρεθz(∂uθ/∂z + r−1∂uz/∂θ)≈ ρεθz∂uθ/∂z, as evident from the weak curvature approximation. In
a straight channel flow (rc → ∞), τθz takes the form of τθz = τ0w
(1 − Z), where τ0w is the bed shear stress (≈ρghSθ), having consid-
ered the bed slope to be approximately equal to the free surface slope
and Z is the scaled coordinate in the vertical direction [=(z − zb)/h].
However, the azimuthal bed shear stress τ0θ in a curved channel is
smaller than the forward bed shear stress τ0w in a straight channel
owing to the redistribution of the primary flow momentum in the
radial direction, triggered by the effects of curvilinear streamlines.
To address the feedback between the primary flow and secondary
current momentum, it suffices here to take τ0θ = τ0w(1 − L), where
L is the damping function that accounts for the reduction in pri-
mary flow momentum. The determination of L is given in Sec. II E.
It suggests that the azimuthal shear stress can be expressed as
τθz = ρghSθ(1 − L) (1 − Z). Therefore, εθz is

εθz = gh2Sθ(1 −L)(1 − Z)(∂uθ
∂Z
)−1. (7)

To evaluate the radial shear stress τrz , an isotropic notion
of turbulent diffusivity is considered, implying τrz = ρεθz(∂ur/∂z
+ ∂uz/∂r) ≈ ρεθz∂ur/∂z, as evident from the weak curvature approxi-
mation. It is worth noting that in several numerical models based on
RANS equations, for instance, the standard k–εmodel, the turbulent
diffusivity is fundamentally considered to be isotropic. However,
the primary drawback of such numerical models is that they are
unable to capture the weak counter-rotating secondary cell, which
is often found near the outer sidewall.31 The existence of this sec-
ondary cell was evidenced experimentally,20,25 and its precise origin
was explained by the flow instability and the transfer of turbulent
kinetic energy between the mean flow and turbulence. However,
in this study, such a weak counter-rotating secondary cell near the
outer wall is not considered. Therefore, using Eq. (7), τrz is expressed
as

τrz = ρghSθ(1 −L)(1 − Z)∂ur
∂Z
(∂uθ
∂Z
)−1. (8)

To find εθz from Eq. (7), an exact expression for the azimuthal
velocity uθ is an essential prerequisite. On the other hand, Eq. (8)
hinders to obtain an expression for the radial shear stress τrz because
the radial velocity ur is an unknown. It demands an additional for-
mulation as a closure. To this end, we note that in Eq. (5b), the total
acceleration component Dur/Dt in the radial direction (that is the
inertial terms) does not appear because of its minimal contribution,
as was identified in the order of magnitude analysis. It is pertinent
to discuss herein that Rozovskii11 applied the method of consecu-
tive approximations to find the error generated owing to ignoring
the inertial terms. It was revealed that the effects of the inertial terms
on the radial momentum balance are trivial as long as the channel is

weakly curved, specifically when the ⟨h⟩/rc ratio is less than 0.05. In
fact, Eq. (5b) can be rearranged as u2θ/r − gSr = −ρ−1∂τrz/∂z, which
heralds the fact that the imbalance between the centrifugal force and
the radial force is primarily driven by the vertical gradient of the
radial shear stress. Integrating this relationship over the entire flow
depth yields

gSr +
τ0r

ρh
−

1

∫
0

u2θ
r
dZ = 0, (9)

where τ0r is the radial bed shear stress. Even the above simplified
relationship remains unsolvable because the radial free surface slope
Sr is still an unknown. As a first approximation, the contribution
from the radial bed shear stress τ0r to the radial momentum balance
can be neglected by considering the third term of the left-hand side
of Eq. (9) to be quite larger than the second term. From the physical
rationale, this approximation is fairly reasonable because the radial
free surface slope is principally overseen by the centrifugal accelera-
tion. However, from the mathematical perspective, this approxima-
tion may be quasi-idealistic because the actual order of magnitude of
the radial bed shear stress is not still in hand. To resolve this issue,
Eq. (9) is modified as

Sr = J
1

∫
0

u2θ
gr

dZ, (10)

where J is the radial slope correction factor that can be obtained
from the appropriate boundary condition. The determination of J
is given in Sec. II D. Equation (10) discloses that the radial slope
correction factor effectively addresses the presence of radial shear
stress into the mechanism of secondary circulation. From the phys-
ical rationale, the introduction of the radial slope correction factor
can be further explained. In Eq. (10), the streamline curvature is
approximated to be identical over the entire flow depth. However,
in reality, the vertical fluid column possesses a differential stream-
line curvature due to the secondary circulation. The trajectory of
the surface streamlines traces a larger radius, while that of the near-
bed streamlines displays a smaller radius than the average radius of
curvature. Besides, in the computation of centrifugal acceleration,
the azimuthal velocity was solely considered rather than the total
velocity because the azimuthal velocity remains the predominant
velocity component, being largely sensitive to the effects of curvi-
linear streamlines. These key aspects need to be incorporated into
the system while calculating the radial slope. Therefore, the inclu-
sion of the radial slope correction factor in Eq. (10) is a requirement
to address these issues. Equation (10) clearly demonstrates that at
a given flow cross section, a radial inclination of the free surface is
inevitable. An analytical expression for the radial free surface profile
is developed in Sec. II C.

For a fully developed flow, the azimuthal velocity uθ is indepen-
dent of the azimuthal distance s, respecting the necessary boundary
conditions as given in Eq. (6a). Furthermore, owing to the radial
skew of the azimuthal velocity toward the outer sidewall, the location
of the maximum azimuthal velocity, for a given vertical distance, is
marginally away from the channel centerline. The azimuthal velocity
can therefore be set as

uθ = λ + 1

λ
U(r)Z1/λ and U(r) = Uc(1 − Y2)l1 exp(l2Y), (11)
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where λ is the reciprocal of the power-law exponent, U(r) is the
depth-averaged azimuthal velocity at a given radial distance r, Uc is
U(r = rc), Y is the scaled coordinate in the radial direction (r − rc)/b,
and l1 and l2 are the phenomenological constants. To be specific, l1
signifies the qualitative radial growth of the sidewall boundary lay-
ers and l2 defines the enrichment of the depth-averaged azimuthal
velocity, in the zone away from the channel centerline, having a def-
inite skewness in the azimuthal velocity profile. Clearly, in a straight
channel flow, l2 = 0, indicating a nonskewed azimuthal velocity pro-
file. In Eq. (11), the azimuthal velocity scaled by its depth-averaged
value obeys the power-law, which acts as a surrogate for the clas-
sical logarithmic law of the wall.37 The existence of the power-
law is well documented experimentally.11,22 The precise value of
the reciprocal of the power-law exponent strongly depends on the
Darcy–Weisbach friction factor. On the other hand, in Eq. (11),
the depth-averaged azimuthal velocity scaled by the depth-averaged
centerline azimuthal velocity follows a quadratic-cum-exponential
law, whose legitimacy was also tested through experimental mea-
surements.22 The validation of the abovementioned velocity laws
with the experimental data is elaborated in Sec. III A. With Eq. (11),
the area-averaged velocity, denoted by ⟨U⟩, is expressed as

⟨U⟩ = 1

A∬
A

uθdA = 1

A

Y=1

∫
Y=−1

Z=1

∫
Z=0

(uθbh)dZdY = ΨUc, (12)

where A is the flow cross-sectional area and Ψ is a coefficient. They
are expressed as

A =
1

∫
−1

bhdY = 2b⟨h⟩ and Ψ = 1

2

1

∫
−1

(1 − Y2)l1 exp(l2Y)dY . (13)

Note that while performing the integration in Eq. (12), the
differential dz is approximately taken as dz = ⟨h⟩dZ, keeping the
flow depth ⟨h⟩ constant as an average value. However, the exact
expression for the radial free surface profile is given in Sec. II C.

C. Radial free surface profile

Inserting Eq. (11) into Eq. (10) yields

Sr = J (λ + 1)2
λ(λ + 2)

U2
c

gr
(1 − Y2)2l1 exp(2l2Y). (14)

The radial slope Sr can also be obtained from the relationship
Sr = dzs/dr. Since zs = zb + h and dzb/dr = 0 owing to the rigid bed
condition (Fig. 1), it results in Sr = dh/dr. Substituting Eq. (14) into
this relationship and integrating the resultant expression produces

h = hc + JC
(λ + 1)2
λ(λ + 2)

U2
c

g

Y

∫
0

(1 − Y2)2l1 exp(2l2Y)
(1 + CY) dY . (15)

The above expression allows a direct estimation of the flow
depth at a given radial distance. Then, the average flow depth ⟨h⟩
can be determined by averaging Eq. (15) over the flow cross section.

The nondimensional flow depth ĥ (=h/⟨h⟩), after some algebra, takes
the form as

ĥ = 1 + J

Ψ2
CF

2 (λ + 1)2
λ(λ + 2)

⎡⎢⎢⎢⎢⎣
Y

∫
0

(1 − Y2)2l1 exp(2l2Y)
(1 + CY) dY

− 1

2

1

∫
−1

Y

∫
0

(1 − Y2)2l1 exp(2l2Y)
(1 + CY) dYdY

⎤⎥⎥⎥⎥⎦
, (16)

where F is the flow Froude number [=⟨U⟩/(g⟨h⟩)0.5].
D. Determination of radial slope correction factor

Since the expression for the radial slope Sr is known [see
Eq. (14)], the radial shear stress τrz can therefore be obtained from
the following radial momentum balance [see Eq. (5b)]: ρ−1∂τrz/∂z
= gSr − u2θ/r. τrz must vanish at the free surface, implying τrz(Z = 1) =
0. Substituting the expressions for uθ and Sr from Eqs. (11) and (14),
respectively, into the radial momentum balance and then integrating
the resulting expression yield

τrz = ρU2 h

r

(λ + 1)2
λ(λ + 2)[J(Z − 1) − (Z

(2+λ)/λ − 1)]. (17)

Substituting the above relationship into Eq. (8) and using
Eq. (11), the vertical gradient of the radial velocity ∂ur/∂Z is
obtained. Subsequently, the resulting expression is integrated, using
Eq. (6a), to derive the expression for the radial velocity ur as

ur = G[JλZ1/λ +
λ

λ + 3
Z
(3+λ)/λ

2F1(1, 3
λ
+ 1; 2 +

3

λ
;Z)

− λZ1/λ
2F1(1, 1

λ
; 1 +

1

λ
;Z)], (18a)

G = − (λ + 1)3
λ3(λ + 2)

U3

gr(1 −L)Sθ . (18b)

ur also satisfies the vanishing radial flux condition, as given in
Eq. (6b). Inserting Eq. (18) into Eq. (6b) results in

J = −λ + 1

λ2
[ λ2

(λ + 3)(2λ + 3) 2F1(1, 1 +
3

λ
; 3 +

3

λ
; 1)

− λ2

λ + 1
2F1(1, 1

λ
; 2 +

1

λ
; 1)], (19)

where 2F1 is the special type of the generalized hypergeometric func-
tion pFq(a1, . . ., ap; b1, . . ., bq; x). The variation of the radial slope
correction factor J with reciprocal of the power-law exponent λ is
depicted in Fig. 2. It is apparent that J weakly dampens with an
increase in λ. Recalling the preformulated relationships [Eqs. (9) and
(10)], we find that the contribution from the radial bed shear stress
per unit mass density and local flow depth to the radial momentum
balance, for λ ∈ [5, 15], is 0.8%–5% of the dominated depth-averaged
curvature induced term ∫(u2θ/r)dZ. Although this estimation is in
no way colossal, the inclusion of the radial slope correction fac-
tor is a key stride toward the physical understanding of the radial
momentum balance (see Sec. II B).

E. Determination of damping function

The vertical velocity uz is determined by integrating the con-
tinuity equation [Eq. (5a)] and obeying the no-slip at the channel
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FIG. 2. Dependency of the radial slope correction factor J on reciprocal of the
power-law exponent λ.

boundary [Eq. (6a)]. To perform the integration, the transforma-
tions ∂Z/∂r = −h−1Z∂h/∂r and ∂Z/∂s = h−1Sθ are applied. Finally,
uz takes the following form:

uz = −[dh
dr

+ h( 3
U

dU

dr
+

1

1 −L
dL

dr
)]

Z

∫
0

urdZ+urZ
dh

dr
−uθSθ . (20)

Since the three-dimensional velocity components are known
[see Eqs. (11), (18), and (20)], the azimuthal shear stress τθz can be
determined by performing the momentum integral of Eq. (5c). In
doing so and applying the boundary condition τθz(Z = 1) = 0, τθz
reads

τθz = ρh(I1 + I2 + I3 + I4 + I5), (21)

where the expressions for I1–5 are given by

I1 = (1 − Z)gSθ , (22a)

I2 = ∂

∂s

Z

∫
1

u
2
θdZ = Sθ

h
U

2(λ + 1

λ
)2(Z2/λ − 1), (22b)

I3 = ∂

∂r

Z

∫
1

uθurdZ = λ + 1

λ
[U(urZ1/λ ∂Z

∂r
− ur ∣Z=1 ∂Z

∂r
∣
Z=1
)

+
1

G

∂

∂r
(GU)

Z

∫
1

urZ
1/λdZ

⎤⎥⎥⎥⎥⎦
, (22c)

I4 = (2
r
+
1

h

dh

dr
)

Z

∫
1

uθurdZ = λ + 1

λ
U(2

r
+
1

h

dh

dr
)

Z

∫
1

urZ
1/λdZ,

(22d)

I5 = uθuz ∣Z − (uθuz)∣Z=1. (22e)

In the above expressions, the term I1 represents the linear pro-
file of azimuthal shear stress, occurring in a straight channel flow
having a zero-pressure gradient. The term I2 signifies the change
in the advective transport of azimuthal momentum, while the term
I3 characterizes the change in the redistribution of the azimuthal
momentum in the radial direction due to the curvilinear deflection
of the primary flow. On the other hand, the terms I4 and I5 demon-
strate the complex correlations of the secondary current velocity
components in the momentum balance with the azimuthal veloc-
ity. Using the above set of expressions [Eqs. (22a)–(22e)] and the
relationship r−1 + G−1∂G/∂r = 3U−1∂U/∂r + (1 −L)−1∂L/∂r [from
Eq. (18b)], Eq. (21) takes the following form:

τθz = ρh
⎡⎢⎢⎢⎢⎣
(1 − Z)gSθ + λ + 1

λ
(4∂U

∂r
+
U

r
+

U

1 −L
∂L

∂r
+
U

h

∂h

∂r
)

×
Z

∫
1

urZ
1/λdZ − λ + 1

λ
Z
1/λ(3∂U

∂r
+

U

1 −L
∂L

∂r
+
U

h

∂h

∂r
)

×
Z

∫
0

urdZ
⎤⎥⎥⎥⎥⎦
. (23)

The azimuthal bed shear stress τ0θ can be obtained from
Eq. (23) by extending the total bed shear stress to the bed, implying
that τ0θ = τθz(Z = 0). It produces

τ0θ = ρh[gSθ − λ + 1

λ
(4∂U

∂r
+
U

r
+

U

1 −L
∂L

∂r
+
U

h

∂h

∂r
)GI6], (24a)

I6 = J λ2

λ + 2
3F2(1, 1 + 3

λ
, 2 +

4

λ
; 2 +

3

λ
, 3 +

4

λ
; 1)

− λ2

λ + 2
3F2(1, 1

λ
, 1 +

2

λ
; 1 +

1

λ
, 2 +

2

λ
; 1). (24b)

τ0θ can also be obtained from τ0θ = ρghSθ(1 − L). Averag-
ing this relationship over the flow cross section gives the area-
averaged azimuthal bed shear stress as ⟨τ0θ⟩ = ρg⟨h⟩Sθ(1 − ⟨L⟩).⟨τ0θ⟩ can be found from the well-known friction factor conjecture,
which reads ⟨τ0θ⟩ = (f /8)ρ⟨U⟩2, where f is the Darcy–Weisbach fric-
tion factor. This constitutive formulation yields g⟨h⟩Sθ(1 − ⟨L⟩)
= (f /8)⟨U⟩2. The f can be estimated from f = 8κ2λ−2, where κ is
the von Kármán constant (=0.41). This relationship is supported by
a large corpus of experimental data in curved channels.23 Equating
Eq. (24a) with the relationship τ0θ = ρghSθ(1 − L) and keeping in
mind the constitutive equation, the resultant expression produces
an ordinary differential equation of the damping function L. This
differential equation hinders to attain a complete solution of L as
a function of radial distance because a precise boundary condition
for the damping function invites another intricacy into the for-
mulation. To get rid of this inherent complexity, the differential
equation is averaged over the flow cross section to obtain an area-
averaged value of L. Thus, the area-averaged damping function ⟨L⟩
reads

⟨L⟩ = [1 − λ4(λ + 2)Ψ4f 2

32(λ + 1)4I6
A

2

C2I7
]
−1

, (25a)
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I7 =
1

∫
−1

(1 − Y2)4l1 exp(4l2Y)
1 + CY

× [ 4
C
(l2 − 2l1Y

1 − Y2
) + 1

1 + CY
+ J
(λ + 1)2
λ(λ + 2)F2]dY . (25b)

F. Flow circulation about azimuthal axis
and flow helicity

The strength of a rotational flow field is quantified by the circu-
lation, which provides ameasure of the vorticity flux. The circulation
can be obtained from the integral of the vorticity over a closed super-
ficial frame. Here, we primarily focus on the azimuthal vorticity Ωθ

(=∂uz/∂r − ∂ur/∂z), owing to its close link with the secondary cir-
culation on the radial plane (rz-plane). Considering an appropriate
time scale as ⟨T⟩ = ⟨h⟩/⟨U⟩, Ωθ in a nondimensional form, denoted
by Ω̂θ = Ωθ⟨T⟩, is expressed as

Ω̂θ = 1

A

∂ûz

∂Y
− 1

ĥ

∂ûr

∂Z
, (26)

where the nondimensional velocity components are expressed as (ûr ,
ûθ , ûz) = (ur , uθ , uz)/⟨U⟩.

The flow circulation Γθ about the azimuthal axis reads

Γθ = ∫
r

∫
z

Ωθdrdz. (27)

Using Eq. (26), Γθ in a nondimensional form, denoted by Γ̂θ =
Γθ(b⟨U⟩)−1, is expressed as

Γ̂θ =
Y=1

∫
Y=−1

Z=1

∫
Z=0

( 1
A

∂ûz

∂Y
− 1

ĥ

∂ûr

∂Z
)dZdY . (28)

The helicity of a fluid flow is topologically understood as a mea-
sure of knottedness of vortex lines.38 If u and ∇ × u denote the
velocity field and the vorticity field, respectively, then the helicity
contained in volume V, bounded by a closed superficial frame, is
expressed as

H =∭
V

u.(∇ × u)dV . (29)

The components of ∇ in the cylindrical polar coordinate system are
written as ∇ = (∂/∂r, r−1∂/∂θ, ∂/∂z). H is a quasiscalar quantity,
which is apt to be a measure of flow chirality, because it changes sign
under an appropriate choice of frame of reference. Equation (29) can
be explicitly expressed in three dimensions as

H =∭
V

[uθ(∂uz
∂r
− ∂ur

∂z
) + ur(∂uθ

∂z
− ∂uz

∂s
)

+uz(∂ur
∂s
− ∂uθ

∂r
)]dsdrdz. (30)

For a fully developed flow, the nondimensional form of helic-
ity per unit azimuthal distance, denoted by Ĥ = H(b⟨U⟩2)−1, is
expressed as

Ĥ =
Y=1

∫
Y=−1

Z=1

∫
Z=0

[ûθ( 1
A

∂ûz

∂Y
− 1

ĥ

∂ûr

∂Z
) + ûr

1

ĥ

∂ûθ
∂Z
− ûz 1

A

∂ûθ
∂Y
]dZdY .

(31)

III. RESULTS AND DISCUSSION

A. Velocity field

The validation of the power-law of velocity profile, where the
azimuthal velocity uθ scaled by its depth-averaged value U(r) obeys
the power-law relationship in accordance with Eq. (11), is shown in
Fig. 3. The experimental data for fully developed flow in a curved
channel taken from de Vriend and Koch22 are used for the valida-
tion. In fact, two experimental runs are considered, corresponding
to two different fluid fluxes as Q = 0.232 and 0.463 m3 s−1. For each
of the experimental runs, the velocity measurements at three dis-
tinct vertical sections 4, 8, and 11 are depicted in Figs. 3(a) and 3(b).
These sections correspond to the nondimensional radial distance
Y = 0.45, −0.15, and −0.6, respectively. Depending on the values of
the friction factor in these two experimental runs, the reciprocal of
the power-law exponent λ, obtained from the friction factor conjec-
ture, is 8 and 10, respectively. The theoretical velocity profiles offer a
satisfactory congruence with the experimental data, suggesting the
inevitable existence of the power-law. Note that the experimental

FIG. 3. Vertical profiles of nondimensional azimuthal velocity uθ scaled by its depth-averaged value U(r) and the experimental data for fluid fluxes Q of (a) 0.232 m3 s−1 and
(b) 0.463 m3 s−1.

Phys. Fluids 31, 055110 (2019); doi: 10.1063/1.5098827 31, 055110-8

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

data close to the free surface (Z = 1), especially in Fig. 3(b), sug-
gest a slight dip-phenomenon, predicting a negative strain rate at
the extremity of the boundary layer. The dip-phenomenon cannot be
fully captured by the power-law. However, such an aspect is of sec-
ondary importance here because the present formulation is devoid
of any dip-phenomenon owing to the large ratio of channel width to
average flow depth (2A ≥ 20).

The depth-averaged azimuthal velocity U(r) scaled by the
depth-averaged centerline azimuthal velocity as a function of nondi-
mensional radial distance Y is shown in Fig. 4. The experimental
data of de Vriend and Koch22 for two different fluid fluxes,Q = 0.232
and 0.463 m3 s−1, are also plotted. For a given fluid flux, the velocity
data at different azimuthal sections, where the flow almost attains
a fully developed state, are considered. These sections include C0,
D0, D1, and E0 in the experimental setup of de Vriend and Koch.22

The experimental data clearly predict an outward shift of the depth-
averaged azimuthal velocity profile arising from the effects of curvi-
linear streamlines. The radial profile of U/Uc satisfactorily obeys
the quadratic-cum-exponential law, as given in Eq. (11). The phe-
nomenological constants l1 and l2, corresponding to the experimen-
tal data, are obtained as 0.3 and 0.65, respectively. These values can
be treated as approximately constant for different flow conditions
as long as the channel is weakly curved, allowing a quasiuniversal
velocity profile in a curved channel. In this context, it is worth not-
ing that the theoretical azimuthal velocity profile does not consider
any flow separation from the inner sidewall. For flow in a strongly
curved channel (b/rc > 0.1), the flow separation near the inner side-
wall can hardly be avoided and the approximations involved in the
boundary layer equations no longer apply. In Fig. 4, the experimen-
tal data close to the channel sidewalls (Y → ±1) slightly depart from
the quadratic-cum-exponential law. This may be attributed to the
uncertainties that linger in the velocity measurements owing to the
substantial three-dimensional effects close to the sidewalls.

Figure 5 shows the contours of nondimensional azimuthal
velocity ûθ (azimuthal velocity scaled by the area-averaged velocity),
on a nondimensionalYZ-plane bounded byY ∈ [−1, 1] and Z ∈ [0, 1],
for λ = 7. Quite evidently, the skewing of the velocity filament toward
the outer sidewall governed by the quadratic-cum-exponential law

FIG. 4. Radial profile of nondimensional depth-averaged azimuthal velocity U(r)
scaled by the depth-averaged centerline azimuthal velocity Uc and the experimen-
tal data for different fluid fluxes.

FIG. 5. Contours of nondimensional azimuthal velocity ûθ (=uθ /⟨U⟩) on nondimen-
sional YZ-plane for reciprocal of the power-law exponent λ = 7.

in conjunction with the power-law controls the variability of the
azimuthal velocity over the vertical and radial extents. At the chan-
nel centerline, the azimuthal velocity uθ approximately becomes the
area-averaged velocity ⟨U⟩ at 20% of the flow depth (Z = 0.2). On the
other hand, away from the channel centerline (Y > 0), the location of
ûθ = 1 shifts closer to the bed with an increase in the radial distance
Y up to Y = 0.7 owing to the velocity enhancement resulting from
the effects of curvilinear streamlines. However, beyond Y = 0.7, the
azimuthal velocity dampens in the presence of the outer sidewall,
where the velocity vanishes to preserve the no-slip. Therefore, the
location of ûθ = 1 shifts toward the free surface for Y > 0.7. Note that
the radial location Ym of the maximum depth-averaged azimuthal
velocity can be found from Eq. (11) by setting dU/dY = 0, resulting
in Ym = (1 + l2r )

1/2 − lr , where lr = l1/l2. For (l1, l2) = (0.3, 0.65), it
yields Ym = 0.64. This closely corresponds to the value of l2 since l2
provides a measure of the skewness in the azimuthal velocity profile.
At Ym = 0.64, the azimuthal velocity reaches almost 1.6 times the
area-averaged velocity at the free surface. The spatial distributions
of azimuthal velocity substantially affect the estimations of momen-
tum and energy fluxes based on the area-averaged velocity. In order
to elicit a quantitative understanding of these fluxes, it is required
to find the Boussinesq and the Coriolis coefficients. Since the fluid
flux in a curved channel is primarily driven by the azimuthal veloc-
ity, the Boussinesq and the Coriolis coefficients, denoted by β and α,
respectively, are expressed as follows:6

β = 1

A⟨U⟩2 ∬
A

u
2
θdA = (λ + 1)2

2Ψ2λ(λ + 2)
1

∫
−1

(1 − Y2)2l1 exp(2l2Y)dY ,

(32)

α = 1

A⟨U⟩3 ∬
A

u
3
θdA = (λ + 1)3

2Ψ3λ2(λ + 3)
1

∫
−1

(1 − Y2)3l1 exp(3l2Y)dY .

(33)

Ψ appearing in the above equations is computed from Eq. (13). For
λ = 7, the Boussinesq and Coriolis coefficients are β = 1.141 and
α = 1.408, respectively. In a straight channel flow, β and α approx-
imately vary in the range 1.01–1.12 and 1.03–1.36, respectively.6 It
suggests that in a curved channel flow, the Boussinesq and Coriolis
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FIG. 6. Nondimensional velocity vectors on a nondimensional YZ-plane superim-
posed on the contours of nondimensional radial velocity ûr (=ur /⟨U⟩) for curvature
ratio C (=b/rc) = 0.04, reciprocal of the power-law exponent λ = 7, and aspect ratio
A (=b/⟨h⟩) = 20.

coefficients slightly exceed their corresponding upper limits in a
straight channel flow.

Figure 6 depicts the contours of nondimensional radial veloc-
ity ûr (radial velocity scaled by the area-averaged velocity), on a
nondimensional YZ-plane. In addition, the nondimensional veloc-
ity vectors, havingmagnitude (û2r + û2z)

1/2 and direction tan−1(ûz/ûr),
are illustrated. The velocity vectors clearly manifest a clockwise cir-
culatory fluid motion in the YZ-plane. The contours show that the
radial velocity changes its sign at Z ≈ 0.5, where it is quite feeble
and thus practically negligible. However, the intensity of the radial
velocity is relatively strong near the bed and the free surface at radial
distance Y ≈ 0.65. This location closely corresponds to the posi-
tion of the maximum depth-averaged azimuthal velocity (Fig. 4).
However, close to the outer sidewall, the radial velocity weakens to
preserve the no-slip. At a given vertical distance, the absolute mag-
nitudes of the velocity vectors, in the zone away from the sidewalls,
gradually increase toward the outer sidewall. Away from the side-
walls, the velocity vectors are approximately parallel to the bed since
the magnitude of the vertical velocity is trivial there as compared
to the radial velocity. However, close to the sidewalls, the velocity
vectors are rather skewed due to the sizeable amount of the vertical
velocity.

A fundamental question, in this instance, arises: how is the
radial velocity sensitive to a set of key parameters? To answer this
question, the important parameters are considered to be the curva-
ture ratio C, the reciprocal of the power-law exponent λ, and the
aspect ratio A. To be specific, the reciprocal of the power-law expo-
nent λ is closely related to the Darcy–Weisbach friction factor f as
λ ∝ 1/f 0.5 (see Sec. II E). Therefore, the variations in the recipro-
cal of the power-law exponent essentially reflect the corresponding
changes in the resistance to flow. Since the velocity components are
made nondimensional by the area-averaged velocity in the numer-
ical experiment, it was found that the effects of the flow Froude
number on the vertical profiles of radial velocity no longer exist.
However, to evaluate any parameters that weakly depend on the flow
Froude number, F = 0.3 is considered. The vertical profiles of ûr at
the channel centerline (Y = 0) for different values of C, λ, andA are
furnished in Figs. 7(a)–7(c). Importantly, when a specific parame-
ter is varied, the remaining two parameters are kept as constant.

The constant set of parameters in Figs. 7(a)–7(c) is considered as
(C, λ, A) = (0.04, 7, 20). Figures 7(a)–7(c) show that for a given C,
λ, andA, the radial velocity sharply diminishes (increase in negative
magnitude) with a small increase in the vertical distance, forming a
protuberance to attain a maximum negative peak. Then, the radial
velocity increases (reduction in negative magnitude) with the verti-
cal distance, becoming zero roughly at the mid-flow depth (Z = 0.5).
Above Z = 0.5, the radial velocity becomes positive and increases as
one moves toward the free surface. With an increase in the curva-
ture ratio, the absolute magnitude of the radial velocity intensifies
throughout the flow depth, as evident from Fig. 7(a). It is attributed
to the fact that the centrifugal acceleration escalates with an increase
in the curvature ratio as the former is inversely proportional to the
radius of curvature. The radial velocity profiles for different cur-
vature ratios clearly display a pivoting point, located at Z ≈ 0.5,
through which the profiles emerge [Fig. 7(a)]. This point closely cor-
responds to the occurrence of vanishing radial velocity. For a given
vertical distance, especially for Z < 0.1, the radial velocity increases,
as the reciprocal of the power-law exponent λ increases [Fig. 7(b)],
whereas for Z > 0.3, the radial velocity profiles are practically inde-
pendent of λ, suggesting that the profiles become frozen for λ > 7.
Another important observation is that unlike Fig. 7(a), the pivoting
point of the radial velocity profiles for different λ occurs at Z ≈ 0.33.
Importantly, the position of the vanishing radial velocity marginally
shifts downward with an increase in λ. Figure 7(c) indicates that
as the aspect ratio increases, the absolute magnitude of the radial
velocity deteriorates over the entire flow depth. However, for a large
aspect ratio (A > 30), the radial velocity profiles attain a quasifrozen
state. Akin to Fig. 7(a), the pivoting point in Fig. 7(c) is formed at
Z ≈ 0.5.

Figures 7(a)–7(c) do not provide an understanding of how the
radial velocity, for a given vertical distance, is distributed in the
radial direction. To gain a quantitative insight of this scenario, the
radial profiles of radial velocity are shown in Fig. 7(d), for two dif-
ferent nondimensional vertical distances Z = 0.4 and 0.6, where the
radial velocity is directed toward inner and outer sidewalls, respec-
tively. Noticeably, the radial velocity, for a given vertical distance,
becomes stronger (in the absolute sense) near the outer sidewall,
attaining its peak at Y ≈ 0.65, and thereafter abruptly reduces toward
the outer sidewall.

Figures 8(a) and 8(b) provide an experimental verification of
the radial velocity obtained from the theoretical analysis. The exper-
imental data of radial velocity at two vertical sections, located at
Y = −0.15 and 0.45, are taken from de Vriend and Koch22 for two
different fluid fluxes. In general, the comparisons of the theoreti-
cal profiles with the experimental data are satisfactory. Note that in
the near-bed flow zone, the radial velocity sharply dampens to pre-
serve the no-slip [see Eq. (6a)]. However, the experimental data of
de Vriend and Koch22 could not capture the velocity slowdown in
the near-bed flow zone and the no-slip owing to the limitation of the
experiment.

Figure 9 shows the contours of nondimensional azimuthal vor-
ticity Ω̂θ , in the near-bed flow zone, on the nondimensional YZ-
plane bounded by Y ∈ [−1, 1] and Z ∈ [0, 0.1], for C = 0.04, λ = 7, and
A = 20. It is evident that in the immediate vicinity of the bed, the flow
possesses a large azimuthal vorticity resulting from a steep velocity
gradient. Importantly, the azimuthal vorticity, in the close proxim-
ity of the bed, is greater toward the outer sidewall than toward the
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FIG. 7. Vertical profiles of nondimen-
sional radial velocity ûr (=ur /⟨U⟩) at the
channel centerline for (a) curvature ratios
C (=b/rc) = 0.02, 0.04, 0.06, and 0.08, (b)
reciprocal of the power-law exponents λ
= 5, 7, 9, and 11, and (c) aspect ratios A
(=b/⟨h⟩) = 10, 20, 30, and 40. (d) Radial
profiles of nondimensional radial velocity
ûr at nondimensional vertical distances
Z = 0.4 and 0.6.

inner sidewall. However, the magnitude of the azimuthal vorticity
abruptly diminishes as one moves toward the free surface.

Figures 10(a) and 10(b) represent the variations of nondimen-
sional flow circulation Γ̂ about azimuthal axis and flow helicity Ĥ

per unit azimuthal distance with curvature ratio C and aspect ratio
A, respectively. In the numerical experiments, we revealed that the
Γ̂ and Ĥ hardly vary with the reciprocal of the power-law expo-
nent λ. Therefore, such weak dependencies of Γ̂ and Ĥ on λ are not

FIG. 8. Comparison of vertical pro-
files of nondimensional radial velocity ûr
(=ur /⟨U⟩) with the experimental data for
fluid fluxes Q of (a) 0.232 m3 s−1 and (b)
0.463 m3 s−1.
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FIG. 9. Contours of nondimensional azimuthal vorticity Ω̂θ (=Ωθ⟨h⟩/⟨U⟩) on the
nondimensional YZ-plane for the curvature ratio C (=b/rc) = 0.04, reciprocal of the
power-law exponent λ = 7, and aspect ratio A (=b/⟨h⟩) = 20.

furnished herein. In Fig. 10, both the nondimensional flow circula-
tion about the azimuthal axis and flow helicity are negative since they
are closely associated with the global sense of secondary circulation,
being in the clockwise direction (see Fig. 6). In addition, the nondi-
mensional flow circulation about the azimuthal axis and flow helicity
strengthen (in the absolute sense) with an increase in the curvature
ratio, while they decrease as the aspect ratio increases.

B. Radial free surface profile

The radial free surface profile for a set of key parameters can
be obtained from Eq. (16). Equation (16) shows that the radial free
surface profile is dependent on the appropriate selection of the flow
Froude number F, curvature ratio C, and slope correction factor J,
which is a function of the reciprocal of the power-law exponent λ
[see Eq. (19)]. However, in the numerical experiment, we identified
that the radial free surface profile is less sensitive to λ because J

is a weak function of λ. Therefore, the sensitivity of the radial free
surface profile to λ is not presented here. Figures 11(a) and 11(b)
show the radial free surface profiles for different flow Froude num-
bersF and curvature ratios C. In Fig. 11(a), C is kept constant as 0.04,
while in Fig. 11(b), F is considered to be 0.3. For a given radial dis-
tance Y, near the inner sidewall, the free surface level reduces with

an increase in the flow Froude number [Fig. 11(a)], whereas near the
outer sidewall, it rises with the flow Froude number. These features
emerge from the predominant effects of centrifugal acceleration in
a curved channel flow. Similar observations are also evident from
Fig. 11(b). In essence, the radial free surface profiles evolve more
quickly with the flow Froude number than with the curvature ratio
since the radial free surface profile has a quadratic tie-up with the
flow Froude number [see Eq. (16)]. Note that the average flow depth

⟨h⟩ over the flow cross section, that is ĥ = 1, is located slightly away
from the channel centerline.

It is also interesting to examine the variations of superelevation
with the flow Froude number and curvature ratio. The supereleva-
tion ∆h can be readily obtained from the relationship ∆h = h(Y = 1)

− h(Y = −1). The variations of nondimensional superelevation ∆ĥ
(=∆h/⟨h⟩) with the flow Froude number F and curvature ratio C are
presented in Figs. 11(c) and 11(d). It is revealed that the supereleva-
tion follows a nonlinear relationship with the flow Froude number,
while it varies approximate linearly with the curvature ratio.

The experimental verifications of the radial free surface profiles,
obtained from the theoretical analysis, are presented in Fig. 12. In
Fig. 12(a), the theoretical variation of flow depth h scaled by the flow
depth at the channel centerline hc with the nondimensional radial
distance Y is compared with the experimental data of de Vriend and
Koch21 for a fluid flux of 0.61 m3 s−1. The experimental data corre-
spond to the cross section E0 for three different conditions of the tail
gate, designated as T1-1, T1-2, and T1-3 cases. On the other hand,
in Fig. 12(b), the radial profile of h/hc is compared with the exper-
imental data of de Vriend and Koch,22 corresponding to the cross
section D0, for a fluid flux of 0.463 m

3 s−1. Overall, the experimental
data somewhat depart from the computed radial free surface profiles.
The deviations are primarily ascribed to the free surface instabilities,
which hinder to accomplish an accurate measurement of the free
surface profiles. However, in Fig. 12(b), the computed radial free sur-
face profile has a satisfactory agreement with the experimental data
for Y ∈ [−0.5, 1].

C. Stress field

Let us first examine the behavior of radial shear stress, which
can be obtained from Eq. (17). Importantly, the radial shear stress
jointly depends on the local turbulent diffusivity and the gradient

FIG. 10. Nondimensional radial circu-
lation Γ̂ [=Γθ(b⟨U⟩)−1] and helicity Ĥ
[=H(b⟨U⟩2)−1] per unit azimuthal dis-
tance as a function of (a) curvature ratio
C (=b/rc) and (b) aspect ratio A (=b/⟨h⟩).
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FIG. 11. Nondimensional radial free sur-
face profiles ĥ (=h/⟨h⟩) for (a) flow
Froude numbers F = 0.2, 0.3, 0.4, and
0.5 and (b) curvature ratios C (=b/rc) =
0.02, 0.04, 0.06, and 0.08. Nondimen-
sional superelevation ∆ĥ (=∆h/⟨h⟩) as a
function of (c) flow Froude numberF and
(d) curvature ratio C.

of radial velocity. Figure 13 illustrates the contours of nondimen-
sional radial shear stress τ̂rz [=τrz(ρ⟨U⟩2)−1] on the nondimensional
YZ-plane for C = 0.04, λ = 7, and A = 20. The contours clearly
demonstrate that at the mid-flow depth, the radial shear stress is
primarily magnified toward the outer sidewall. In the near-bed flow
zone, the radial shear stress is negative due to the radial motion of

fluid toward the inner sidewall (Fig. 6). However, away from the bed,
the radial shear stress is positive because the radial motion of fluid
is directed toward the outer sidewall. Close to the free surface, the
radial shear stress becomes vanishingly small because the turbulent
diffusivity diminishes toward the free surface. However, the radial
velocity still persists at the free surface (see Figs. 6 and 7). At the

FIG. 12. Comparison of nondimensional
radial free surface profiles with the
experimental data for fluid fluxes Q of (a)
0.61 m3 s−1 and (b) 0.463 m3 s−1.
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FIG. 13. Contours of nondimensional radial shear stress τ̂rz [=τrz(ρ⟨U⟩2)−1] on
the nondimensional YZ-plane for curvature ratio C (=b/rc) = 0.04, reciprocal of the
power-law exponent λ = 7, and aspect ratio A (=b/⟨h⟩) = 20.

mid-flow depth, the radial shear stress is practically insignificantly
close to the inner sidewall. On the other hand, it is substantially
close to the outer sidewall owing to the skewed velocity filament,
giving rise to nontrivial radial velocity (Fig. 6). However, in the

immediate proximity of the outer sidewall, the radial shear stress
disappears.

The evolutions of the radial shear stress subjected to several key
parameters can be further studied. The vertical profiles of nondi-
mensional radial shear stress τ̂rz at the channel centerline (Y = 0)
for different values of C, λ, and A are depicted in Figs. 14(a)–14(c).
For a given C, λ, and A, the radial shear stress in the close proxim-
ity of the bed starts with a negative value since the local radial strain
rate is essentially negative there. Then, it reduces (reduction in nega-
tive magnitude) with an increase in the vertical distance [Figs. 14(a)
–14(c)], eventually becoming zero at a vertical distance, where the
local radial velocity profile forms a protuberance [see Figs. 7(a)
–7(c)]. As the vertical distance further increases, the radial shear
stress enhances owing to the enhancement of turbulent diffusivity,
becoming maximum approximately at the mid-flow depth, where
the radial velocity switches over from a negative to positive value.
Thereafter, the radial shear stress decreases with the vertical distance
owing to a reduction in turbulent diffusivity and ultimately vanishes
at the free surface [Figs. 14(a)–14(c)]. At a given vertical distance, the
absolute magnitude of the radial shear stress grows with an increase
in the curvature ratio due to an augmentation of the radial velocity
arising from centrifugal acceleration [Fig. 14(a)]. The radial shear
stress profiles, for different curvatures and aspect ratios, clearly show
a pivoting point, located at Z = 0.05, which closely corresponds
to the occurrence of protuberance in the radial velocity profile

FIG. 14. Vertical profiles of nondi-
mensional radial shear stress τ̂rz
[=τrz(ρ⟨U⟩2)−1] at the channel center-
line for (a) curvature ratios C (=b/rc) =
0.02, 0.04, 0.06, and 0.08, (b) reciprocal
of the power-law exponents λ = 5, 7, 9,
and 11, and (c) aspect ratios A (=b/⟨h⟩)
= 10, 20, 30, and 40. (d) Radial profiles
of nondimensional radial shear stress
τ̂rz at nondimensional vertical distances
Z = 0.03 and 0.1.
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FIG. 15. Contours of nondimensional azimuthal shear stress τ̂θz [=τθz(ρ⟨U⟩2)−1]
on the nondimensional YZ-plane for the curvature ratio C (=b/rc) = 0.04, reciprocal
of the power-law exponent λ = 7, and aspect ratio A (=b/⟨h⟩) = 20.

[Figs. 14(a)–14(c)]. Conversely, for different reciprocals of the
power-law exponents, the pivoting point is not formed at the occur-
rence of protuberance in the radial velocity profile; rather, it is
formed at Z = 0.15 [Fig. 14(b)]. At a given vertical distance, the

absolute magnitude of the radial shear stress increases with a
decrease in the reciprocal of the power-law exponent [Fig. 14(b)].
Similar observation on the evolutions of the radial shear stress pro-
files is noticeable for different aspect ratios [Fig. 14(c)]. As the aspect
ratio decreases, the radial shear stress becomes nontrivial owing to
a sizable gradient of radial velocity. Figure 14(d) shows the radial
profiles of nondimensional radial shear stress at two vertical dis-
tances Z = 0.03 and 0.1, where the radial shear stress is directed
toward the inner and outer sidewalls, respectively. The radial skew
of the radial shear stress toward the outer sidewall is quite promi-
nent from Fig. 14(d). Note that the absolute magnitudes of the radial
shear stress, for Z = 0.03 and 0.1, become maximum at Y = 0.65,
while they are quite negligible in the immediate neighborhood of the
sidewalls.

Now, we focus on the behavior of the azimuthal shear stress.
The azimuthal shear stress at a given radial and vertical distances
can be obtained from Eq. (23). In Fig. 15, the contours of nondi-
mensional azimuthal shear stress τ̂θz [=τθz(ρ⟨U⟩2)−1] on the nondi-
mensional YZ-plane is shown for C = 0.04, λ = 7, and A = 20. For
a given vertical distance, the azimuthal shear stress slowly reduces
as one moves toward the channel centerline owing to the redistribu-
tion of the primary flow momentum. However, for a given vertical
distance, it increases as the radial distance increases beyond Y = 0.5.

FIG. 16. Vertical profiles of nondi-
mensional azimuthal shear stress τ̂θz
[=τθz(ρ⟨U⟩2)−1] at the channel center-
line for (a) curvature ratios C (=b/rc) =
0.02, 0.04, 0.06, and 0.08, (b) reciprocal
of the power-law exponents λ = 5, 7, 9,
and 11, and (c) aspect ratios A (=b/⟨h⟩)
= 10, 20, 30, and 40. (d) Radial profiles of
nondimensional azimuthal shear stress
τ̂θz at nondimensional vertical distance
Z = 0.5.
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To study the sensitivity of the azimuthal shear stress to different
key parameters, the vertical profiles of nondimensional azimuthal
shear stress τ̂θz at the channel centerline (Y = 0) for different values
of C, λ, andA are depicted in Figs. 16(a)–16(c). For a given C, λ, and
A, the azimuthal shear stress distinguishingly maintains a nonlinear
behavior induced by the curvilinear streamlines, having a maximum
magnitude at the bed and a vanishing magnitude at the free sur-
face. At a given vertical distance, it diminishes with an increase in
the curvature ratio [Fig. 16(a)]. This is principally attributed to an
increase in the damping function with the curvature ratio (see Sec. II
E). In addition, the nonlinearity in the azimuthal shear stress profile
increases with an increase in the curvature ratio. On the other hand,
at a given vertical distance, the azimuthal shear stress reduces with
an increase in the reciprocal of the power-law exponent [Fig. 16(b)].
Conversely, at a given vertical distance, it reduces with a reduction
in the aspect ratio [Fig. 16(c)], which suggests that the azimuthal
shear stress dampens more quickly for a lower aspect ratio (A = 10).
In essence, for larger aspect ratios exceeding A = 30, the azimuthal
shear stress profiles become nearly frozen, revealing the indepen-
dency of the azimuthal shear stress profile on the aspect ratio. Note
that the azimuthal shear stress profile for A = 10 is highly non-
linear owing to the large damping function resulting from strong
radial velocity. In Fig. 16(d), the radial profile of nondimensional
azimuthal shear stress at Z = 0.5 is furnished. Starting from the inner
sidewall (Y = −1), it slowly reduces with the radial distance owing
to the reduction in primary flow momentum, attaining a minimum
value at Y = 0.3, and then increases with the radial distance.

IV. CONCLUSIONS

This study sheds light on the hydrodynamics of weakly curved
channels, solving analytically the boundary layer equations in three
dimensions and employing the no-slip as well as a zero radial flux
condition as the essential boundary conditions. The azimuthal shear
stress is modeled by the Boussinesq conjecture for a turbulent flow.
On the other hand, the radial shear stress is evaluated by apply-
ing the isotropic notion of turbulence. The radial slope correction
factor in conjunction with the damping function for the azimuthal
shear stress is introduced in the theoretical analysis to account for
the stress term in the radial momentum balance and the skewing of
the primary flowmomentum induced by the curvilinear streamlines,
respectively.

The azimuthal velocity scaled by its depth-averaged value fol-
lows the power-law, while the depth-averaged azimuthal velocity
scaled by the depth-averaged centerline azimuthal velocity preserves
a quadratic-cum-exponential law. The velocity field reveals that the
Boussinesq and Coriolis coefficients in a weakly curved channel flow
surpass their respective upper limits in a straight channel flow. The
radial velocity is quite strong just above the bed and at the free
surface, at a radial distance that closely corresponds to the radial
location of the maximum depth-averaged azimuthal velocity. By
contrast, it is weaker near the sidewalls owing to the no-slip. The
absolute magnitude of the radial velocity, for a given spatial location,
grows with the curvature ratio as a result of the intensified centrifu-
gal acceleration. The vertical profiles of radial velocity, for different
curvature ratios, clearly depict a pivoting point, while those, for
different reciprocals of the power-law exponents exceeding seven,
become frozen above mid-flow depth. The pivoting point of the

radial velocity profiles for different reciprocals of the power-law
exponents occurs approximately at a vertical distance of one-third
of the flow depth. The absolute magnitude of the radial velocity,
for a given spatial location, declines with an increase in the aspect
ratio. For a large aspect ratio exceeding 30, the radial velocity pro-
files become quasifrozen, having the pivoting point approximately
located at the mid-flow depth.

In the near-bed flow zone, the azimuthal vorticity is substan-
tial due to the steep gradients of the radial and vertical velocities in
secondary current. In addition, the azimuthal vorticity, for a given
vertical distance, is larger toward the outer sidewall than toward the
inner sidewall. On the other hand, the azimuthal vorticity, for a given
radial distance, reduces with an increase in the vertical distance. The
absolute magnitudes of the flow circulation about the azimuthal axis
and the flow helicity intensify with an increase in the curvature ratio,
whereas they reduce as the aspect ratio increases.

For a given radial distance, the free surface level diminishes
with an increase in the flow Froude number close to the inner side-
wall, whereas it increases close to the outer sidewall. The radial
free surface profiles depict a quicker evolution with the flow Froude
number than with the curvature ratio. The superelevation increases
nonlinearly with the flow Froude number and linearly with the
curvature ratio.

The strengthening of the radial shear stress occurs toward the
outer sidewall at the mid-flow depth. In the near-bed flow zone, the
radial shear stress is negative owing to the inward motion of fluid,
while away from the bed, it is positive. The absolute magnitude of
the radial shear stress, at a given spatial location, increases with an
increase in the curvature ratio owing to the large gradient of the
radial velocity. The vertical profiles of radial shear stress, for dif-
ferent curvatures and aspect ratios, show a pivoting point in each
profile that closely corresponds to the occurrence of protuberance in
the radial velocity profile. On the other hand, for different recipro-
cals of the power-law exponents, the pivoting point does not corre-
spond to the position of protuberance in the radial velocity profile.
The absolute magnitude of the radial shear stress, at a given spa-
tial location, strengthens with a reduction in the reciprocal of the
power-law exponent and aspect ratio.

The azimuthal shear stress, at a given spatial location, grad-
ually dampens toward the channel centerline, resulting from the
redistribution of the primary flow momentum. On the other hand,
the azimuthal shear stress, at a given spatial location, reduces with
an increase in the curvature ratio owing to an increased damping
function. In addition, the azimuthal shear stress, at a given spatial
location, reduces with the reciprocal of the power-law exponent,
while it reduces with a decrease in the aspect ratio. The vertical
profiles of azimuthal shear stress become frozen for larger aspect
ratios exceeding 30. However, for a low aspect ratio equaling ten, the
azimuthal shear stress profile becomes nonlinear owing to the sub-
stantial damping of the primary flow momentum, originating from
the large radial velocity.

In essence, this study essentially addresses the sensitivity of
the helicoidal flow structure to key parameters, such as the chan-
nel curvature ratio, channel aspect ratio, and reciprocal of power-
law exponent, without considering the depth-averaged assumptions.
However, this study does not consider the effects of flow separation,
which arises in a strongly curved channel flow. Despite plausible
assumptions, this study thus offers a promising analytical model
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of flow through a weakly curved channel, advancing the current
state-of-the-art.
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