
Hydrodynamic analysis of fully developed turbidity

currents over plane beds based on self-preserving

velocity and concentration distributions

Francisco Nicolás Cantero-Chinchilla1, Subhasish Dey2, Oscar Castro-Orgaz1, and Sk Zeeshan Ali2

1Department of Agronomy, University of Cordoba, Cordoba, Spain, 2Department of Civil Engineering, Indian Institute of

Technology Kharagpur, West Bengal, India

Abstract This paper presents a hydrodynamic analysis for the fully developed turbidity currents over a plane

bed stemming from the classical three-equation model (depth-averaged fluid continuity, sediment continuity,

and fluid momentum equations). The streamwise velocity and the concentration distributions preserve

self-similarity characteristics and are expressed as single functions of vertical distance over the turbidity current

layer. Using the experimental data of turbidity and salinity currents, the undetermined coefficients and

exponents are approximated. The proposed relationships for velocity and concentration distributions exhibit

self-preserving characteristics for turbidity currents. The depth-averaged velocity, momentum, and energy

coefficients are thus obtained using the proposed expression for velocity law. Also, from the expressions

for velocity and concentration, the turbulent diffusivity and the Reynolds shear stress distributions are

deduced with the aid of the diffusion equation of sediment concentration and the Boussinesq hypothesis.

The generalized equation of unsteady nonuniform turbidity current is developed by using the velocity and

concentration distributions in the moments of the integral scales over the turbidity current layer. Then, the

equation is applied to analyze the gradually varied turbidity currents considering closure relationships for

boundary interaction and shear velocity. The streamwise variations of current depth, velocity, concentration,

reduced sediment flux, and Richardson number are presented. Further, the self-accelerating and depositional

characteristics of turbidity currents including the transitional feature from erosional to depositional modes are

addressed. The effects of the streamwise bed slope are also accounted for in the mathematical derivations.

The results obtained from the present model are compared with those from the classical model.

1. Introduction

Turbidity currents are gravity currents, which are often referred to as inclined plumes or underflows, consisting of a

water-sediment mixture flowing over a sloping bed. In nature, high-density turbidity currents are able to carry

such amount of suspended sediment that their erosive power usually produces remarkable geological reforms,

e.g., submarine canyons [Inman et al., 1976; Fukushima et al., 1985; Mastbergen and Van Den Berg, 2003; Sumner

and Paull, 2014]. Inland, man-made mining tailings, earthquakes, or heavy storms, among others can often origi-

nate turbidity currents with huge sediment mass, such as rocks or debris as underwater landslide to produce

sediment-laden flows [Normark and Dickson, 1976; Piper et al., 1999]. It is conceptually helpful to contemplate tur-

bidity currents as a flow constituted by two separate parts, current head (that is the current front) and current body

[Stacey and Bowen, 1988]. High suspended sediment concentration in turbidity currents produces a pressure gra-

dient downslope arising from the density difference between the current head and the ambient water just in front

of it and thus providing a driving force. The water-sediment mixture forming turbidity current, as a layer, is driven

by the downslope gravitational component acting on the denser water-sediment mixture. Although it is in prin-

ciple the same hydrodynamics as that driving the head, the buoyancy contrast between the turbidity current and

the ambient water leads to a system where the downslope gradients of flow and sediment transport parameters

may be small. The sediment-laden flow, however, generates adequate turbulence to hold the sediment particles

in suspension. Uniform or gradually varied turbidity currents containing very fine sediments over a rigid bed were

investigated by several investigators [Bonnefille and Goddet, 1959; Stefan, 1973; Ashida and Egashira, 1975].

Depending on the flow conditions, turbidity currents are distinguished as erosional or depositional under-

water sediment-laden flows [Akiyama and Stefan, 1985]. The interaction of the turbidity current with the

ambient flow can be envisaged as an entrainment of water from the ambient flow to the turbidity current
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through the interface between them. In addition, in erodible beds, the sediment entrainment and deposition

occur at the same time due to the interaction of the turbidity current with the bed layer. Under high erodible

conditions, the sediment entrainment rate from the bed toward the turbidity current becomes sufficiently

intense so that an inrushing of ambient water toward the turbidity current layer takes place to balance the

mass and momentum fluxes. On the other hand, the entrainment of ambient water into the turbidity current

gets reduced if sediment deposition occurs at the bed. In turn, the turbidity current becomes stagnant when

there is no sediment transport. In other words, the thickness of the turbidity current layer is dependent on the

ability of the flow to carry the suspended sediment particles. However, turbidity currents can be considered

as self-generated currents in which sediment particles are suspended by the turbulence.

Less erosive gravity currents can be simulated in the laboratory environment by creating a salinity or tem-

perature gradient. Stacey and Bowen [1988] stated that the competence of the flow to transport and suspend

the sediment depends on the terminal fall velocity of sediment particles. In the limit, it is believed that for

larger sediment particles, steady flow is not practically feasible. Salinity currents are good examples of con-

taining sediments with a low terminal fall velocity. Sequeiros et al. [2010] conducted a large number of experi-

ments on the velocity and the excess density distributions of saline and turbidity underflows. They observed

the development of bed forms with time depending on the flow conditions. They also identified an upward

shift of the reference level (that is, the demarcation level between bed and suspended load [Dey, 2014]) due

to the change in bed roughness, as the bed forms grow with time. As a result, the velocity and concentration

distributions are modified. Nourmohammadi et al. [2011] reported a study on the vertical distribution of

gravity currents over a nonerodible bed. They observed a similarity in velocity and concentration distributions.

Although the vertical distribution of velocity in turbidity currents seems not to be significantly affected by

the suspended particle size [Parker et al., 1987; Altinakar et al., 1996], it is somehow interesting to analyze the

effects of the terminal fall velocity on suspended sediment concentration.

In fact, the governing equations of turbidity current are similar to those used in sediment-laden flows. By

applying the conservation laws of sediment-laden flows, the governing equations of turbidity current are

obtained. Akiyama and Stefan [1985] introduced an analytical model based on the governing equations of

turbidity current along with the entrainment and the depositional fluxes. The model, which was depth

averaged into the one-dimensional form, constituted an extension of the formulation earlier reported by

Ellison and Turner [1959]. Besides, the turbulent energy equation was accounted for reducing the formula

to Bagnold’s autosuspension concept [Bagnold, 1962]. However, their model was not verified due to non-

availability of the experimental data. Parker et al. [1986] presented a four-equation model, in which the

mean turbulent kinetic energy (TKE) was considered. By considering the classical three-equation model

(depth-averaged fluid continuity, sediment continuity, and fluid momentum equations [Lai et al., 2015]),

as an extension from Ellison and Turner [1959] formulation, Parker et al. [1986] pointed out the importance

of accurately predicting the bed sediment entrainment. Stacey and Bowen [1988] developed a simple

numerical model (three equations) that matched well with the experimental data of velocity and concen-

tration, although they initially failed to obtain the adequate solutions for the analytical model. Further,

Pratson et al. [2000] solved the four-equation model developed by Parker et al. [1986] using numerical

techniques. However, Hu et al. [2015] found that the three-equation model does not fail to simulate self-

accelerating turbidity currents, rendering unclear the need of using the four-equation model. Felix [2001]

proposed a two-dimensional turbulence model to address the development of turbidity current. In the

same line, the large eddy simulation along with direct numerical simulation was also applied to simulate

the turbidity currents [Mahdinia et al., 2011; Dutta et al., 2012]. On the other hand, as a new trend in simulation

of gravity currents, the application of the thermal lattice Boltzmann method was also reported [Lizhong

et al., 2011; Prestininzi et al., 2013]. However, in derivation of the full depth-averaged models, similarity

solutions were sought for the convenience [Parker et al., 1986], assuming the velocity, concentration, and

TKE distributions to preserve similarity.

Similarity approximation for the vertical distributions of the main flow characteristics are likely well justi-

fied in turbidity currents. Besides Parker et al. [1986] and Stacey and Bowen [1988], Altinakar et al. [1996]

highlighted the self-similarity in velocity and concentration distributions. In this regard, Stacey and

Bowen [1988] previously argued that the decoupling of the concentration from the temporal evolution

of velocity is an inappropriate concept. Interestingly, their results suggested the self-preserving characteristic

distributions for the flow characteristics. A turbidity current, as stated by Altinakar et al. [1996], can be viewed,
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as far as the flow structure is concerned, analogous to a wall jet flow. Accordingly, Altinakar et al. [1996]

assumed a power law for the velocity distribution and a linear law for the concentration distribution

for the inner layer of flow (wall shear layer). For the outer layer of flow, they assumed the near-Gaussian

relationships for the velocity and concentration distributions. These scaling laws gave a satisfactory agree-

ment with their experimental data. It means that they considered different scaling laws for the inner and

outer layers of flow. However, little attention has so far been paid to obtain the generalized scaling laws

(represented by single functions) for the velocity and concentration distributions over the entire turbidity

current layer. These generalized scaling laws, which should comply with the wide range of experimental

data, are therefore a long due.

The objective of this study is to initially revisit the vertical distributions of velocity and concentration in

turbidity currents to obtain single similarity functions (continuous over the entire layer) for them. Appropriate

scaling for the similarity functions could bring the available experimental data of velocity and suspended

sediment concentration for turbidity and salinity currents to single bands. This analysis thus provides us

the self-preserving type relationships for the velocity and concentration distributions in turbidity currents.

Using the developed similarity functions for the velocity and concentration, the Reynolds shear stress and

turbulent diffusivity distributions are derived. Further, to enhance the mathematical model of the turbidity

current according to the velocity and concentration distributions, three-equation model (depth-averaged

fluid continuity, sediment continuity, and fluid momentum equations) is analyzed for gradually varied flow

formulations using appropriate closure relationships.

2. Governing Equations

The problem of turbidity current is usually treated as a problem of incompressible turbulent flow [Graf and

Altinakar, 1998]. When the fluid mass is sufficiently wide, the width has a minimal influence on the flow, and

thus, themotion of the turbidity current can be approximated as a two-dimensional problem (x and z direction)

(Figure 1) [Parker et al., 1986; Akiyama and Stefan, 1985]. Subsequently, the general depth-averaged equations

of the fluid mass, sediment mass, and turbidity current momentum are as follows [Parker et al., 1986]:

∂zm
∂t

þ
∂

∂x
∫
∞

0

udz ¼ �wh; (1)

∂

∂t
∫
∞

0

cdz þ
∂

∂x
∫
∞

0

ucdz ¼ �wscjb þ c′w ′

���
b
; and (2)

∂

∂t
∫
∞

0

udz þ
∂

∂x
∫
∞

0

u2dz ¼ �
1

2
Δsg

∂

∂x
∫
∞

0

∫
∞

z

cdzdz cos θ þ Δsg∫
∞

0

cdz sin θ � u2*b; (3)

Figure 1. Definition sketch of a turbidity current on a sloping bed.
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where zm is the vertical distance where velocity vanishes (u = 0) into the turbidity current, considered

to be the turbidity current depth, u(z) is the streamwise velocity at a vertical distance z, wh is the

vertical velocity component at the top edge of the current, ws is the terminal fall velocity of suspended

sediment particles, c(z) is the suspended sediment concentration at z, c′w ′ is the Reynolds flux of

suspended particles, Δs is the submerged relative density [= (ρs� ρa)/ρa], ρs is the mass density of

sediment particles, ρa is the mass density of ambient fluid, g is the gravitational acceleration, θ is

the streamwise bed slope, u*b is the shear velocity, and subscript b refers to bed. In Figure 1, the

depth-averaged sediment concentration in turbidity current is given by C(x). It may be noted that in

four-equation model [Parker et al., 1986], the TKE budget is included as the fourth equation, which is

briefly discussed in Appendix A.

In equations (1)–(3), the boundary layer approximations for a two-dimensional turbidity current are

considered. Henceforth, the turbidity current is considered as a fully turbulent flow. Thereby, only

the viscous dissipation due to turbulence remains, neglecting other viscous terms. Also, the vertical

flux terms appearing in the right-hand side of the equation (2) are evaluated somewhat above the

lower boundary to avoid singular solutions related to the vanishing molecular diffusivity. Equation (3)

accounts for the nonhydrostatic treatment of turbidity currents, decomposing the actual pressure into

a component due to the ambient fluid and an additional component due to the presence of sediment

particles. Thus, the terms in the right-hand side of equation (3) are regarded as the pressure force of the

turbidity current.

The integrals in equations (1)–(3), which define the depth-averaged quantities of the flow, are known as

the moments of the integral scales [Ellison and Turner, 1959; Turner, 1973]. They are

I1 ¼ ∫
∞

0

udz; I2 ¼ ∫
∞

0

u2dz; and (4)

I3 ¼ ∫
∞

0

cdz; I4 ¼ ∫
∞

0

ucdz; I5 ¼ ∫
∞

0

∫
∞

z

cdzdz: (5)

Equations (1)–(3) can be expressed by means of interaction processes that occur at the interface of the

layers (turbidity current and ambient fluid layers). The static pressure in the ambient still fluid is greater

than the actual pressure in the turbidity current. According to the Bernoulli equation, a negative pressure

gradient in the upper layer (ambient fluid layer) results in an inward movement of ambient fluid into the

turbidity current through the interface. Therefore, the entrainment velocity is assumed to be proportional to

the velocity of the turbidity current [Turner, 1973], �wh= EwU, where Ew is the entrainment coefficient of

ambient fluid and U(x) is the depth-averaged velocity of the turbidity current. Besides, according to

Parker et al. [1987], the first and second terms in the right-hand side of equation (2) can be identified as

the erosion rate Eb and deposition Db rate of sediment at the bed (Figure 1). Therefore,

wscjb ¼ Db and (6)

c′w ′

���
b
¼ Eb: (7)

Thus, the three-equation model is finally written as follows:

∂zm
∂t

þ
∂I1
∂x

¼ EwU; (8)

∂I3
∂t

þ
∂I4
∂x

¼ Eb � Db; and (9)

∂I1
∂t

þ
∂I2
∂x

¼ �
1

2
Δsg

∂I5
∂x

cos θ þ ΔsgI3sin θ � u2*b: (10)

The streamwise bed slope sinθ cannot be ignored, since a turbidity current is, by nature, a sloping flow

inside a greater mass of fluid [Graf and Altinakar, 1998], as shown in Figure 1. Accordingly, cosθ cannot

be simplified as unity.
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Note that following Graf [1971] and Parker et al. [1986], the erosion and deposition rates Eb and Db appear

in the mass conservation for the suspended sediment phase, equation (9), whereas the mass conservation

equation for the water phase is free from exchange terms. These terms appear as well in the mixture mass

conservation equation of a turbidity current [Hu et al., 2012].

3. Velocity Distribution

In a fully developed state, the velocity distribution in turbidity current is almost similar to that in

submerged plane wall jet. A submerged plane wall jet is described as a jet of fluid that impinges tangen-

tially (or at an angle) on a solid wall surrounded by the same fluid (stationary or moving) progressing

along the wall [Dey et al., 2010]. For a turbidity current, on one side (in the inner layer), the current is

confined to the bed, while on the other side (in the outer layer), it is bounded by the stationary ambient

fluid (Figure 1). The boundary conditions for the velocity distribution in turbidity current are such that

the velocity vanishes at the bed and at the interface between the turbidity current and the ambient

fluid. Thus, the velocity distribution attains a maximum (peak velocity) at the extremity of the inner

layer, that is, the junction of the inner and outer layers of the current. Below the maximum velocity level

(in the inner layer), the flow is featured by a boundary layer flow, while above the maximum velocity

level (in the outer layer), the flow is structurally similar to a free jet. Therefore, the turbidity currents

are characterized by an inner shear layer influenced by the bed and an outer layer of the self-similar

type of a shear flow [Parker et al., 1987; Stacey and Bowen, 1988; Altinakar et al., 1996; Shringarpure

et al., 2012]. For the similarity in velocity distributions, the nondimensional variables introduced are

û= u/Um and η= z/zm, where Um is the maximum velocity. Previous studies primarily assumed two

separate velocity distributions for the inner and outer layers of turbidity currents. However, in this

study, a single velocity distribution over the entire range of the inner and outer layers is assumed in

the following form:

û ηð Þ ¼ σηξ 1� ηð Þχ ; (11)

where σ is a coefficient and ξ and χ are the exponents. They are the unknown parameters to be determined

from the experimental data. It is pertinent to mention that the nondimensional velocity distribution in

equation (11) is considered as a combination of a power function ηξ and a wake function (1� η)χ in

order to preserve the boundary conditions, namely, û (η= 0) = 0 and û (η= 1) = 0. Besides, the product of

those functions in equation (11) corresponds to the study of Islam and Imran [2010]. Equation (11) shows

that the velocity distribution in the inner layer is analogous to a boundary layer flow, while that in the

outer layer is similar to a free jet. The maximum velocity Um occurs at a location z= zw. Introducing

ηw = zw/zm at the occurrence of the maximum velocity, another boundary condition û (η= ηw) = 1 is

satisfied at the extremity of the inner layer. Therefore, from equation (11), one obtains

σ ¼ η�ξ
w 1� ηwð Þ�χ : (12)

The velocity gradient at z = zw vanishes due to the occurrence of maximum velocity at that level, that is

dû/dη (η= ηw) = 0. Applying this boundary condition, equation (11) produces

ηw ¼
ξ

ξ þ χ
: (13)

Substituting equation (13) into equation (12) yields

σ ¼
ξ þ χð Þξþχ

ξξχχ
: (14)

Equation (14) shows the dependency of the coefficient σ on the exponents ξ and χ. The exponents ξ and χ

are to be determined using the experimental data.

Figure 2 displays the computed velocity distributions obtained from equation (11) and using two equations

given by Altinakar et al. [1996]. The experimental data plots of turbidity and salinity currents obtained from
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Parker et al. [1987], García [1993],

Altinakar et al. [1996], Sequeiros et al.

[2010], Islam and Imran [2010], and

Nourmohammadi et al. [2011] are

overlapped on the computed curves

in Figure 2 for comparison. It is found

that the values ξ = 0.6 and χ = 2.2

ensure a satisfactory agreement of

equation (11) with the experimental

data. Therefore, from equation (14),

one obtains σ =4.28. The standard

deviation, standard error, and correla-

tion coefficient for Figure 2 are 0.333,

0.011, and 0.930, respectively, which

provide a quantitative understanding

on the data scatter fromequation (11).

The occurrence of themaximumvelo-

city determined from equation (13)

is ηw = 0.214. In Figure 2, the exp-

erimental data of runs 6–10, 12, 13,

17, 20, 23, and 24 from Parker et al.

[1987] are shown. From García [1993],

run DAPER6 is also selected for

the peak velocity data in subcritical

and supercritical flow conditions.

Three sets of experimental data are taken from Altinakar et al. [1996]. Among them, two sets belong to

the turbidity currents with sediment sizes d = 0.047 and 0.026mm, where d is the median size of sediment

particles, and the third set belongs to the salinity current. From Sequeiros et al. [2010], the experimental

data for runs 2, 10, 16, 23, 31, 36–38, 40, and 41, in which no bed forms occurred, are considered. The

experimental velocity data of sections 1–12 for salinity and turbidity currents reported by Islam and

Imran [2010] are extracted. Besides, from Nourmohammadi et al. [2011], the experimental data for run 3

at streamwise distances of 2.5 and 3.5m, run 10 at 4.5m, and runs 7 and 8 at 3.5 and 4.5m, respectively,

from the flume inlet are used. Finally, the computed velocity distribution of Altinakar et al. [1996] over

predicts most of the experimental data (Figure 2).

From Figure 2, it is observed that the following empirical relationship between ξ and χ shows a good

agreement between the fitted velocity distribution and the experimental data:

χ ≈ 1þ 2ξ: (15)

Therefore, using equations (14) and (15), equation (11) takes the following form:

û¼
1þ 3ξð Þ1þ3ξ

ξξ 1þ 2ξð Þ1þ2ξ
ηξ 1� ηð Þ1þ2ξ : (16)

Equation (16) thus provides the velocity distribution in turbidity currents with a single free parameter ξ ,

which was empirically determined as 0.6. This relationship for the velocity distribution is in fact of self-

preserving type for turbidity currents.

The depth-averaged velocity U in nondimensional form is

Û ¼ ∫
1

0

ûdη; (17)

Figure 2. Computed velocity distribution û(η) obtained from equation (11)

showing the comparison with the velocity distribution obtained using two

equations given by Altinakar et al. [1996] and the experimental data of dif-

ferent investigations.
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where Û=U/Um. Inserting equation (16) into equation (17) yields

Û ¼
1þ 3ξð Þ1þ3ξ

ξξ 1þ 2ξð Þ1þ3ξ
�
Γ 1þ ξð ÞΓ 2þ 2ξð Þ

Γ 3þ 3ξð Þ
; (18)

where Γ(s) is the Euler gamma function defined as

Γ sð Þ ¼ ∫
∞

0

ys�1exp �yð Þdy: (19)

Since the velocity distribution is obtained from equation (16), typically the flow parameters of interest, such

as momentum (Boussinesq) coefficient, energy (Coriolis) coefficient, and the moments of the integral scales

defined in equation (4), are determined.

The momentum (Boussinesq) coefficient β is defined as

β ¼

∫
zm

0

u2dz

U2zm
¼

∫
1

0

û2dη

Û2
: (20)

Inserting equations (16) and (18) into equation (20) yields

β ¼
1

Û2
�

1þ 3ξð Þ2þ6ξ

ξ2ξ 1þ 2ξð Þ2þ4ξ
�
Γ 1þ 2ξð ÞΓ 3þ 4ξð Þ

Γ 4þ 6ξð Þ
: (21)

The energy (Coriolis) coefficient α is defined as

α ¼

∫
zm

0

u3dz

U3zm
¼

∫
1

0

û3dη

Û3
: (22)

Inserting equations (16) and (18) into equation (22) yields

α ¼
1

Û3
�

1þ 3ξð Þ3þ9ξ

ξ3ξ 1þ 2ξð Þ3þ6ξ
�
Γ 1þ 3ξð ÞΓ 4þ 6ξð Þ

Γ 5þ 9ξð Þ
: (23)

With ξ = 0.6, the following parameters are obtained from equations (18), (21), and (23):

Û ¼ 0:52; β ¼ 1:465; α ¼ 2:366: (24)

The moments of the integral scales in equation (4) are determined as

I1 ¼ ∫
∞

0

udz ¼ ∫
zm

0

udz ¼ 0:52Umzm and (25)

I2 ¼ ∫
∞

0

u2dz ¼ ∫
zm

0

u2dz ¼ 0:396U2
mzm: (26)

For details of integral equations (25) and (26), see Appendix B.

4. Concentration Distribution

In accordance with the mechanism of suspended sediment motion, the turbidity current can be considered

as a self-generated current in which sediment particles are suspended by the turbulence. The transport of

suspended sediment particles in turbulent flow takes place due to the advection and diffusion processes

in the ambient fluid. The governing equation of the diffusion of suspended sediment concentration shows

a remarkable dependency of the concentration distribution on the velocity distribution [Dey, 2014]. The

concentration distribution in turbidity current is therefore affected by the velocity distribution, allowing

two distinctive zones. Above the maximum velocity level (z> zw), the concentration distribution asympto-

tically vanishes (c→ 0) just above zm, and beneath the maximum velocity level (z ≤ zw), the concentration

distribution follows a classical boundary layer approximation. For the similarity in concentration distribu-

tions, the nondimensional variable is introduced as ĉ= c/Cm, where Cm is the concentration at η= ηw.
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Unlike the previous studies which

considered two separate expres-

sions for concentration distributions

in the inner and outer layers of tur-

bidity currents [Altinakar et al., 1996],

a single concentration distribution

over the entire range of the inner

and outer layers is assumed here in

the following form:

ĉ ηð Þ ¼ λ exp �ϕηζ
� �

; (27)

where λ, ϕ, and ζ are the unknown

parameters. Equation (27) shows that

the concentration has a decreasing

trend with the vertical distance.

It also provides a finite value of

concentration c0 at the bed (η= 0).

Importantly, equation (27) does not

consider any reference level for the

concentration distribution in particu-

lar. Applying the boundary condition,

ĉ(η= ηw) = 1 to equation (27) yields

λ ¼ exp ϕηζw
� �

: (28)

Substituting equation (28) into equation (27) yields

ĉ ηð Þ ¼ exp �ϕ ηζ � ηζw
� �� �

: (29)

Figure 3 presents the computed concentration distributions obtained from equation (29) and using two

equations proposed by Altinakar et al. [1996]. The experimental data of Parker et al. [1987], García [1993],

Altinakar et al. [1996], and Nourmohammadi et al. [2011] for gravity currents are shown in Figure 3 for com-

parison. In addition, the values ϕ =4 and ζ = 1.5 provide a best fitting of the computed curve with the experi-

mental data. Therefore, with ηw=0.214 in equation (28), the λ is obtained as 1.486. The standard deviation,

standard error, and coefficient of correlation in Figure 3 are 0.526, 0.029, and 0.949, respectively, which pro-

vide an insight of the data scatter from equation (29). In Figure 3, the experimental data for runs 6–10, 12, 13,

17, 20, 23, and 24 from Parker et al. [1987] and runs DAPER6 in subcritical and supercritical conditions from

García [1993] are shown. From Altinakar et al. [1996], three sets of experimental data used in the velocity

distributions as mentioned before are considered for the concentration distribution, whereas from

Nourmohammadi et al. [2011], the experimental data for runs 5 and 6 at 2.5 and 5.5m, respectively, and

run 3 at 2.5 and 3.5m from the flume inlet are considered. Finally, the computed concentration distribution

of Altinakar et al. [1996] corresponds to the curve obtained from the present study (Figure 3).

From the data plots in Figure 3, an empirical relationship between the parameters ϕ and ζ are obtained as

ϕ ¼ 5ζ � 3:5: (30)

Substituting equation (30) into equation (29), the concentration distribution is

ĉ ηð Þ ¼ exp � 5ζ � 3:5ð Þ ηζ � ηζw
� �� �

: (31)

This relationship for the concentration distribution is indeed self-preserving type for turbidity currents.

From equation (31), the sediment concentration c0 at the bed (η=0) in nondimensional form is

ĉ0 ¼ exp 5ζ � 3:5ð Þηζw
� �

; (32)

Figure 3. Computed concentration distribution ĉ(η) obtained from equation (29)

showing the comparison with the concentration distribution obtained using

two equations given by Altinakar et al. [1996] and the experimental data of

different investigations.
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where ĉ0= c0/Cm. The depth-averaged concentration C in nondimensional form is

Ĉ ¼ ∫
1

0

ĉdη; (33)

where Ĉ=C/Cm. Inserting equation (31) into equation (33) yields

Ĉ ¼
1

ζ
5ζ � 3:5ð Þ�1=ζexp 5 ζ � 0:7ð Þηζw

� �
Γ

1

ζ

� �
� Γ

1

ζ
; 5ζ � 3:5

� �	 

; (34)

where Γ(a, s) is the incomplete gamma function defined as

Γ a; sð Þ ¼ ∫
∞

s

ya�1exp �yð Þdy: (35)

For ζ = 1.5 and ηw=0.214, equation (34) yields Ĉ= 0.528.

Equation (31) suggests that the concentration distribution has a finite value at z= zm (η= 1), although it is

feeble. For η> 1, the asymptotic trend of ĉ(η) toward the ordinate is evident (Figure 3). The area under the curve

ĉ(η) bounded by η= 0 and ĉ= 0 for the two cases when the limits of integration are η= 0 to 1 and η= 0 to 2.5

shows an approximate relative error of 0.7%. Thus, the upper limit of the moments of the integral scales

defined in equation (5) is considered at z= zm (η=1). Hence, the integral scales in equation (5) are given by

I3 ¼ ∫
∞

0

cdz ¼ ∫
zm

0

cdz ¼ 0:528Cmzm; (36)

I4 ¼ ∫
∞

0

ucdz ¼ ∫
zm

0

ucdz ¼ 0:396UmCmzm; and (37)

I5 ¼ ∫
∞

0

∫
∞

z

cdzdz ¼ ∫
zm

0

∫
zm

z

cdzdz ¼ 0:743Cmz
2
m: (38)

For details of the moments of the integral equations (36)–(38), see Appendix B.

5. Reynolds Shear Stress and Turbulent Diffusivity Distributions

In a fully developed turbulent flow, the Reynolds shear stress is much greater than the viscous shear stress

except in the vicinity of the bed, where the flow is laminar within a thin viscous sublayer. It may be noted that

the Reynolds shear stress nearly composes the total shear stress (Reynolds shear stress and viscous shear

stress) in the absence of viscous shear stress. Since the turbidity current is characterized by the turbulent flow,

the molecular diffusivity is negligible as compared to the turbulent diffusivity. Moreover, the solid diffusivity

is considered approximately equalling the turbulent diffusivity [Rouse, 1937; Dey, 2014]. Hence, the Reynolds

shear stress and the turbulent diffusivity distributions are determined from the proposed velocity and con-

centration distributions (equations (16) and (31)).

The suspended sediment stratification due to turbidity affects the structure of the turbulent diffusivity in turbidity

currents [Stacey and Bowen, 1988]. From the diffusion equation of suspended sediment concentration, the

turbulent diffusivity εt is defined as

εt ¼ �wsc
dc

dz

� ��1

: (39)

The nondimensional turbulent diffusivity ε̂t is then expressed as

ε̂t ¼ �Zĉ
dĉ

dη

� ��1

; (40)

where ε̂t = εt/(κu*bzm), κ is the von Kármán constant, and Z is the Rouse number [=ws/(κu*b)]. Using

equation (31), equation (40) reduces to

ε̂t ¼ Z
η1�ζ

5ζ � 3:5ð Þζ
: (41)
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According to the Boussinesq hypothesis, the Reynolds shear stress τ in turbulent flow is expressed as

τ ¼ ρεt
du

dz
; (42)

where ρ is the mass density of the fluid-sediment mixture. In nondimensional form, the Reynolds shear stress is

τ̂ ¼ ε̂t
Um

u*b
�
dû

dη
; (43)

where τ̂ = τ/(ρ u2
*b
). Substituting equations (16) and (41) into equation (43) yields

eτ ¼ Z
η1�ζ

5ζ � 3:5ð Þζ
1� ηð Þ2ξη�1þ ξξ�ξ 1þ 2ξð Þ�1�2ξ

1þ 3ξð Þ1þ3ξ
ξ � η 1þ 3ξð Þ½ �; (44)

where eτ ¼ τ̂ (u*b/Um).

The turbulent diffusivity and the Reynolds shear stress are computed from equations (41) and (44), respectively,

using ξ =0.6 and ζ =1.5. Figures 4a and 4b show the variations of computed nondimensional turbulent diffusiv-

ity ε̂t and Reynolds shear stresseτ with nondimensional vertical distance η for Rouse numbers Z=0.3, 0.5, and 1.

The nondimensional reference level considered at η=0.05, according to Graf and Altinakar [1998], is also shown.

At the reference level (η= 0.05), the ε̂t is maximum. Then, the ε̂t decreases with an increase in η approaching a

constant value for η> 1. It implies that ε̂t has a finite value at the upper boundary of the turbidity current

(η= 1). This feature can be explained from the viewpoint of the applicability of the governing equation of sus-

pended sediment concentration (equation (39)). Strictly, equation (39) is only applicable to steady uniform

flows. However, as an approximation, the present study assumes that equation (39) is applicable to nonuni-

form flows. On the other hand, the entrainment of ambient fluid into the turbidity current induces a signifi-

cant mixing at the interface between the turbidity current and the ambient fluid. Hence, a finite value of ε̂t at

the upper boundary of the turbidity current is meaningful. Another important feature is that for a given η, ε̂t

increases with an increase in Z.

In case of Reynolds shear stress, in the immediate vicinity above the reference level (η=0.05), theeτ is positive.
It diminishes with an increase in η within the inner layer following a similar trend ofeτ distribution in a bound-

ary layer flow due to the reduction in velocity gradient with η and becomes zero at the point of occurrence of

maximum velocity. With a further increase in η (within the outer layer), the eτ becomes negative forming a

protuberance (maximum negative value of eτ in eτ distribution) at the point of inflection of the û distribution,

and then it gradually approaches to zero. It is relevant to mention that a similar trend of eτ distribution was

observed by Dey et al. [2010] in a submerged wall jet. For a given η, eτ decreases with an increase in Z in

the outer layer, while in the inner layer, eτ increases with Z.

Figure 4. Distributions of computed turbulent diffusivity ε̂t(η) and Reynolds shear stress eτ(η) for different Rouse numbers

Z(= 0.3, 0.5, and 1) obtained from the present model.
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6. Turbidity Current Model and Gradually Varied Flow Formulations

Since velocity and the concentration distributions are known, the three-equation model for the turbidity

currents is obtained by inserting Û=0.52, β = 1.465, α=2.366, and the moments of the integral scales of

equations (25), (26), (36)–(38) into equations (8)–(10). Therefore, the three-equation model is

∂zm
∂t

þ 0:52
∂ Umzmð Þ

∂x
¼ 0:52EwUm; (45)

0:528
∂ Cmzmð Þ

∂t
þ 0:396

∂ UmCmzmð Þ

∂x
¼ Eb � Db; and (46)

0:52
∂ Umzmð Þ

∂t
þ 0:396

∂ U2
mzm

� �

∂x
¼ �0:372Δsg

∂ Cmz2m
� �

∂x
cosθ þ 0:528ΔsgCmzmsinθ � u2*b: (47)

For a steady flow, time derivatives in equations (45)–(47) disappear. Therefore, using equations (45)–(47)

under the steady flow condition yields the gradually varied flow formulations for zm and Cm as

dzm
dx

¼
1

1� 0:961Ri
1:213Ri

Eb � Db

UmCm
þ
1

2
4� 0:961Rið ÞEw � 0:683Ri tanθ þ 2:525

u*b
Um

� �2
" #

; (48)

dCm

dx
¼

1

Umzm

Eb � Db

0:396
� EwUmCm

� �
; (49)

where Ri is the Richardson number given by

Ri ¼
ΔsgCzmcos θ

U2
¼ 1:952

ΔsgCmzmcos θ

U2
m

: (50)

The streamwise variation of Ri is obtained as

dRi

dx
¼

3Ri

zm 1� 0:961Rið Þ

1

2
2þ 0:961Rið Þ Ew þ

1

3
�

Eb � Db

0:396UmCm

� �
� 0:683Ri tan θ þ 2:525

u*b
Um

� �2
" #

: (51)

Further, Ri is expressed in terms of the reduced sediment flux B as

Ri ¼ 1:952
ΔsgCmzmUmcos θ

U3
m

¼ 7:098
Bcos θ

U3
m

; (52)

where B=ΔsgCUzm=0.275ΔsgCmUmzm. The B can be interpreted as the sediment transport rate CUzm affected by

the gravitational acceleration reduced by the buoyancy effect Δsg [Graf and Altinakar, 1998; Wang et al., 2010].

Differentiating equation (52), the streamwise gradient of B is expressed as

dB

dx
¼

U3
m

7:098cos θ
�
dRi

dx
þ 3

B

zm
Ew �

dzm
dx

� �
: (53)

Substituting equations (48) and (51) into equation (53) yields

dB

dx
¼

B

zm
�

Eb � Db

0:396UmCm
: (54)

7. Closure Relationships

Closure relations are required to evaluate the boundary interaction functions and the bed shear stress involved in

the formulations in the preceding sections. The parameters involved with them are often specified by empirical

relationships reported in literature.

The empirical relationship for the entrainment coefficient of ambient fluid Ew was proposed by Parker et al.

[1987] and was extended to gravity currents by Altinakar et al. [1993] using the experimental data of turbidity

currents and density currents [Graf and Altinakar, 1998]. It is

Ew ¼ 0:075 1þ 718Ri2:4
� �� 0:5

: (55)
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The net sediment rate (Eb –Db) is then expressed as

Eb � Db ¼ ws Es � cbð Þ; (56)

where Es is the entrainment coefficient of sediment particles from the bed and cb is the reference suspended

sediment concentration. The empirical relationship for Es given by Parker et al. [1987], which was used by

Altinakar et al. [1996] and Graf and Altinakar [1998], is considered here. It is

Es ¼ 3�10�11
u*b
ws

Re0:75p

� �7

1þ 10�10
u*b
ws

Re0:75p

� �7
" #�1

; (57)

where Rep is the particle Reynolds number [= (Δsgd
3/υ2)0.5] and υ is the kinematic viscosity of fluid.

The cb is usually evaluated in the vicinity of the bed at η=0.05 as indicated in Figure 4. According to Graf [1971],

cb is expressed as

cb
C

¼ f
u*b
ws

� �
: (58)

From the experimental observation concerning turbidity currents, it was found that cb/C≈ 2 for 1< u*b/ws< 50.

[Parker et al., 1987; Altinakar et al., 1993], However, this relationship can be revised and extended to salinity

currents as well using the concentration distribution proposed in this study. Evaluating equation (31) at the

nondimensional reference level (η=0.05), equation (58) is expressed as

cb
Cm

¼ 1:421;
cb
C

¼ 2:691: (59)

Equations (56) and (57) show the dependency of (Eb�Db) and Es on terminal fall velocityws. Hence, the deter-

mination of ws for a given sediment size is an essential prerequisite. For natural sediment particles, different

formulas are available to evaluate ws in turbid fluid [Hallermeier, 1981; Chang and Liou, 2001; Guo, 2002] and

still fluid [Dietrich, 1982; Ahrens, 2000; Wu and Wang, 2006]. A summary of the formulas of ws is available in

Dey [2014]. Zhang and Xie’s [1993] empirical formula, which agreed well with the experimental data over a

wide range of sediment sizes from laminar to turbulent flow [Wu, 2008], is considered here. It is

ws ¼ 1:09Δsgd þ
13:95υ

d

� �2
" #0:5

�
13:95υ

d
: (60)

The u*b is determined as follows:

u*b ¼ U
λD

8

� �0:5

¼ 0:52Um
λD

8

� �0:5

; (61)

where λD is the Darcy-Weisbach friction factor.

8. Numerical Experiment

A numerical example is selected from Graf and Altinakar’s [1998, 7.7.1, p. 491] book, where the initial values of

zm0=1m, U0= 1ms�1, and C0=0.0212 are considered for the computation. The initial reduced sediment flux

B0 is calculated from B0=0.275ΔsgC0U0z0. The streamwise bed slope θ =5°, mass density of sediment particles

ρs=2650 kgm�3, mass density of water ρa=1000 kgm�3, and friction factor λD=0.032 are assumed. The total

length of the channel reach is taken as 4000m. The gradually varied flow formulations (equations (48), (49), (51),

and (54)) derived in section 6 are solved numerically using the fourth-order Runge-Kutta method along with a

first-order forward difference scheme. The numerical scheme is proved to be independent of the grid size. Here

Δx̂ (=Δx/zm0) is considered as 0.5 to ensure a smooth variation of parametric variables. The parametric variables

for turbidity currents are specified as

ezm ¼
zm
zm0

; eU ¼
U

U0

; eC ¼
C

C0

; eRi ¼ Ri

Ri0
; eB ¼

B

B0
; (62)

where zm is the nondimensional turbidity current depth, eU is the nondimensional depth-averaged velocity, eC
is the nondimensional depth-averaged concentration, eRi is the relative Richardson number, and eB is the
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nondimensional reduced sediment flux. In Figures 5–12, the computational results obtained from the present

model are shown and compared with those obtained from the formulations (henceforth classical model) of

Graf and Altinakar [1998].

Figures 5a–5c exhibit the variations of ezm , eU, and eB with nondimensional streamwise distance x̂ for salinity

current with d=10�6mm and turbidity currents with d=0.05 and 0.1mm. An increasing trend of ezm with

x̂ is evident for all the cases. In Figure 5a, the eU in salinity current increases slowly with x̂, becoming invariant

of x̂ for x̂ > 45 with a constant value eU= 1.064 due to the vanishing acceleration. However, eB is invariant of x̂
with a constant value eB =1, since the net sediment flux in salinity current disappears as it is revealed from

equation (54). On the contrary, Figures 5b and 5c illustrate the self-accelerating behavior (an increasing trend

of eU with x̂ ) for the turbidity currents due to an increasing trend of eB with x̂ . It is apparent from Figures 5b

and 5c that the self-acceleration and the net sediment flux increase with an increase in sediment size in turbidity

currents. Theezm (x̂), eU (x̂), and eB (x̂) curves obtained from the classical formulations [Graf and Altinakar, 1998]

have similar trends with marginally overestimated results from those obtained from the present model.

It is already stated that the turbidity current is characterized by an erosional or a depositional mode depending

on the flow conditions. As the sediment size increases, the nature of turbidity current changes from erosional to

depositional mode, primarily due to the effects of the terminal fall velocity of suspended sediment particles.

Therefore, for a given bed slope θ, there exists a transition from erosional to depositional mode of turbidity

Figure 5. Variations of ezm , eU, and eB with x̂ in a salinity current with (a) d = 10
�6

mm, and turbidity currents with (b) d = 0.05mm and (c) d = 0.1mm.

Figure 6. Variations of ezm , eU, and eB with x̂ in turbidity currents with (a) d = 0.2mm and (b) d = 0.3mm.
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currents with an increase in sediment size. To investigate this phenomenon, the variations ofezm, Ũ, andeBwith
x̂ for turbidity currents with d= 0.2 and 0.3mm are computed and shown in Figures 6a and 6b. The present

model shows a transitional characteristic (erosional to depositional) with an increase in sediment size from

d=0.1 to 0.2mm (see Figures 5c and 6a). However, the classical model of Graf and Altinakar [1998] predicts

the turbidity current as erosional for d=0.2mm. On the other hand, Figure 6b shows an agreement between

the present and Graf and Altinakar’s [1998] models, as the turbidity current is depositional for d= 0.3mm

in both the models.

Figures 7a–7c depict the variations of eRi and eC with x̂ for salinity current with d= 10�6mm and turbidity

currents with d= 0.05 and 0.1mm. The eRi gradually decreases with x̂ in the initial stage, becoming constant

(supercritical flow regime) with an increase in x̂ for all the cases. In Figure 7a, theeC for salinity current follows a
decreasing trend over the entire range of x̂ , since no sediment is introduced in the current and ezm continu-

ously increases with x̂ . In Figure 7b, the eC for turbidity current with d= 0.05mm slowly decreases with x̂ . On

the other hand, in Figure 7c, the eC for turbidity current with d= 0.1mm increases with x̂ due to a positive net

sediment flux, attaining a maximum value eC = 1.722 at x̂ =120 and then decreases with x̂ even though eB has
an increasing trend there (see Figure 5c). The decreasing trend ofeC in Figure 7c is attributed to the continuous

rapid growth of ezm. The eRi ( x̂ ) and eC ( x̂ ) curves obtained from the classical model [Graf and Altinakar, 1998]

have similar trends with a slight variation from those obtained from the present study.

Figure 7. Variations of eRi and eC with x̂ in a salinity current with (a) d = 10
�6

mm, and turbidity currents with (b) d = 0.05mm and (c) d = 0.1mm.

Figure 8. Variations of eRi and eC with x̂ in turbidity currents with (a) d = 0.2mm and (b) d = 0.3mm.
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To demonstrate the transitional characteristic of turbidity currents, the variations of eRi and eC with x̂ for

d=0.2 and 0.3mm are calculated and plotted in Figures 8a and 8b. The transitional characteristic (erosive

to depositional) of the turbidity currents is found with an increase in sediment size from d= 0.1 to 0.2mm

(see Figures 7c and 8a). However, according to the model of Graf and Altinakar, the turbidity current still

shows an erosional mode for d=0.2mm. On the other hand, for d=0.3mm, both the models predict the

turbidity current as depositional (Figure 8b).

The Richardson number is a good indicator to identify the flow regime (subcritical flow (Ri> 1) or supercritical

flow (Ri< 1)) and, in turn, the turbidity current characteristics (erosional or depositional mode). Figures 9a�9c

show the variations of eRiwith x̂ for different θ in salinity current with d=10�6mm and turbidity currents with

d=0.05 and 0.1mm. It is revealed from Figures 9a to 9c that for smaller values of θ (≤ 0.8°), the eRi abruptly
increases with x̂ for all the cases, while for larger values of θ (≥2°), it increases for θ =2° and decreases for

θ = 5–45° with x̂ , becoming invariant of x̂ for a large x̂ . Therefore, to obtain a supercritical flow (independent

of x̂), it is required to overcome a certain threshold value of bed slope θ that depends on the sediment size.

It is evident that the eRi in salinity current (Figure 9a) attains a constant value earlier than in turbidity currents

(Figures 9b and 9c). The eRi (x̂) curves obtained from the classical model [Graf and Altinakar, 1998] have similar

trend with slightly underestimated results from those obtained from the present study for larger values of

θ (≥2°), but slightly overestimated results for smaller values of θ (≤ 0.8°).

Figure 9. Variations of eRi with x̂ for different bed slopes θ in a salinity current with (a) d = 10
�6

mm and turbidity currents with (b) d = 0.05mm and (c) d = 0.1mm.

Figure 10. Variations of eRi with x̂ for different bed slopes θ in turbidity currents with (a) d = 0.2mm and (b) d = 0.3mm.
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Figures 10a and 10b show the variations

of eRi with x̂ for different θ in turbidity

currents with d=0.2 and 0.3mm. In

Figure 10a (d=0.2mm), both the pre-

sent and Graf and Altinakar [1998] mod-

els agree well in predicting eRi for θ =2°
but differ for θ =5°. For θ> 5°, the eRihas
a supercritical flow tendency (indepen-

dent of x̂ ), while for θ< 5°, it decays

asymptotically toward zero. With an

increase in sediment size (d=0.3mm),

the damping of eRi is noticeable with θ,

while the supercritical flow is achieved

at θ =45° (Figure 10b). The eRi (x̂) curves
obtained from the classical model [Graf

and Altinakar, 1998] have similar trend

with slightly underestimated results from

those obtained from the present study,

except for θ = 5° for which an over-

estimated result is obtained.

The variations of eRiwith θ at x̂ =4000 (last node of computational domain) for salinity current with d=10�6mm

and turbidity current with d= 0.1mm are plotted in Figure 11. The results obtained from the present model

are compared with the formulations of Graf and Altinakar [1998]. For a given initial condition, the turbidity

currents can only maintain the supercritical flow (Ri< 1) if θ exceeds a threshold value, as shown in Figure 11.

The eRi (θ) curves obtained from the classical model [Graf and Altinakar, 1998] have similar trend with slightly

underestimated results from those obtained from the present study.

Figure 12 displays the variations of nondimensional growth rate dezm/dx̂ of turbidity currents with θ at x̂ =4000

for salinity current with d= 10�6mm and turbidity current with d= 0.1mm. In these cases, the present

model slightly underestimates the growth rate from that obtained from Graf and Altinakar’s [1998] model.

The ratio of average growth rate of the turbidity current to that of the salinity current is determined as

0.66 (approximately), while from the

classical model of Graf and Altinakar

[1998], this ratio is obtained as 0.67.

However, Akiyama and Stefan [1985]

reported the ratio as 0.65.

9. Discussion

The present model of turbidity current

is not merely based on empirical rela-

tionships, but it provides an insight

into the physics of the fluid flow.

The velocity and concentration dis-

tributions reported earlier were typi-

cally based on self-similarity functions

obtained by treating the depth-

averaged variables in the moments

of the integral scales. Following the

analysis by Parker et al. [1986], a satis-

factory depth-averaged model was

classical model [Graf and Altinakar,

1998]. In particular, the knowledge of

Figure 11. Variations of eRi with θ at x̂ = 4000 in a salinity current with

d = 10
�6

mm and a turbidity current with d = 0.1mm.

Figure 12. Variations of dezm/dx̂ with θ at x̂ = 4000 in a salinity current with

d = 10
�6

mm and a turbidity current with d = 0.1mm.
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the velocity and concentration distributions is required to treat the equations of fluid mass, sediment mass,

and fluid momentum balance.

The expression for the velocity distribution is derived in section 3. Using the experimental velocity data of

turbidity and salinity currents reported by various investigators, the unknown parameters involved in the

velocity distribution function are determined. However, the velocity distributions in a flow over bed forms

have a departure from this trend, since the maximum velocity shifts upward in this case [Sequeiros et al.,

2010]. It is relevant to mention that the generalized expression (equation (11)) for the velocity distribution

can also be applicable to the flow over bed forms, if the unknown parameters are adjusted according to

the experimental data. Moreover, the unknown parameters involved in the velocity distribution are reduced

to a single unknown parameter by means of the boundary conditions and the empirical relations. From the

velocity distribution, the flow parameters such as nondimensional depth-averaged velocity, momentum

(Boussinesq), and energy (Coriolis) coefficients are determined as 0.52, 1.465, and 2.366, respectively. In

contrast, according to Altinakar et al. [1996], the nondimensional depth-averaged velocity was found as

0.769 showing a 50% overestimation of the present value. As a result of which the momentum and energy

coefficients affect the moments of the integral scales of the governing equations. So they need to be taken

into account for a better performance of the model.

The concentration distribution is likewise treated and derived in section 4. Following an analogous derivation

to the velocity distribution, a single function for the concentration distribution involving a single unknown

parameter is proposed by applying the boundary conditions and the empirical relations. The concentration

distribution is based on the near-Gaussian distribution proposed by Altinakar et al. [1996] for the outer layer

of the turbidity currents. After an appropriate treatment, the near-Gaussian distribution is used over the

entire range of the turbidity current layer. So two separate concentration distributions in the inner and outer

layers, which make the formulation rather complicated, are no longer required. The experimental data used

in the analysis are chosen from the same experiments used for the velocity distribution. Therefore, the level of

vanishing velocity at the interface between the turbidity current and the ambient fluid is known, and the

ordinate of the concentration distribution is rescaled accordingly. From the viewpoint of the suspended

sediment motion, little is known about the background mechanism of the suspended sediment concentration

in turbidity currents. Within the inner layer where the velocity distribution follows a classical boundary layer

flow, the concentration distribution is expected to adopt a traditional concentration distribution, as proposed

by Rouse [1937]. However, according to the experimental data trend, the concentration at the bed can be

approximated with a finite value [Altinakar et al., 1996]. Within the outer layer, the concentration distribution

has a decreasing trend with the vertical distance leaving a finite value at the interface between the turbidity

current and the ambient fluid. Accordingly, the moments of the integral scales defined in equation (5) are

performed neglecting the concentration distribution in the ambient fluid layer.

Using the velocity and concentration distributions, the characteristics of turbidity current are further analyzed.

In section 5, the turbulent diffusivity in turbidity currents is estimated using the diffusion equation of the

suspended sediment concentration. The Reynolds shear stress in turbidity currents is computed applying

the Boussinesq hypothesis. The Reynolds shear stress distribution is in agreement with the theoretical study

reported by Stacey and Bowen [1988]. Applying the diffusion equation to the suspended sediment motion,

the turbulent diffusivity distribution is also obtained. In contrast to the present observations, the study of

Stacey and Bowen [1988] considered a linear bridge to join the bimodal type of turbulent diffusivity distribution

following Launder and Spalding [1972]. This linear bridge was explained from the viewpoint of the Prandtl’s

mixing length theory for turbidity currents. In fact, nothing can be firmly stated in this aspect, since little is

known about the characteristics of the turbulent length scales in turbidity currents. However, the present

study is free from the consideration of a linear bridge.

The present model provides the gradually varied flow formulations given in section 6. The variations of the

nondimensional turbidity current depth, velocity, concentration, reduced sediment flux, and Richardson

number with nondimensional streamwise distance obtained from the present model are compared with

those obtained from the classical model [Graf and Altinakar, 1998]. The variations of ezm , eU , eC , and eB are,

in general, underestimated by the present model as compared to those obtained from the classical model,

leading to milder transitions than in the classical model. The variation of eRi is, in contrast, overestimated.

Consequently, it can be interpreted that the present model is able to describe a greater strength of erosional
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turbidity currents without the implication of greater values of ezm , eU , eC , and eB . Additionally, the point of

departure from the erosional to depositional turbidity current appears earlier in the present model than in

the classical model with respect to the median size of sediment particles, as inferred from Figures 6 and 8.

The reason is attributed to account for the self-preserving type distributions of velocity and concentration

in the present model. It is one of the main differences between the present and the classical models. Besides,

the difference in prediction of eRi for different bed slopes θ is analyzed in Figure 11. In addition, the same trend

is found for the growth rate dezm/dx of turbidity currents in Figure 12 by analyzing the ratio of the growth rates

in salinity to turbidity currents. These characteristics are generalized for a wide range of θ, and in turn, it can

be stated that the present model in general performs similarly to the classical model.

Last but not the least, the results on the gradually varied flow parametric variables in turbidity currents with

erosional or depositional mode could not be compared with the observed data due to lack of experimental or

field data. However, in spite of some approximations adopted in the analysis, this model, at least, fulfills the

purpose of describing clearly the characteristics and the behavior of turbidity currents. This corollary is further

discussed in Appendix C through an auxiliary calculation following the recommendation of Parker et al. [1986].

The present three-equation model does not fail in predicting turbidity currents from ignition point and, in turn,

does not violate the four-equation TKE balance [Hu et al., 2015]. Besides, in view of the self-preserving type of

velocity and concentration laws that are validated by the experimental data and used to develop the gradually

varied flow relationships, perhaps amore than a qualitative rationality can be claimed for the computed results.

10. Conclusions

A physically based hydrodynamic analysis for the turbidity currents over a plane bed is presented using the

classical three-equation model (depth-averaged fluid continuity, sediment continuity, and fluid momentum

equations) and considering the self-similar characteristics of the streamwise velocity and concentration

distributions. According to the classical theory of sediment-laden flow, the governing equations of turbidity cur-

rents are presented in generalized forms by using the moments of the integral scales. To perform the integrals,

the velocity and concentration distributions are assumed as single functions over the entire turbidity current

layer. Using the experimental data of salinity and turbidity currents over plane beds, the unknown parameters

involved in the velocity and concentration distributions are evaluated. Importantly, the velocity and concentration

distributions are of self-preserving type, as they correspond closely to the wide range of experimental data in

fully developed flows. The values of the typical flow parameters, such as depth-averaged velocity, momentum,

and energy coefficients, are evaluated from the velocity distribution. From the velocity and concentration

distributions, the turbulent diffusivity and the Reynolds shear stress distributions are determined using the

diffusion equation of suspended sediment concentration and the Boussinesq hypothesis. The turbulent diffusivity

distribution is found to follow a different trend to that reported in the literature [Stacey and Bowen, 1988], while

the Reynolds shear stress distribution agrees well with the previous observations [Dey et al., 2010].

Using the velocity and concentration distributions in themoments of the integral scales, a generalizedmodel for

unsteady nonuniform turbidity currents is developed. Then, the gradually varied flow formulations for steady

nonuniform turbidity currents are derived from the generalized model with suitable closure relationships. The

different parametric variables (current depth, velocity, concentration, reduced sediment flux, and Richardson

number) of turbidity currents obtained from the present model are compared with those obtained from

the model of Graf and Altinakar [1998]. The dependency of the parametric variables of turbidity currents

on the sediment size and the bed slope including the transitional feature of turbidity currents from erosional

to depositional mode is especially focused. The threshold value (erosional to depositional mode) of the

streamwise bed slope that ensures a supercritical flow is highlighted for different sediment sizes. However,

for depositional turbidity currents carrying larger sediment sizes, no threshold value of the bed slope is obtained.

The ratio of growth rate of the turbidity current to that of the salinity current predicted by the present model is

found almost similar to those obtained from previous models.

The limitations of this study are as follows:

1. The expressions for self-preserving distributions of velocity and concentration are calibrated using the

limited available experimental data reported by some investigators. Use of more experimental data could

improve the accuracy of these expressions.

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003685

CANTERO-CHINCHILLA ET AL. HYDRODYNAMICS OF TURBIDITY CURRENTS 2193



2. The diffusion equation of suspended sediment concentration for uniform flow is applied for solving the gra-

dually varied turbidity current equations. Thus, the turbidity current is assumed to be a pseudouniform flow.

3. The suspended sediment concentration is assumed to be sufficiently small to apply the Boussinesq

approximation, and thus, the kinematic viscosity equals its value for clear water.

4. The present study does not take into account the effects of bed forms on turbidity current over sediment beds.

Nevertheless, the present model is believed to be a powerful tool to analyze the characteristics of fully

developed turbidity currents. It not only provides more comprehensive insights into the vertical structure

of the currents but also the generalized formulation of unsteady nonuniform turbidity currents and parametric

variations of gradually varied turbidity currents. In addition, it provides additional evidences to claim in favor

of the three-equation model.

Appendix A: TKE Budget

The depth-averaged equation of TKE budget of turbidity currents is as follows [Parker et al., 1986]:

∂

∂t
∫
∞

0

kdz þ
∂

∂x
∫
∞

0

ukdz ¼ PT � ∫
∞

0

εdz �
1

2
Δsgws∫

∞

0

cdz

� Δsg
∂

∂t
∫
∞

0

∫
∞

z

cdzdz þ
∂

∂x
∫
∞

0

∫
∞

z

ucdzdz þ ∫
∞

0

c
∂

∂x
∫
z

0

udz

 !
dz

" #
cos θ;

(A1)

where k is the TKE, PT is the average TKE production rate, and ε is the TKE dissipation rate.

The link of equation (A1) with the three-equation model was expressed by Parker et al. [1986] through the

bed shear stress. The entrainment coefficient, Es= Eb/ws, is related to the state of the turbulence, as it can

be inferred from equation (7) and is given as a function of the level of turbulence K, which is the depth-

averaged TKE. Thereby, Parker et al. [1986] assumed

u2*b ¼ α1K ; (A2)

where α1 is the proportionality parameter, which is assumed to be constant for a given flow. In addition,

following Parker et al. [1986], one can write

ε0zm ¼ ∫
∞

0

εdz ¼ U3 1

2
Ew 1� Ri� 2

K

U2

� �
þ α1

K

U2

	 

and (A3)

PT ¼ Pzm: (A4)

The integrals of equation (A1) are defined as

I6 ¼ ∫
∞

0

∫
∞

z

ucdzdz; I7 ¼ ∫
∞

0

c
∂

∂x
∫
z

0

udz

 !
dz; I8 ¼ ∫

∞

0

kdz; and I9 ¼ ∫
∞

0

ukdz: (A5)

Then, the generalized form of equation (A1) is given by

∂I8
∂t

þ
∂I9
∂x

¼ P � ε0ð Þzm �
1

2
ΔsgwsI3 � Δsg

∂I5
∂t

þ
∂I6
∂x

þ I7

� �
cos θ: (A6)

Including equation (A1) in the turbidity current model, the large values of Es damp the turbulence state and

hence stabilizes the values of K and Es, which is unpredictable by a three-equation model [Parker et al., 1986].

However, in order to obtain a solution for equation (A6), additional information is required. The TKE distribu-

tion belongs to integrals I8 and I9. Unfortunately, little is known about the legitimate TKE distribution in

turbidity currents. Although there exist some approximations of the TKE distribution in turbidity currents

[Islam and Imran, 2010], they are not generalized. Besides not only the expression for TKE distribution is

required in a complete four-equation model but also an initial value of TKE is a prerequisite to initiate

the computation. In fact, it was clearly pointed out by Parker et al. [1986] that the initial value of TKE for

the computation requires a number of assumptions. Therefore, it is rather uncertain to provide a reliable
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initial value of TKE. In addition, the type of distributions assumed for the velocity, and the concentration

makes it difficult to perform the other integral scales. In fact, integral I7 is not possible to be integrated in

terms of a function of z, as the hypergeometric series functions appear, e.g., Kummer confluent hypergeometric

functions. Also, in order to perform the integration of I6, a similar continuous function is assumed for the

product of the nondimensional velocity and concentration as ûĉ= 10.5η0.75(1� η)5. Thereby, I6 is

I6 ¼ ∫
∞

0

∫
∞

z

ucdzdz ¼ ∫
zm

0

∫
zm

z

ucdzdz ≃ 10:5UmCmz
2
m∫
1

0

∫
1

η

η0:75 1� ηð Þ5dηdη ¼ 0:086UmCmz
2
m: (A7)

Thus, equation (A1) is finally modified as

∂I8
∂t

þ
∂I9
∂x

¼ P � ε0ð Þzm � Δsg 0:264wsCmzm � 0:134
∂ Cmz2m
� �

∂t
þ 0:086

∂ UmCmz2m
� �

∂x
þ I7

	 

cos θ

� �
: (A8)

The consideration of equation (A8) may enhance the performance of the turbidity current model [Parker et al.,

1986]. Notwithstanding, realizing the drawbacks, the inclusion of this equation can be avoided by adopting

proper closure relationships in three-equation model.

Appendix B: The Moments of the Integral Scales

With the unknown parameters, the velocity and concentration distributions obtained from equations (16)

and (31) are given as

û ¼ 4:284η0:6 1� ηð Þ2:2 and (B1)

ĉ ¼ 1:486exp �4η1:5
� �

: (B2)

Therefore, the moments of the integral scales are
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∞
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0
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1
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(B7)

Appendix C: A Comparison Between Three-Equation and Classical

Four-Equation Models

According to Parker et al. [1986], the self-accelerating currents are wrongly predicted by means of the former

classical three-equation models [Ellison and Turner, 1959]. On the contrary, they are satisfactorily simulated
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by introducing the TKE budget equation in the model. In this regard, Figure 7b from Parker et al. [1986] are

taken and replotted (see Figures C1 and C2, respectively) to assess the performance of the three-equation

model of this study. Figure C1 shows the development of the turbidity current characteristics from ignition.

The term ignition in turbidity current is defined by Parker et al. [1986] as the self-acceleration through an

entrainment of bed sediment. The curve illustrates how the three-equation model of Parker et al. [1986]

fails to represent the behavior of the current. However, the three-equation model of this study does

not describe such a rapid increase in the sediment transport as obtained by Parker et al. [1986]. In addition,

Figure C2 depicts how the present model corresponds to the estimations by four-equation model of Parker

et al. [1986] rather than to follow the hydraulic jump trend obtained from the classical three-equation

model of Parker et al. [1986].

Figure C1. Variations ofezm, eU, and eBwith x̂ in a turbidity current showing the comparison between the present model and

Parker et al. [1986].

Figure C2. Variation of Ri with x̂ in a turbidity current showing the comparison between the present model and

Parker et al. [1986].
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Notation

B reduced sediment flux
eB nondimensional reduced sediment flux (= B/B0)

B0 initial condition of B

C depth-averaged concentration

Ĉ C/Cm
eC nondimensional depth-averaged concentration (= C/C0)

C0 initial condition of C

Cm suspended sediment concentration at η= ηw

c suspended sediment concentration in turbidity current at z

c′ fluctuations of c

ĉ c/Cm
c0 sediment concentration at bed

ĉ0 c0/Cm
cb reference sediment concentration

c′w ′ Reynolds flux of suspended sediment particles

Db deposition rate of sediment

d median size of sediment particles

Eb erosion rate of sediment

Es entrainment coefficient of sediment particles from bed

Ew entrainment coefficient of ambient fluid

g gravitational acceleration

I1–8 moments of integral scales

K level of turbulence

k turbulent kinetic energy (TKE)

PT average TKE production rate

Rep particle Reynolds number [= (Δsgd
3/υ2)0.5]

Ri Richardson number
eRi relative Richardson number (= Ri/Ri0)

Ri0 initial condition of Ri

t time

U depth-averaged velocity

Û U/Um
eU nondimensional depth-averaged velocity (=U/U0)

U0 initial condition of U

Um maximum velocity

u streamwise velocity of turbidity current at z

û u/Um
u*b shear velocity

w vertical velocity component

w′ fluctuations of w

wh vertical velocity component at top of turbidity current

ws terminal fall velocity of suspended sediment particles

x, z Cartesian coordinates

x̂ x/zm0

Z Rouse number [=ws/(κu*b)]

zm turbidity current depth

ezm nondimensional turbidity current depth (= z/zm0)

zm0 initial condition of zm
zw position of maximum velocity

α energy (Coriolis) coefficient

β momentum (Boussinesq) coefficient

χ, ξ exponents in velocity distribution
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Δs submerged relative density

ε TKE dissipation rate

ε0 layer averaged TKE dissipation rate

εt turbulent diffusivity

ε̂t εt/(ku*bzm)

Γ(s) Euler gamma function

Γ(a, s) incomplete gamma function

η z/zm
ηw zw/zm
κ von Kármán constant

λ, ϕ, ζ unknown parameters in concentration distribution

λD Darcy-Weisbach friction factor

θ streamwise bed slope

ρ mass density of fluid-sediment mixture [= ρa+ (ρs� ρa)c]

ρa mass density of ambient fluid

ρs mass density of sediment particles

σ coefficient

τ Reynolds shear stress

τ̂ τ/(ρu2
*b
)

eτ τ̂ (u*b/Um)

υ kinematic viscosity of fluid
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