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ABSTRACT

In this paper, we explore the hydrodynamic instability of free river bars driven by a weakly varying turbulent flow in a straight alluvial
channel with erodible bed and non-erodible banks. We employ linear stability analysis in the framework of depth-averaged formulations for
the hydrodynamics and the sediment transport. A significant fraction of the sediment flux is considered to be in suspension. The analysis is
performed for the alternate pattern of river bars at the leading order followed by the next order, covering the effects of flow regime. We find
that the unstable region bounded by a marginal stability curve depends significantly on the shear Reynolds number, which demarcates differ-
ent flow regimes, and the Shields number and the relative roughness (particle size to flow depth ratio). The results at the next order stabilize
the bars with longer wavenumbers. The variations of threshold aspect ratio with Shields number and relative roughness are studied for differ-
ent flow regimes. In addition, for a given Shields number and relative roughness, the diagram of threshold aspect ratio vs shear Reynolds
number is explained. Unlike the conventional theories of bar instability, the analysis reveals limiting values of Shields number and relative
roughness beyond which the theoretical results at the next order produce infeasible regions of instability. The limiting values of Shields num-
ber and relative roughness appear to reduce, as the shear Reynolds number increases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045530

I. INTRODUCTION

Riverbed erosion and deposition associated with the interaction
between a flowing fluid and an erodible bed form striking sedimentary
patterns over widely varying length scales.1 River bars are frequently
observed in both gravel and sand-bed rivers. They are large-scale sedi-
mentary patterns with a wavelength of the order of several channel
widths.2,3 Bars are broadly grouped into two classes: free and forced
bars.1,4 Instability of an erodible bed in a straight channel leads to the
formation of free bars.5 On the other hand, forcing effects (channel
curvature and width variation) trigger the formation of forced bars.1

This study mainly puts into focus the hydrodynamic instability of free
bars, as they are the most common depositional features in a straight
fluvial system. The formation of river bars limits navigation, increases
flood risk, and is linked with scour at banks and bridge piers.3,6

Moreover, bars play a key role in governing the dynamics of meander-
ing and braided rivers.1 Therefore, from an engineering perspective,
instability of river bars is a key to understanding their precise
formation.

Formation of river bars has been studied extensively by means of
theoretical analyses,2,4–12 laboratory experiments,3,13–17 field observa-
tions,18,19 and numerical simulations.20,21 Recently, Crosato and
Mosselman22 reported an in-depth review on this topic. Instability of
river bars is conventionally analyzed using linear and nonlinear
approaches.1,9,12 A linear stability analysis predicts the unstable region
on a plane formed by the channel aspect ratio (channel width to flow
depth ratio) and the bar wavenumber. On the other hand, a nonlinear
stability analysis quantifies the bar amplitude.

Sediment transport plays a crucial role toward the instability of
river bars. Some studies based on two-dimensional (2D) assumptions
considered only the bedload flux in the linear stability analysis.2,9,10 It
was found that the channel bed becomes unstable beyond a threshold
aspect ratio.9 Tubino et al.5 studied the instability of free river bars by
means of a 3D framework, considering the effects of sediment suspen-
sion. They concluded that the inclusion of sediment suspension leads
to a decrease in the threshold aspect ratio and an increase in the bar
wavelength. Similar findings were reported by Federici and Seminara11
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and Bertagni and Camporeale.12 In a slowly varying flow, Federici and
Seminara11 studied the formation of river bars applying the depth-
averaged formulations for the hydrodynamics and the sediment
transport. Considering only the bedload flux, Federici and Seminara4

studied the convective nature of bar instability by means of branch point
singularities of the dispersion relation. Solving the nonlinear problem
numerically, they concluded that groups of bars, emanating from either
an arbitrary distributed or a local bed topography perturbation, grow
and propagate downstream, keeping the source area intact. Afterward,
Federici and Seminara11 recognized that the inclusion of sediment sus-
pension does not change the nature of bar instability.

The formation of alternate bars was found to be influenced by
the flow unsteadiness. Tubino6 predicted the bar amplitude in an
unsteady flow, performing a weakly nonlinear analysis close to the
neighborhood of the threshold condition for the bar formation. In
addition, Hall10 presented a linear stability analysis of alternate bars in
an unsteady flow. It was found that the flow unsteadiness leads to a
reduction in the threshold aspect ratio and the bar wavelength.
Lanzoni and Tubino2 studied the effects of sediment heterogeneity on
the formation of alternate bars. They found that the growth rate, wave-
length, and propagation speed of bars dampen owing to the presence
of sediment heterogeneity.

The state-of-the-art of bar instability is quite mature as far as the
flow is steady and the primary mode of sediment transport is the bed-
load transport. It is well-known that the channel aspect ratio is the key
parameter controlling the formation of alternate bars. Earlier studies
reported that the sediment suspension plays a destabilizing role by
reducing the threshold aspect ratio. This conclusion was drawn with
respect to the conventional treatment, where the sediment transport
occurs mainly as a bedload transport.5,11,12 However, this destabilizing
influence is yet to be explored in detail. Recently, Ali and Dey7,8

reported a comprehensive analysis of the instability of large-scale river
bars considering the effects of sediment suspension and flow regimes.
However, little is so far known about the effects of sediment suspen-
sion and flow regime on the bar instability at various orders of
approximation.

This study aims at exploring the effects of sediment suspension
and flow regime on the bar instability. We perform a linear stability
analysis considering a weakly varying turbulent flow in a straight
channel with erodible bed and non-erodible banks. For the hydrody-
namics and the sediment transport, a depth-averaged formulation is
used. The analysis is capable to capture the bar instability over a wide
range of shear Reynolds numbers, Shields numbers and relative rough-
ness. It is revealed that the threshold aspect ratio, being the controlling
parameter for the bar formation, significantly varies with the shear
Reynolds number, Shields number, and relative roughness.

The paper is arranged as follows: The mathematical formulation
is presented in Sec. II. The linear stability analysis is performed in Sec.
III. The results and discussion are furnished in Sec. IV. Finally, conclu-
sions are drawn in Sec. V.

II. MATHEMATICAL FORMULATION

The schematic of free river bars is shown in Fig. 1. The bar wave-
length is represented by k [Fig. 1(a)]. We consider a 2D turbulent flow
of an incompressible fluid in a straight alluvial channel of constant
width 2B. The channel has an erodible bed and non-erodible banks. In
Fig. 1(a), x and y represent the streamwise and spanwise directions,

respectively. The origin of the coordinate system lies on the channel
centerline. Figure 1(b) displays an exemplary cross-sectional view of
the channel at a cross section S1–S2. In Fig. 1(b), D is the local flow
depth and H is the elevation of the free surface of flow from a horizon-
tal reference level. The broken line in Fig. 1(b) characterizes the undis-
turbed channel cross section.

The depth-averaged momentum and continuity equations can be
obtained by performing depth-averaging of the time-averaged
momentum and continuity equations, in addition to the appropriate
boundary conditions at the free surface and the bed. The time-
averaged pressure intensity is assumed to follow the hydrostatic law.
As the wavelength of river bars is of the order of a few channel widths,
the use of depth-averaged hydrodynamic equations is justified. In
addition, the morphological timescale is much larger than the flow
timescale. Therefore, we consider the flow field to be a quasi-steady.
Let the components of depth-averaged velocity, bed shear stress, bed-
load flux, and suspended load flux in (x, y) be (U, V), (Tx, Ty), (Qbx,
Qby), and (Qsx, Qsy), respectively.

The depth-averaged momentum equations are expressed as23

Û
@Û

@x̂
þ V̂

@Û

@ŷ
þ
@Ĥ

@x̂
þ b

T̂ x

D̂
¼ 0; (1)

Û
@V̂

@x̂
þ V̂

@V̂

@ŷ
þ
@Ĥ

@ŷ
þ b

T̂ y

D̂
¼ 0: (2)

The depth-averaged continuity equation of the fluid phase is
expressed as23

@

@x̂
ðD̂Û Þ þ

@

@ŷ
ðD̂V̂ Þ ¼ 0: (3)

The continuity equation of the solid phase, given by Exner,24 is
expressed as

@

@ t̂
ðF2Ĥ � D̂Þ þ c

@Ubx

@x̂
þ
@Uby

@ŷ

� �

þ
1

1� p

@Usx

@x̂
þ
@Usy

@ŷ

� �

¼ 0:

(4)

In Eqs. (1)–(4), the following dimensionless variables are
introduced:

ðx̂; ŷÞ ¼
ðx;yÞ

B
; D̂ ¼

D

D0
; Ĥ ¼

H

F2D0
; F ¼

U0

ðgD0Þ
0:5 ;

b¼
B

D0
; ðÛ ; V̂ Þ ¼

ðU;VÞ

U0
; t̂ ¼

tU0

B
; ðT̂ x; T̂ yÞ ¼

ðTx;TyÞ

qfU
2
0

;

ðUbx;UbyÞ ¼
ðQbx;QbyÞ

ðs� 1Þgd3½ �0:5
; ðUsx;UsyÞ ¼

ðQsx;QsyÞ

U0D0
;

and c¼
ðs� 1Þgd3
� �0:5

ð1� pÞU0D0
;

(5)

where F is the undisturbed flow Froude number, U0 is the undisturbed
average flow velocity, g is the gravitational acceleration, b is the chan-
nel aspect ratio (channel half-width B to undisturbed flow depth D0

ratio), t is the time, s is the relative density (¼ qs/qf), qs is the mass
density of sediment particles (¼ 2650 kg m�3 for natural quartz sand),
qf is the mass density of fluid (¼ 1000 kg m�3 for water), p is the sedi-
ment porosity (� 0.3), d is the median sediment size, and c is the ratio
of the scale of sediment flux to that of flow flux.
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To solve the system of equations, closure relationships for the
bed shear stress and the sediment flux vectors are required. The com-
ponents of the bed shear stress vector, as a function of dynamic pres-
sure, are expressed as

ðT̂ x; T̂ yÞ ¼
f

8
ðÛ ; V̂ ÞðÛ

2
þ V̂

2
Þ0:5; (6)

where f is the Darcy–Weisbach friction factor, which describes the
resistance due to frictional effects. The f can be determined from the
Colebrook–White equation. It is expressed as25

1

f 0:5
¼ �0:86 ln

2:51

Rf 0:5
þ

k̂s

14:8D̂

 !1:1
2

4

3

5; (7)

where R is the flow Reynolds number (¼ 4UD/t), t is the coefficient
of kinematic viscosity of fluid, k̂s ¼ ks/D0, and ks is the bed roughness
height. The ks is expressed as a linear function of particle size, that is,
ks ¼ ad, where a is a factor. Following the experimental observations
of Engelund and Hansen,26 we set a ¼ 2.5. It is worth mentioning that
the Colebrook–White equation facilitates the estimation of friction fac-
tor over a wide range of flow regimes. The flow regimes are distin-
guished by the values of shear Reynolds number R� as hydraulically
smooth (R� � 3), transitional (3<R� < 70), and rough (R� � 70)
flow regimes. The R� is expressed as

27

R� ¼
u�ks

t
; (8)

where u� is the shear velocity. The Shields number H, represen-
tative of the dimensionless fluid-induced bed shear stress, is
expressed as27

H ¼
u2�

ðs� 1Þgd
: (9)

The coupling of R� withH produces

R� ¼ aðHD3
�Þ

0:5; (10)

where D� is the particle parameter {¼ d[(s – 1) g/t2]1/3}. As the sus-
pended load transport is considered to be dominant in the analysis,
the Shields number H always exceeds the threshold of sediment sus-
pension Hs. It implies that for H < Hs, the sediment suspension
ceases. For the estimation of Hs, we use the empirical formula of van

Rijn28 (see Appendix A). The flow Froude number F and flow
Reynolds number R can be expressed as follows:

F ¼
8Hðs� 1Þd̂

f

" #0:5

andR ¼
4D̂R�

ad̂

8

f

� �0:5

; (11)

where d̂ is the relative roughness (¼ d/D0).
The bedload transport is defined as the transport of particles in

rolling, sliding, and saltating modes.27 When the fluid-induced bed

shear stress just exceeds its threshold value, the particles are trans-

ported in sliding and/or rolling mode. With an increase in bed shear

stress, the bedload transport occurs in a saltating mode.27,29 As the bed

shear stress increases further, finer particles are lifted up into suspen-

sion owing to the upward diffusion of near-bed turbulence.27 In this

situation, both the bedload and suspended load transport exist. The

direction of bedload transport deviates from that of bed shear

stress.30–32 The components of bedload flux vector are expressed as

ðUbx;UbyÞ ¼ Uðcos v; sin vÞ; (12)

where U is the bedload flux intensity and v is the angle between the
resultant bedload flux and the longitudinal direction. The v can be
obtained by imposing a dynamic equilibrium on a spherical particle
moving along a plane tangential to the bed. The v is expressed as30

sin v ¼
V̂

ðÛ
2
þ V̂

2
Þ0:5

�
r

bH0:5 �
@

@ŷ
ðF2Ĥ � D̂Þ; (13)

where r is an empirical constant. The r varies over a certain range, as
reported in the literature.33 However, following the study of Talmon
et al.,34 we consider r¼ 0.56 in this study. For the bedload flux inten-
sity U, various power laws are available in the literature. Here, we
employ the empirical formula of Meyer-Peter andM€uller.35 It is

U ¼ 8ðH�HcÞ
1:5; (14)

where Hc is the threshold Shields number. Note that Ali and Dey36

obtained the above empirical exponent from the phenomenological
theory of turbulence. For the estimation ofHc, the force system acting
on a particle needs to be analyzed. Interested readers may refer to the
work of Ali and Dey37,38 and Dey and Ali39–41 in this regard. However,

FIG. 1. Definition sketch of the physical system: (a) plan view (flow directed from left to right) and (b) cross-sectional view.
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to simplify the analysis in the present context, we use the following
empirical relationship ofHc(D�), given by Wu andWang:42

Hc ¼ KDn
�: (15)

In Eq. (15), the complete set (K, n) ¼ (0.126, �0.44) for D� < 1.5,
(0.131, �0.55) for 1.5�D� < 10, (0.0685, �0.27) for 10�D� < 20,
(0.0173, 0.19) for 20�D� < 40, (0.0115, 0.3) for 40�D� < 150, and
(0.052, 0) for D� � 150.

Following the work of Federici and Seminara11 and Bertagni and
Camporeale,12 we consider a 2D extension of the depth-averaged
model of Bolla Pittaluga and Seminara43 for the estimation of sus-
pended load flux vector. Considering a slowly varying flow, Bolla
Pittaluga and Seminara43 performed an asymptotic expansion of the
exact solution of the advection-diffusion equation of sediment concen-
tration. In the perturbation approach, the effects of advective-cum-
unsteadiness are considered to be smaller than those of gravitational
settling and turbulent diffusion. Mathematically, it is expressed as

dk ¼
U0D0

Wsk
	 1; (16)

whereWs is the settling velocity of particles (see Appendix A) and k is
the scale of longitudinal variation of the flow field (� bar wavelength).
As the dk depends on the bar wavelength, another small parameter d
can be defined as11,12

d ¼ dk
k

B
¼

U0

bWs
: (17)

The suspended load flux vector can be expressed as43

ðUsx;UsyÞ ¼ D̂ðÛ ; V̂ Þw; (18)

where w is a function that can be expended in powers of d as follows:

w ¼ w0 þ dw1 þOðd2Þ: (19)

In the above, w0 is the function for the uniform flow condition and w1

describes the O(d) correction to the function w. The correction at
O(d) considers weak nonequilibrium effects owing to the spatial varia-
tion of the flow field. The functions w0 andw1 are expressed as

43

w0 ¼ C0K0; w1 ¼ K1D̂ Û
@C0

@x̂
þ V̂

@C0

@ŷ

� �

; (20)

where C0 is the depth-averaged concentration at the leading order, and
K0 andK1 are the functions of relevant physical parameters (seeAppendixB).

Finally, the channel banks are considered to be impervious to the
flow and sediment fluxes. Hence, we write

V̂ jŷ¼61 ¼ Ubyjŷ¼61 ¼ Usyjŷ¼61 ¼ 0: (21)

III. LINEAR STABILITY ANALYSIS

In the linear stability analysis, the primitive variables are
expanded as follows:

ðÛ ; V̂ ; Ĥ ; D̂Þ ¼ ð1; 0; Ĥ 0; 1Þ þ eðÛ 1; V̂ 1; Ĥ 1; D̂1Þ; (22)

where e is a small parameter. The perturbations need to be further
expanded in powers of d in order to account for the weak

nonequilibrium effects originating from the spatial variation of the
flow field. Therefore, we write

ðÛ 1; V̂ 1; Ĥ 1; D̂1Þ ¼ ðÛ 10; V̂ 10; Ĥ 10; D̂10Þ

þ dðÛ 11; V̂ 11; Ĥ 11; D̂11Þ þ Oðd2Þ: (23)

The components of bed shear stress and bedload flux vectors are
expressed as

T̂ x10 þ dT̂ x11 ¼
f0

8
s1ðÛ 10 þ dÛ 11Þ þ s2ðD̂10 þ dD̂11Þ
� �

; (24)

T̂ y10 þ dT̂ y11 ¼
f0

8
ðV̂ 10 þ dV̂ 11Þ; (25)

Ubx10 þ dUbx11 ¼ U0 s3ðÛ 10 þ dÛ 11Þ þ s4ðD̂10 þ dD̂11Þ
� �

; (26)

Uby10 þ dUby11 ¼U0 ðV̂ 10 þ dV̂ 11Þ �
r

bH0:5
0

�
@

@ŷ

(


 F2ðĤ 10 þ dĤ 11Þ � ðD̂10 þ dD̂11Þ
� �

)

; (27)

where f0, U0, and H0 are the Darcy–Weisbach friction factor, bedload
function, and Shields number, respectively, corresponding to the undis-
turbed state. The coefficients si (i¼ 1 to 4) are given in Appendix C. To
perturb the suspended load flux, the w0 andw1 are expanded as follows:

w0 ¼ w00f1þ e w010 þ dw011 þOðd2Þ
� �

g; (28)

w1 ¼ ew110 þ OðedÞ; (29)

where w00 is the function w0 at the undisturbed state. The quantities
w010, w011, andw110 are given in Appendix C.

Substituting Eqs. (22)–(29) into Eqs. (1)–(4), we obtain the fol-
lowing linear differential problem at the leading order O(e):

@Û 10

@x̂
þ
@Ĥ 10

@x̂
þ
bf0

8
s1Û 10 þ ðs2 � 1ÞD̂10

� �

¼ 0; (30)

@V̂ 10

@x̂
þ
@Ĥ 10

@ŷ
þ
bf0

8
V̂ 10 ¼ 0; (31)

@Û 10

@x̂
þ
@V̂ 10

@ŷ
þ
@D̂10

@x̂
¼ 0; (32)

@

@ t̂
ðF2Ĥ 10 � D̂10Þ þ cU0 s3

@Û 10

@x̂
þ s4

@D̂10

@x̂
þ
@V̂ 10

@ŷ

"

�
r

bH0:5
0

�
@2

@ŷ2
ðF2Ĥ 10 � D̂10Þ

�

þ
w00

1� p

@Û 10

@x̂
þ
@D̂10

@x̂
þ
@V̂ 10

@ŷ
þ
@w010

@x̂

 !

¼ 0: (33)

Similarly, the linear differential problem at the next order O(ed)
is expressed as

@Û 11

@x̂
þ
@Ĥ 11

@x̂
þ
bf0

8
s1Û 11 þ ðs2 � 1ÞD̂11

� �

¼ 0; (34)

@V̂ 11

@x̂
þ
@Ĥ 11

@ŷ
þ
bf0

8
V̂ 11 ¼ 0; (35)

@Û 11

@x̂
þ
@V̂ 11

@ŷ
þ
@D̂11

@x̂
¼ 0; (36)
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@

@ t̂
ðF2Ĥ 11 � D̂11Þ þ cU0 s3

@Û 11

@x̂
þ s4

@D̂11

@x̂
þ
@V̂ 11

@ŷ

"

�
r

bH0:5
0

�
@2

@ŷ2
ðF2Ĥ 11 � D̂11Þ

�

þ
1

1� p
w00

@Û 11

@x̂

��

þ
@D̂11

@x̂
þ
@V̂ 11

@ŷ
þ
@w011

@x̂

�

þ
@w110

@x̂

�

¼ 0: (37)

The solution of the problem is sought in the form of normal
modes. Therefore, we write

ðÛ 1j; V̂ 1j; Ĥ 1j; D̂1jÞjm¼odd ¼ u1jSmðŷÞ; v1jCmðŷÞ; h1jSmðŷÞ; d1jSmðŷÞ
� �


 exp iðk̂x̂ � xt̂Þ
h i

þ c:c:; ð38Þ

ðÛ 1j;V̂ 1j;Ĥ 1j;D̂1jÞjm¼even¼ u1jCmðŷÞ;v1jSmðŷÞ;h1jCmðŷÞ;
�

d1jCmðŷÞ�exp iðk̂x̂�xt̂Þ
h i

þc:c:; (39)

where m is the transverse Fourier mode, j is either 0 or 1 depending on

the order of approximation, i is the imaginary unit [¼ (�1)0.5], k̂ is the
dimensionless wavenumber (¼ 2pB/k), x is a complex quantity, whose
real and imaginary parts represent the growth rate and the dimensionless
frequency of perturbations, respectively, when multiplied with –i, and
c.c. stands for the complex conjugate. The Sm and Cm are expressed as

SmðŷÞ ¼ sin
p

2
mŷ

� �

; (40)

CmðŷÞ ¼ cos
p

2
mŷ

� �

: (41)

The complex quantityx is expanded in powers of d as

x ¼ x0 þ dx1 þ Oðd2Þ; (42)

wherex0 is the value of x at the leading order and x1 is the O(d) cor-
rection to thex.

When Eqs. (38)–(42) are substituted into the linear differential
problem at O(e), a linear algebraic homogeneous system is obtained.
In matrix form, this can be expressed as

AU ¼ 0; (43)

where A ¼ aij 2 R
4
4 and U ¼ (u10, v10, h10, d10)

T. The matrix coeffi-
cients aij are as follows:

a11 ¼ ik̂ þ
bf0

8
s1; a12 ¼ a21 ¼ a24 ¼ a33 ¼ 0;

a13 ¼ a31 ¼ a34 ¼ ik̂; a14 ¼
bf0

8
ðs2 � 1Þ;

a22 ¼ ik̂ þ
bf0

8
; a23 ¼ ð�1Þ1þm pm

2
; a32 ¼ ð�1Þm

pm

2
;

a41 ¼ cU0s3 þ
w00

1� p
ð1þ t1Þ

� �

ik̂;

a42 ¼ ð�1Þm
pm

2
cU0 þ

w00

1� p

� �

;

a43 ¼ F2 �ix0 þ
crU0

bH0:5
0

pm

2

� �2
" #

;

a44 ¼ ix0 þ ik̂cU0s4 �
crU0

bH0:5
0

pm

2

� �2

þ ik̂ð1þ t2Þ
w00

1� p
:

(44)

In the above equation, t1 and t2 are given in Appendix C.
At O(ed), a linear algebraic nonhomogeneous system is obtained as

AV ¼ C; (45)

where V ¼ (u11, v11, h11, d11)
T, C ¼ (0, 0, 0, c41)

T, c41 ¼ ix1(F
2h10

� d10)þ k̂
2
(g1u10 þ g2d10), and g1 and g2 are given in Appendix C.

At O(e), a dispersion relationship emerging from the solvability
of Eq. (43) takes the form of

�ix0 F2ða11a34 � a14a31Þ � a13a31 þ
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We use Eq. (45) to evaluate x1. As the homogeneous part of Eq.
(45) admits a nontrivial solution, a solvability condition is required.
The solvability condition suggests that det(A)¼ 0 after replacing the
last column of A by the column matrix C.9 Imposition of the solvabil-
ity condition on Eq. (45) yields

�ix1 F2ða11a34 � a14a31Þ � a13a31 þ
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2
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#)

: (47)

It is worth mentioning that by substituting x1 into Eq. (42), the
marginal stability (MS) curve correct to O(ed) can be obtained.
The MS curves at O(e) and O(ed) are defined as Re(–ix0)¼ 0 and
Re(–ix)¼ 0, respectively, where Re represents the real part of the
complex function.

IV. RESULTS AND DISCUSSION

In this section, computational results are presented for the alter-
nate pattern of river bars (m¼ 1). In order to cover various flow
regimes, for instance, smooth (R� � 3), transitional (3<R� < 70), and
rough (R� � 70) flow regimes, we consider R� ¼ 1 in a smooth flow,
R� ¼ 3 at the extremity of a smooth flow, R� ¼ 12 and 30 (two charac-
teristic values) in transitional flows, and R� ¼ 100 in a rough flow. It
might appear to the readers that the resolution of the shear Reynolds
number selection is limited, as only five characteristic values are con-
sidered, and therefore the corresponding simulation results may not
capture the entire hydrodynamic instability. However, this is not the
case. It may be emphasized here that the selected shear Reynolds num-
bers correspond to a specific flow regime and therefore, they offer an
idea of how the stability pattern evolves with an increase in shear
Reynolds number. In the subsequent discussion, it is shown that the
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above-mentioned consideration of shear Reynolds numbers is justified
in order to identify the stability pattern for an intermediate shear
Reynolds number. The MS curves, for a given shear Reynolds number

R�, are presented on the b(k̂) plane for different values of Shields num-

berH and relative roughness d̂ (Figs. 2–5). A large value ofH signifies
a considerable amount of sediment suspension, whereas a large value

of d̂ for a given particle size suggests a shallow flow depth. A typical
MS curve demarcates the stable (exterior of the curve) and the unsta-
ble (interior of the curve) regions. In a stable (unstable) region, the
perturbations decay (amplify) with time.

The MS curves corresponding to a smooth flow regime (R� ¼ 1)
are furnished in Fig. 2 on a semi-logarithmic scale. The solid and the
dashed lines represent the MS curves at O(e) and O(ed), respectively
(also in succeeding Figs. 3–5). At O(e), the MS curves (solid lines) on
the b(k̂) plane appear to be U-shaped, embracing the region of insta-
bility. For a given triplet (R�,H, d̂), there exists a single MS curve with
local minima (k̂c, bc), which correspond to db/d k̂ ¼ 0. This suggests
that for b < bc, the formation of alternate bars is inhibited. Beyond
the threshold aspect ratio bc, the alternate bars are formed over a wide
range of wavenumbers.

Figure 2(a) shows the MS curves for a given relative roughness d̂
and different Shields numbers H. As the shear Reynolds number is
kept constant, an increase in Shields number corresponds to a decrease
in particle size [Fig. 2(a)]. This is because the particle parameter fol-
lows an inverse scaling with the Shields number as D� / H

�1/3, in
accord with Eq. (10).

At O(e), the unstable region bounded by an MS curve tends to
reduce, as the Shields number increases [Fig. 2(a)]. It is attributed to
the presence of considerable sediment suspension that imparts a stabi-
lizing effect. The stabilizing effect is more encouraging for a longer
wavenumber. This reveals that even for the same aspect ratio, a small
Shields number (large particle size) may favor the formation of alter-
nate bars with longer wavenumbers, while a large Shields number
(small particle size) may not favor. Similar conclusion can be drawn
for the MS curves at O(ed) [see dashed lines in Fig. 2(a)]. However, it

appears that for a given triplet (R�,H, d̂), the MS curve at O(ed) holds
a smaller unstable region than that at O(e). Therefore, the longer
wavenumbers at O(ed) become more stable than those at O(e). This
leads to an enhanced stable region, an observation being in conformity

with Federici and Seminara.11 Note that for shorter wavenumbers (k̂
< 0.04), the MS curves at O(e) almost coincide with those at O(ed). In
Fig. 2(a), the maximum Shields number is taken as 0.62. It has been
found that forH > 0.62, the MS curve at O(ed) produces an infeasible
region of instability, which contradicts the classical results. Therefore,
Hm ¼ 0.62 represents the limiting Shields number for the formation
of alternate bars in a smooth flow regime. Notably, this subtle conclu-
sion was not drawn in the previous studies.

It is interesting to find how the threshold aspect ratio bc varies
with the Shields number H. To this end, the bc(H) curves at O(e) and
O(ed) are plotted in the inset of Fig. 2(a). The bc(H) curves at both
orders show similar trend. For a given order, the threshold aspect ratio
increases with an increase in Shields number attaining a peak and then
reduces, as the Shields number increases further. In addition, for a
given Shields number, the threshold aspect ratio at O(ed) is larger than
that at O(e). Moreover, the peak of bc(H) curve at O(e) appears early
than that at O(ed).

Figure 2(b) shows the MS curves for a given Shields number H
and different values of relative roughness d̂ . As the Shields number is
kept constant in Fig. 2(b), it suggests that the particle size remains a
constant. Therefore, an increase in relative roughness suggests a
decrease in flow depth. At O(e), the unstable region appears to dimin-
ish strikingly, as the relative roughness increases [Fig. 2(b)]. This is
owing to a change in the friction factor, in accord with Eq. (7). The sta-
bilizing effect remains effective for both shorter and longer wavenum-
bers. It indicates that even for the same aspect ratio, a small relative
roughness is favorable for the formation of alternate bars with both
shorter and longer wavenumbers, while a large relative roughness may
favor their formation at intermediate wavenumbers. However, at
O(ed) [see dashed lines in Fig. 2(b)], dissimilar results are found.
Unlike the behavior of the MS curves at O(e), for a given triplet (R�,
H, d̂), the unstable region bounded by the MS curve at O(ed) appears
to enhance with an increase in relative roughness. Note that the MS
curves at O(ed) nearly overlap with those at O(e) for shorter wave-
numbers. In Fig. 2(b), the maximum value of relative roughness is set
as 0.023, beyond which the MS curve at O(ed) yields an unrealistic

FIG. 2. The MS curves in a smooth flow regime, R� ¼ 1 [solid lines: O(e) and
dashed lines: O(ed)]: (a) d̂ ¼ 0.005 and different values of H ¼ 0.15, 0.25, and
0.62 and (b) H ¼ 0.25 and different values of d̂ ¼ 0.001, 0.005, and 0.023. The
curves of bc vs H and bc vs d̂ are shown in the insets.
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region of instability. Therefore, d̂m ¼ 0.023 is the limiting relative
roughness of the bar formation in a smooth flow regime.

Akin to Fig. 2(a), the variations of threshold aspect ratio bc with
relative roughness d̂ at both orders [O(e) and O(ed)] are shown in the
inset of Fig. 2(b). The behavior of bc(d̂) curves at O(e) and O(ed) is
similar. For a given order, the threshold aspect ratio reduces almost
linearly with an increase in relative roughness reaching a minimum
value and then, it increases in a linear fashion with a further increase
in relative roughness. For a given relative roughness, the threshold
aspect ratio at O(ed) appears to be larger than that O(e). Note that the
minima of bc(d̂) curves appear at d̂ � 0.004.

Figure 3 displays the MS curves at O(e) and O(ed) at the extrem-
ity of a smooth flow regime (R� ¼ 3). In Fig. 3(a), the MS curves are
shown for a given relative roughness d̂ and different Shields numbers
H, while in Fig. 3(b), they are shown for a given Shields number H
and different values of relative roughness d̂ . Although the qualitative
patterns of MS curves remain similar (see Figs. 2 and 3), it appears
that for a given relative roughness at O(e), the unstable region
bounded by an MS curve changes considerably for intermediate wave-
numbers as the Shields number increases [Fig. 3(a)]. The limiting val-
ues of Shields number and relative roughness are found to be Hm

¼ 0.47 and d̂m ¼ 0.013. Unlike Fig. 2(a), the bc(H) curves at O(e) and
O(ed) show that the threshold aspect ratio decreases with an increase
in Shields number [see the inset of Fig. 3(a)]. On the other hand, the
qualitative trends of bc(d̂) curves at O(e) and O(ed) remain quite simi-
lar [see the insets of Figs. 2(b) and 3(b)].

Figure 4 presents the MS curves at O(e) and O(ed) in a transi-
tional flow regime (R� ¼ 12). In Fig. 4(a), the MS curves are shown for
a given relative roughness d̂ and different Shields numbersH, whereas
in Fig. 4(b), those are shown for a given Shields number H and differ-
ent values of relative roughness d̂ . It appears that the MS curves
change strikingly, as the shear Reynolds number increases (compare
Figs. 2 and 4). Unlike the MS curves at O(e) in a smooth flow regime
[see Fig. 2(a)], Fig. 4(a) displays that the unstable region confined to
an MS curve increases with an increase in Shields number. Therefore,
in a transitional flow regime (R� ¼ 12), the sediment suspension intro-
duces a destabilizing effect, which appears to be pronounced for
shorter wavenumbers. Thus, for the same aspect ratio, a large Shields
number (small particle size) is favorable for the bar formation at
shorter wavenumbers. The MS curves at O(ed) also show that that the
unstable region bounded by an MS curve increases toward shorter
wavenumbers, as the Shields number increases. Similar to a smooth

FIG. 3. The MS curves at the extremity of a smooth flow regime, R� ¼ 3 [solid
lines: O(e) and dashed lines: O(ed)]: (a) d̂ ¼ 0.005 and different values of H
¼ 0.15, 0.25, and 0.47 and (b) H ¼ 0.25 and different values of d̂ ¼ 0.001, 0.005,
and 0.013. The curves of bc vsH and bc vs d̂ are shown in the insets.

FIG. 4. The MS curves in a transitional flow regime, R� ¼ 12 [solid lines: O(e) and
dashed lines: O(ed)]: (a) d̂ ¼ 0.005 and different values of H ¼ 0.15, 0.25, and
0.38 and (b) H ¼ 0.25 and different values of d̂ ¼ 0.001, 0.005, and 0.009. The
curves of bc vs H and bc vs d̂ are shown in the insets.
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flow regime, for a given triplet (R�, H, d̂), the MS curve at O(ed)
embraces smaller unstable region than that at O(e). As expected, the
MS curves at both O(e) and O(ed) match for shorter wavenumbers. It
is worth noting that for a given Shields number, the unstable region
reduces significantly, as the shear Reynolds number increases [com-
pare Figs. 2(a) and 4(a)]. In Fig. 4(a), the limiting Shields number of
the formation of bars in a transitional flow regime (R� ¼ 12) corre-
sponds to Hm ¼ 0.38. The bc(H) curves at both orders [O(e) and
O(ed)] show that for a given order, the threshold aspect ratio reduces
with an increase in Shields number [inset of Fig. 4(a)]. Note that for a
given Shields number, the threshold aspect ratios at both orders are
nearly equal. Further, it appears that for a given Shields number, the
threshold aspect ratio at a given order in a transitional flow regime
is larger than that in a smooth flow regime [compare Figs. 2(a)
and 4(a)].

Figure 4(b) also shows that at O(e), as the relative roughness
increases, the unstable region reduces for shorter and longer wave-
numbers, while that increases for intermediate wavenumbers. Similar
to the features of the MS curves at O(ed) in a smooth flow regime

[Fig. 2(b)], the unstable region at O(ed) in a transitional flow regime
increases, as the relative roughness increases [Fig. 4(b)]. For a given
triplet (R�, H, d̂), the MS curve at O(ed) produces smaller unstable
region than that at O(e). The MS curves at O(e) perfectly coincide
with those at O(ed) for shorter wavenumbers. It also appears that for a
given relative roughness, the unstable region decreases substantially, as
the shear Reynolds number increases [compare Figs. 2(b) and 4(b)]. In
Fig. 4(b), d̂m ¼ 0.009 represents the limiting relative roughness of the
formation of bars in a transitional flow regime (R� ¼ 12). In the inset
of Fig. 4(b), the bc(H) curves at both orders [O(e) and O(ed)] display
a near-linear decreasing trend of the threshold aspect ratio with rela-
tive roughness. Note that for a given relative roughness, the threshold
aspect ratio at a given order increases with an increase in shear
Reynolds number [compare Figs. 2(b) and 4(b)].

As the transitional flow regime spans over a wide range of shear
Reynolds numbers (3<R� < 70), it is interesting to explore the behav-
ior of the MS curves with a further increase in shear Reynolds number
in this flow regime. Figure 5 shows the MS curves at O(e) and O(ed)
in a transitional flow regime for R� ¼ 30. The MS curves for a given
relative roughness d̂ and different Shields numbers H are shown in
Fig. 5(a), while those for a given Shields number H and different val-
ues of relative roughness d̂ are shown in Fig. 5(b). It is noticeable that
for a given triplet (R�, H, d̂), the unstable region for a given order
reduces with an increase in shear Reynolds number (compare Figs. 4
and 5). The trends of the MS curves at O(e) and O(ed) for R� ¼ 30
remain similar to those for R� ¼ 12. Unlike Fig. 4(a), it appears that
for a small Shields number (say, H ¼ 0.15), the MS curves at both
O(e) and O(ed) coincide, as the shear Reynolds number increases [Fig.
5(a)]. However, for H > 0.15, the MS curve at O(ed) holds slightly
smaller unstable region than that at O(e). As the shear Reynolds num-
ber increases, the MS curves at both O(e) and O(ed) match for shorter
and intermediate wavenumbers [Fig. 5(a)]. The limiting Shields num-
ber is found to reduce from Hm ¼ 0.38 to Hm ¼ 0.36, as the shear
Reynolds number increases from R� ¼ 12 to 30. The bc(H) curves [see
the inset of Fig. 5(a)] indicate that for a given Shields number, the
threshold aspect ratios at both orders remain the same. For a given
Shields number, the threshold aspect ratio at a given order for R� ¼ 30
is larger than that for R� ¼ 12 [compare insets of Figs. 4(a) and 5(a)].
Unlike Fig. 4(b), as the shear Reynolds number increases, the MS
curve at O(ed), for a small relative roughness (d̂ ¼ 0.001), occupies an
unstable region being of the order of the unstable region formed by
the MS curve at O(e) [Fig. 5(b)]. For d̂ > 0.001, the MS curves at O(e)
almost coincide with those at O(ed), as the shear Reynolds number
increases [compare Figs. 4(b) and 5(b)]. Therefore, for d̂ > 0.001, the
unstable regions created by the MS curves at O(e) and O(ed) become
nearly equal for R� ¼ 30. Comparison of Figs. 4(b) and 5(b) reveals
that the limiting relative roughness reduces from d̂m ¼ 0.009 to
0.0083 with an increase in shear Reynolds number from R� ¼ 12 to
30. The inset of Fig. 5(b) shows that for a given relative roughness, the
threshold aspect ratios at both orders are almost equal. Comparison of
the insets of Figs. 4(b) and 5(b) suggests that for a given relative rough-
ness, the threshold aspect ratio at a given order for R� ¼ 30 is larger
than that for R� ¼ 12.

Figure 6 displays the MS curves at O(e) and O(ed) in a rough
flow regime (R� ¼ 100). In Fig. 6(a), the MS curves are shown for a
given relative roughness d̂ and different Shields numbers H, whereas
in Fig. 6(b), those are shown for a given Shields number H and

FIG. 5. The MS curves in a transitional flow regime, R� ¼ 30 [solid lines: O(e) and
dashed lines: O(ed)]: (a) d̂ ¼ 0.005 and different values of H ¼ 0.15, 0.25, and
0.36 and (b) H ¼ 0.25 and different values of d̂ ¼ 0.001, 0.005, and 0.0083. The
curves of bc vsH and bc vs d̂ are shown in the insets.
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different values of relative roughness d̂ . The MS curves contract strik-
ingly with an increase in shear Reynolds number, producing smaller
unstable region (compare Figs. 5 and 6). Similar to a transitional flow
regime, the MS curves at O(e) in a rough flow regime shows that the
unstable region bounded by an MS curve increases with an increase in
Shields number, destabilizing shorter wavenumbers owing to the pres-
ence of sediment suspension. At O(ed), as the Shields number
increases, the MS curves reveal that that the unstable region increases
toward shorter wavenumbers. Unlike smooth and transitional flow
regimes, the MS curve at O(ed) in a rough flow regime embraces the
same unstable region as that at O(e) [Fig. 6(a)], as the MS curves at
both orders coincide. The limiting Shields number in Fig. 6(a) corre-
sponds to Hm ¼ 0.34. Similar to a transitional flow regime, the bc(H)
curves in the inset of Fig. 6(a) at both orders [O(e) and O(ed)] overlap
perfectly. However, for a given Shields number, the threshold aspect
ratio at a given order in a rough flow regime appears to be larger than
those in smooth and transitional flow regimes. Akin to a transitional
flow regime, the MS curves at O(e) for different values of relative
roughness in a rough flow regime show that the unstable region, for a
given relative roughness, increases toward smaller aspect ratios with
intermediate wavenumbers, as the relative roughness increases [Fig.
6(b)]. The MS curves at O(e) and O(ed) in a rough flow regime, for a
given relative roughness, produce an identical unstable region. The
limiting relative roughness in Fig. 6(b) is found to be d̂m ¼ 0.007 8. In
the inset of Fig. 6(b), the bc(H) curves at both orders [O(e) and O(ed)]
almost overlap. Note that for a given relative roughness, the threshold
aspect ratio at a given order in a rough flow regime is larger than those
in smooth and transitional flow regimes.

Figs. 2–6 do not show how an MS curve, for a given relative
roughness and Shields number, evolves with the shear Reynolds num-
ber. It is therefore interesting to explore the sensitivity of an MS curve
to various flow regimes. To this end, Fig. 7 presents the MS curves for
different shear Reynolds numbers (R� ¼ 1, 3, 12, 30, and 100) belong-
ing to hydraulically smooth, extremity of smooth, transitional, and
rough flow regimes. The relative roughness and the Shields number
are considered as d̂ ¼ 0.005 and H ¼ 0.25, respectively. The unstable
region appears to contract with an increase in shear Reynolds number.
At O(e), the MS curves stabilize shorter and longer wavenumbers, as
the shear Reynolds number increases. By contrast, at O(ed), the MS
curves destabilize longer wavenumbers, as the shear Reynolds number
increases. In smooth (R� ¼ 1), extremity of smooth (R� ¼ 3), and tran-
sitional (R� ¼ 12 and 30) flow regimes, the unstable region bounded
by the MS curve at O(e) appears to be larger than that at O(ed).
However, in a rough flow regime (R� ¼ 100), the MS curves at both
orders become identical. In essence, Fig. 7 offers an understanding of
how the MS curves evolve with the shear Reynolds number. In addi-
tion, it provides a qualitative prediction of the MS curves for an inter-
mediate shear Reynolds number between any two neighboring shear
Reynolds numbers, as shown in Fig. 7. The inset of Fig. 7 shows the
bc(R�) curves at both orders [O(e) and O(ed)]. The threshold aspect
ratio for a given order increases with an increase in shear Reynolds
number. Note that for a given order, a point of inflection is noticeable
in the bc(R�) curve. For the chosen values of relative roughness and
Shields number, the threshold aspect ratio, for a given shear Reynolds
number, at O(ed) appears to be slightly larger than that at O(e) up to
R� ¼ 20. However, in a rough flow regime, both the orders predict the
same threshold aspect ratio.

As discussed previously, the maximum values of Shields number
and relative roughness for a given flow regime in Figs. 2–6 indicate
their limiting valuesHm and d̂m, respectively. The limiting values cor-
respond to a critical flow, for which the flow Froude number is unity.
Beyond the limiting values of Hm and d̂m, the theoretical results at
O(ed) produce two unstable regions. Among them, the first unstable
region favors the formation of bars beyond a threshold aspect ratio, as
furnished in Figs. 2–6. The second unstable region (not shown here)
suggests the formation of bars at all aspect ratios, thus contradicting
the first unstable region in addition to a large corpus of theoretical and
experimental observations. Therefore, the second unstable region
appearing at longer wavenumbers represents an infeasible solution on
the b(k̂) plane.

It is further interesting to explore the variations of limiting values
of Shields number and relative roughness, Hm and d̂m, respectively,
with shear Reynolds number R�. Figure 8 shows the curves of Hm(R�)
(solid lines) and d̂m(R�) (dashed lines) for different values of relative
roughness and Shields number, respectively. The Hm(R�) curves indi-
cate that for a given relative roughness, the limiting Shields number
reduces with an increase in shear Reynolds number. In addition, for a

FIG. 6. The MS curves in a rough flow regime, R� ¼ 100 [solid lines: O(e) and
dashed lines: O(ed)]: (a) d̂ ¼ 0.005 and different values of H ¼ 0.15, 0.25, and
0.34 and (b) H ¼ 0.25 and different values of d̂ ¼ 0.001, 0.005, and 0.007 8. The
curves of bc vs H and bc vs d̂ are shown in the insets.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 045105 (2021); doi: 10.1063/5.0045530 33, 045105-9

Published under license by AIP Publishing



given shear Reynolds number, the limiting Shields number reduces, as
the relative roughness increases. The d̂m(R�) curves show that for a
given Shields number, the limiting relative roughness reduces with an
increase in shear Reynolds number. On the other hand, for a given
shear Reynolds number, the limiting relative roughness reduces, as the
Shields number increases. In general, Fig. 8 displays that the variations
of Hm(R�) and d̂m(R�) are more prominent in a smooth flow regime
as compared to those in transitional and rough flow regimes.

It is pertinent to mention that the major focus of this study is to
explore the stability of free river bars from a linear stability perspective
in weakly varying turbulent flows carrying significant load of sediment
suspension. The key finding of this study is that the behavior of stabil-
ity curves at the leading and next orders of approximation largely
depends on the values of shear Reynolds number, Shields number,
and relative roughness. Another important outcome of this study,
being unidentified in the previous studies, is that the analysis limits the
values of Shields number and relative roughness, beyond which results
at the next order show that the alternate bars are unable to develop.
However, this study does not take into account the effects of flow

unsteadiness.6,10 In this regard, Hall10 reported linear and weakly non-
linear stability analyses of alternate bars that develop in an unsteady
flow. However, the effects of sediment suspension were overlooked in
Hall’s10 mathematical formulation. Therefore, a direct comparison of
this study with the linear results of Hall10 is not feasible. Note that
some preliminary conclusions of this study are in agreement with the
previous work of Federici and Seminara,11 as discussed before. It is
however important to highlight that the key results of this study may
offer guidelines for new research pathways, including the sensitivity of
free bars to the combined effects of flow unsteadiness, flow regimes,
and bedload and suspended load transport.

V. CONCLUSIONS

A linear stability analysis of free river bars in weakly varying
flows with dominant sediment suspension is presented. The analysis is
done at leading and next orders of approximation. The behavior of sta-
bility curves is explored in different flow regimes. The results of linear
stability analysis are discussed for different values of Shields number
and relative roughness.

In a smooth flow regime, the threshold aspect ratio for a given
order increases with an increase in Shields number reaching a peak
value and thereafter reduces with a further increase in Shields number.
By contrast, the threshold aspect ratio reduces with an increase in rela-
tive roughness attaining a minimum value and then, it increases
monotonically, as the relative roughness increases further. On the
other hand, in transitional and rough flow regimes, the threshold
aspect ratio for a given order reduces, as the Shields number and rela-
tive roughness increase. For a given shear Reynolds number, the
Shields number and the relative roughness play a decisive role in gov-
erning the bar instability. The former reflects the role of significant
sediment suspension, while the latter takes into account the effects of
frictional resistance.

At the leading order, as the shear Reynolds number increases,
shorter and longer wavenumbers are stabilized. However, at the next
order, the marginal stability curves destabilize longer wavenumbers
with an increase in shear Reynolds number. The unstable region for a
given order contracts significantly with an increase in shear Reynolds
number. In smooth and transitional flow regimes, the unstable region
at the leading order is larger than that at the next order. By contrast, in
a rough flow regime, the leading and next orders produce the same
region of instability.

In essence, this study offers an insight into the instability of free
bars in weakly varying flows, highlighting the role of shear Reynolds
number at different orders of approximation. The analysis is capable
to address the effects of Shields number and relative roughness on the
stability curves in different flow regimes. However, the analysis is pri-
marily focused on the free bar instability from a linear perspective.
Therefore, predicting the bar amplitude in an unsteady flow covering
different flow regimes by using a nonlinear approach remains an inter-
esting aspect as a future scope of research. In addition, analytical pre-
dictions of bar wavelength and bar amplitude in gravel-bed rivers
remain a challenging task. This arises owing to the complex fluid-
sediment interaction in the near-bed flow layer44–47 together with the
sediment transport.48,49 To resolve this issue, researchers need to use a
3D framework in modeling the near-bed flow, turbulent characteris-
tics, and sediment transport.

FIG. 7. Sensitivity of the MS curves to flow regimes for different values of R� ¼ 1,
3, 12, 30, and 100 [solid lines: O(e) and dashed lines: O(ed)]. The d̂ ¼ 0.005 and
H ¼ 0.25 are considered. The bc vs R� is shown in the insets.

FIG. 8. Limiting Shields number Hm vs R� for d̂ ¼ 0.001 and 0.005 (solid lines)
and limiting relative roughness d̂m vs R� for H ¼ 0.15 and 0.25 (dashed lines).
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APPENDIX A: ESTIMATION OF HS

According to van Rijn,28 the condition required for the initia-
tion of sediment suspension is the saltating length of a particle
exceeding 100 times the particle size. He proposed following empir-
ical relationships:

u�s

Ws
ð1 < D� � 10Þ ¼

4

D�
; (A1)

u�s

Ws
ðD� > 10Þ ¼ 0:4: (A2)

In the above, u�s is the shear velocity at the threshold of sedi-
ment suspension. With u�s, the Shields number Hs at the threshold
of sediment suspension can be obtained from Eq. (9). For the esti-
mation of settling velocity Ws, Wu and Wang50 proposed an empir-
ical formula as follows:

Ws ¼
P

Q
�
t

d

1

4
þ

4Q

3P
D3
�

� �1=q
" #0:5

�
1

2

8

<

:

9

=

;

; (A3)

where P and Q are the coefficients and q is an exponent. They are
expressed as P¼ 53.5exp(�0.65Sp), Q¼ 5.65exp(�2.5Sp), and
q¼ 0.7þ 0.9Sp, where Sp is the Corey shape factor (� 0.7 for natural
particles).

APPENDIX B: EXPRESSIONS FOR C0, K0, AND K1

The depth-averaged concentration at the leading order C0 in
Eq. (20) is expressed as11

C0 ¼
1

1� â
CaI1; (B1)

where â ¼ a/D, a is the reference level that acts as the interface sep-
arating the bedload and the suspended load particles, Ca is the refer-
ence concentration, and I1 is the integral function. For a and Ca,
several empirical formulas exist in the literature.28,51,52 Here, we use
van Rijn’s28 relationships as follows:

Ca ¼ 0:015
d

a

H

Hc
� 1

� �

D�0:3
� ; (B2)

aðks < 0:01DÞ ¼ 0:01D; aðks � 0:01DÞ ¼ ks: (B3)

The integral function I1 in Eq. (B1) is expressed as

I1 ¼

ð

1

â

â

1� â
�
1� ẑ

ẑ

� �f

dẑ ; (B4)

where ẑ ¼ z/D, z is the vertical distance from the channel bed, and
f is the Rouse number that quantifies the settling velocity relative to
the shear velocity. The f is expressed as

f ¼
WsSc

ju�
; (B5)

where Sc is the turbulent Schmidt number (� 1) and j is the von
K�arm�an coefficient (¼ 0.41).

The function K0 in Eq. (20) is expressed as11

K0 ¼
C0:5
f

j
ð1� âÞ

I2

I1
þ K2

� �

; (B6)

where Cf is the conductance coefficient (¼ f/8), I2 is the integral
function, and K2 is a function that depends on Cf. The I2 and K2 are
expressed as

I2 ¼

ð

1

â

ðln ẑ þ 1:84ẑ2 � 1:56ẑ3Þ
â

1� â
�
1� ẑ

ẑ

� �f

dẑ ; (B7)

K2 ¼ 0:777þ
j

C0:5
f

: (B8)

In addition, the function K1 in Eq. (20) is expressed as11

K1 ¼
C0:5
f

j
K3; (B9)

where K3 is a function of â and f. The K3 has the following form:43

K3 ¼

ð

1

â

C12ðln ẑ þ 1:84ẑ2 � 1:56ẑ3Þdẑ � ln ẑ0

ð

1

â

C12dẑ ; (B10)

where ẑ0 ¼ z0/D, z0 is the zero-velocity level where streamwise
velocity (x component) vanishes according to the logarithmic law,27

and C12 is a function. The C12 is obtained from the solution of the
following differential equation:

@C12

@ẑ
þ
1

f

@

@ẑ
ẑð1� ẑÞ

@

@ẑ

� �� 	

C12

¼
ð1� âÞC0:5

f

jI1
ln

ẑ

ẑ0
þ 1:84ẑ2 � 1:56ẑ3

� �

â

1� â
�
1� ẑ

ẑ

� �f

:

(B11)

The boundary conditions associated with Eq. (B11) are expressed as

C12ðẑ ¼ 1Þ ¼ 0; (B12)

@C12

@ẑ
ðẑ ¼ âÞ ¼ 0: (B13)

Equation (B11) is solved numerically using a shooting technique.53

APPENDIX C: COEFFICIENTS sj AND
PERTURBATIONS w010, w011, AND w110

The coefficients sj (j¼ 1 to 4) in Eqs. (24) and (26) are
expressed as

s1 ¼ 2 1�
H0

f0
�
@f

@H

� ��1

; s2 ¼
1

f0
�
@f

@D̂
1�

H0

f0
�
@f

@H

� ��1

;

s3 ¼
H0

U0
�
@U

@H
s1; s4 ¼

H0

U0
�
@U

@H
s2 þ

1

U0
�
@U

@D̂
:

(C1)

We express the perturbations w010, w011, and w110 in terms of
the perturbations of the primitive variables as
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w010 ¼ t1Û 10 þ t2D̂10; (C2)

w011 ¼ t1Û 11 þ t2D̂11; (C3)

w110 ¼ g1
@Û 10

@x̂
þ g2

@D̂10

@x̂
: (C4)

In the above, t1, t2, g1, and g2 are expressed as

t1 ¼ s1
H0

2f0
�
@f

@H
þ

1:5H0

H0 �Hc
� 0:5ðI20 þ K20I10Þ

�1

�


 f0ðI21 þ K20I11Þ þ
jH0I10

f0C
0:5
f 0

�
@f

@H

" #

9

=

;

; (C5)

t2 ¼ s2
1

2
�

1

s2
þ

1:5H0

H0 �Hc
� 0:5ðI20 þ K20I10Þ

�1

�


 f0ðI21 þ K20I11Þ þ
jI10

C0:5
f 0

" #

9

=

;

; (C6)

g1 ¼
s1Ca0K10

1� â

1:5H0

H0 �Hc
I10 � 0:5f0I11

� �

; (C7)

g2 ¼
s2Ca0K10

1� â

1:5H0

H0 �Hc
�

1

s2

� �

I10 � 0:5f0I11

� �

; (C8)

where f0, Cf0, Ca0, I10, I20, and K20 are the values of Rouse num-
ber, conductance coefficient, reference concentration, I1, I2, and
K2 for the undisturbed flow, respectively. The I11 and I21 are
expressed as

I11 ¼

ð

1

â

â

1� â
�
1� ẑ

ẑ

� �f0

ln
â

1� â
�
1� ẑ

ẑ

� �

dẑ ; (C9)

I21¼

ð

1

â

ðln ẑþ1:84ẑ2�1:56ẑ3Þ
â

1� â
�
1� ẑ

ẑ

� �f0

ln
â

1� â
�
1� ẑ

ẑ

� �

dẑ :

(C10)
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