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The dielectric nanophotonics research community is currently exploring transparent material

platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible

wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for

future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transpar-

ent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nano-

photonic applications. Here, we present the design and experimental realization of high efficiency

beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures

etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam

deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization

beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for

p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be

realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue

wavelength range of 430–470 nm. This nanophotonic platform of GaN shows the way to off- and

on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths

common to many atomic quantum emitters such as Caþ and Srþ ions. Published by AIP Publishing.
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Metasurfaces have emerged as a highly promising

approach to realize compact nanophotonic devices including

phase masks,1 waveplates,2 focusing lenses,3 focal plane

arrays,4 flat mirrors,5 and holograms.6 Most of the early

studies on metasurfaces were based on thin plasmonic nano-

antenna arrays arranged in various permutations and combi-

nations.7,8 Plasmonic metasurfaces enable light manipulation

with ultrathin devices, but they suffer significant ohmic

losses which degrade the performance of all plasmonic devi-

ces. This is fundamentally due to the fact that the electro-

magnetic energy is stored as kinetic energy of electrons for

one-half of the optical cycle.9 On the other hand, in the past

couple of years, dielectric metasurfaces have gained increas-

ing prominence essentially because of the small optical loss

in dielectrics at frequencies below their bandgaps as well as

the capability of high index dielectric materials to support

both electric and magnetic resonances in nanostructures,

which offers a richer design space.10 To date, the dielectric

metasurface research community has predominantly focused

on developing the design concepts based on resonant anten-

nas,10,11 Pancharatnam-Berry phase,12–15 and waveguide

approaches16–19 to improve the efficiency of nanophotonic

devices. Interestingly, the use of high index dielectrics to

design subwavelength gratings has been investigated almost

two decades earlier. We refer to an excellent recent review

by Lalanne and Chavel for a comprehensive historical back-

ground on the dielectric approach to metalenses.20

A survey of the dielectric metasurface literature also

reveals that silicon, more specifically amorphous Si, has

been extensively used primarily because of its well-

established nanofabrication processes. However, Si is not a

good material choice at visible wavelengths because of its

strong intrinsic absorption. Wide bandgap dielectrics such as

TiO2
15,17,21 and Si3N4,

22 which are transparent at visible

wavelengths, are currently being investigated as potential

low-loss alternatives. The materials discussed thus far are all

passive and hence are not suitable for active applications

where optical gain is necessary. Direct bandgap III-V materi-

als are very promising for such active applications because

of their strong dipole transition strength and smaller free

carrier lifetimes compared to indirect bandgap materials.

Typically, the crystal structure of III-V materials does not

possess centrosymmetry, and hence, they exhibit large sec-

ond order susceptibility (v2), which can be exploited to real-

ize optically switchable nonlinear devices. Indeed, recently,

GaAs-based high aspect ratio nanostructures have been used
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to demonstrate optical switching of metasurfaces.23–25 Even

though GaAs is a good material choice for both nonlinear

response and emission at near-IR wavelengths, it cannot be

applied at visible wavelengths due to its high optical losses.

Another potential alternative is GaP, which was shown to be

an effectively loss-less platform for dielectric metasurfaces

above 560 nm.26 Efficient blue wavelength operation is of

critical importance for on-chip quantum and nonlinear optics

with color-centers and atomic transitions.27 In this paper, we

experimentally demonstrate epitaxial GaN on sapphire, which

is a material of immense technological interest for solid-state

lighting technologies, as a viable platform for metasurfaces at

visible wavelengths. Thanks to its high transparency through

the whole visible spectrum, relatively high refractive index

(>2.4 in the visible), and well-developed industrial use as an

active material for blue-, cyan-, and green-emitting LEDs and

lasers for general lighting, backlighting, and other applica-

tions, this platform may pave the way for applications of

dielectric metasurfaces to nonlinear and quantum optics.

Indeed, III-Nitride materials have already been used to dem-

onstrate electrically driven,28 room-temperature29 single pho-

ton emission. Here, we experimentally show a high-efficiency

beam deflecting metasurface and a polarization-splitting

metasurface as examples of the viability of GaN as a platform

for nanophotonics. The metasurfaces were realized on top of

epitaxial GaN on sapphire wafer by etching the nanostructures

directly into the epitaxial GaN layer. Very recently, first

demonstrations of GaN based focusing lenses with a transmis-

sivity of �86% for blue wavelength operation have been pub-

lished.30,31 In these examples, GaN nanostructures were

fabricated directly on top of a sapphire substrate. In our work,

GaN nanoantennas are located on the GaN epitaxy with the

same refractive index, which paves the way for a wider range

of applications but provides additional design constraints.

The primary building block of our metasurface, opti-

mized for operation at a wavelength of 460 nm, which is a typ-

ical emission peak for digital lighting and backlighting,32 is a

nanopillar of height 460 nm, as schematically illustrated in

Fig. 1(a). Each pillar can be considered as a waveguide which

allows certain modes to propagate with an effective mode

index defined by the pillar diameter. The phase shift and trans-

mission through the unit cell, which are dependent on the

diameter and the height of the nanopillar, were calculated by

numerical modeling using the finite difference time domain

(FDTD) technique in commercially available LumericalTM

software. The relative phase accumulated along the nanopillar,

with the size of unit cell fixed at 330nm in both lateral dimen-

sions and 460 nm in height, can be seen in Fig. 1(b). The

period of the repeating nanopillars was chosen such that the

resulting nanopillar array is sub-diffractive (in air) and small

enough to achieve sufficient phase sampling while being also

large enough to neglect interactions between nanopillars. To

verify the hypothesis of non-interacting nanopillars, we calcu-

lated the phase delay introduced by 460 nm length of an iso-

lated long cylinder given by 460 nm� bHE11, where bHE11 is

the propagation constant of the fundamental mode in a long

cylinder.33 This is shown as a dashed line in Fig. 1(b), which

closely follows the phase delay estimated by the FDTD simu-

lations, indicating that the phase shift introduced by the nano-

pillar is a local phenomenon, and hence, the mode is strongly

confined within the nanopillar. Using the nanopillars with

diameters tuned from 80 to 210 nm, we are able to achieve a

full phase coverage of 2p, enabling complete wavefront con-

trol, while simultaneously maintaining high optical transmis-

sion (>70%).

To realize a metasurface capable of beam deflection, we

introduce a super-cell in the x-direction by choosing nanopil-

lars of diameters 124 nm, 143 nm, 167 nm, and 207 nm, which

introduce respective phase shifts of approximately p
2
, p, 3p

2
,

and 2p [marked by green solid circles in Fig. 1(b)]. This

supercell introduces a linear phase gradient in the x-direction

with a periodicity of 1320nm. In the y-direction, the metasur-

face is sub-diffractive with a unit cell period of 330 nm. The

designed phase gradient will cause the metasurface to deflect

a plane wave incident from the substrate into the Tþ1 diffrac-

tive order. In principle, if the phase sampling is continuous

FIG. 1. (a) Schematic illustration of

the proposed metasurface capable of

deflecting the incident beam from the

substrate into the Tþ1 direction. The

substrate dimensions, height, and sizes

of designed nanopillars are as shown.

The diameter D was varied from 80 to

210 nm to realize a linear phase gradi-

ent between 0 and 2p. (b) Numerical

calculations of the relative phase shift

introduced by the nanopillars and

transmission for a plane wave with

460 nm wavelength, incident from the

substrate side. The dashed black curve

is the analytical calculation of the

phase shift introduced by an isolated

cylinder. (c) SEM image of the fabri-

cated GaN sample.

221101-2 Emani et al. Appl. Phys. Lett. 111, 221101 (2017)



and the transmission is constant, it is possible to achieve

100% deflection efficiency34,35—meaning that there is negli-

gible power in T0 and T–1 orders at the operating wavelength.

However, the 4-level discretization, which we chose to

use here, limits the theoretical absolute efficiency of beam

deflection into the first order to �81%.36 We should also

note that in our present system, since the metasurface is of

the same material as the underlying epitaxial substrate, the

resulting diffraction into the substrate cannot be avoided.

This can be expected to result in a further reduction in the

diffraction efficiency.

The sample as described above was fabricated using stan-

dard e-beam lithography and inductively coupled reactive ion

etching processes (see supplementary material A1 for addi-

tional details). A representative scanning electron microscopy

(SEM) image of the metasurface studied in this work is shown

in Fig. 1(c). The sample was characterized by illuminating it

using a halogen lamp under normal incidence through the sub-

strate and collecting the back-focal plane image (with an input

slit) using a CCD camera (see supplementary material A2 for

additional details). The images captured on the CCD show

spectral and k-dependence of the energy distribution in vari-

ous diffractive orders.37,38 The results for the p-polarization

(electric field along the long period of the super-cell) are

shown in Fig. 2(a). The white dashed lines represent the

expected diffraction orders (in air) for our design. Clearly,

most of the incident light is deflected into the Tþ1 order with

the deflection angle dependent on the operating wavelength as

expected from a diffractive design. Figure 2(b) shows the

measured diffraction intensity normalized to the transmitted

intensity through the substrate. These curves are obtained by

averaging five image pixels on either side of the diffraction

orders depicted as white dashed lines in Fig. 2(a) (the number

of pixels is selected to fully integrate the energy going into

each individual diffraction order at the image). The corre-

sponding FDTD simulations are shown as dashed curves.

Figure 2(c) shows the relative efficiency, which is defined as

the ratio of intensity in the desired diffraction order to the total

transmitted intensity, reaching about 90% at the design wave-

length of 460 nm where the deflection angle is 20�. The corre-

sponding measured and simulated data for the s-polarization

(electric field perpendicular to the long period of the super-

cell) are shown in Figs. 2(d)–2(f). The experimental measure-

ments correspond closely to the simulations and show a peak

transmission efficiency of �70% for both the s- and p-polar-

izations. The transmission into the T0 and T–1 orders is quite

small and is limited to about 6% and 1%, respectively. The

polarization insensitive behavior of our device is not surpris-

ing given the circular cross-section of the nanopillar design.

The main features predicted by the numerical simulations are

well reproduced in the experiment. Small discrepancies

related to the absence in experiment of sharp spectral features

predicted by simulations around 440 nm can be attributed to

unavoidable nanofabrication imperfections in sidewall profiles

and corner rounding, which are different for nanopillars of

varying dimensions.

To show the versatility of the proposed GaN platform,

we now demonstrate a metasurface with the polarization

beam splitting functionality. A polarization selective meta-

surface can be realized by replacing the circular nanopillar

by an elliptical nanopillar, wherein the phase velocity of the

mode is dependent on the orientation of the input polariza-

tion with respect to the major axis of the ellipse. Here, we

design and experimentally show a polarization beam split-

ting metasurface that deflects the p-polarized incoming light

into the Tþ1 diffractive order and the s-polarization into the

FIG. 2. Measured energy distribution into different diffraction orders as a function of the wavelength for a beam deflecting metasurface illuminated by the

p-polarized (a), (b), and (c) and s-polarized (d), (e), and (f) light through the substrate. The transmitted light is predominantly bent into the Tþ1 order, with neg-

ligible intensity in the T0 and T�1 orders at the operating wavelength of 460 nm. The white dashed lines in (a) and (d) represent the diffraction orders into air

calculated for the supercell period of 1320 nm. The color bar in (a) and (d) represents the transmitted intensity normalized to incident light at each wavelength.

The experimental data (b) and (e) are obtained by averaging five pixels on either side of the diffracted orders (the white dashed lines) normalized to the sub-

strate transmission (the number of pixels is selected to fully integrate the energy going into each individual diffraction order at the image). The black dashed

curves are the simulated results, which closely match the experimental trends. Relative efficiency (c) and (f), defined as the transmitted intensity into the

desired diffraction order normalized to the total transmitted intensity, reaches the level of �90% at the operation wavelength.
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T�1 diffractive order. The design principles are similar to the

phase gradient concepts discussed earlier with one major dif-

ference—the ellipses in the supercell are arranged such that

the phase gradients point in opposite directions for the p- and

s-polarizations, as schematically shown in Fig. 3(a). The

amplitude transmission coefficient and phase maps obtained

by varying the radii of elliptical nanopillars and the specific

design parameters used are given in the supplementary mate-

rial (A3). The design height was kept fixed at 460 nm similar

to the beam deflecting metasurface above. A representative

SEM image of the fabricated GaN metasurface sample is

shown in Fig. 3(b). The back focal plane measurements

shown in Figs. 3(c) and 3(f) demonstrate the input light

deflecting to the T�1 and Tþ1 orders for the p- and s-polar-

izations, respectively. The spectral dependence of the mea-

sured diffraction orders, along with the corresponding

numerical simulations, is shown in Figs. 3(d) and 3(g).

Experimentally, we measure �50% of the transmitted light

channeled into the T–1 order for the p-polarized light and

�40% into the Tþ1 order for the s-polarized light. The rela-

tive diffraction efficiencies achieved in our experiments are

�74% for the p-polarized light and �66% for the s-polarized

light [Figs. 3(e) and 3(h)]. The experimentally realized

extinction ratios are 8.6/1 and 6.2/1 for the p- and s-polariza-

tions, respectively.

In conclusion, we experimentally demonstrate GaN as

a suitable material platform for realizing a wide range of

high-efficiency metasurface-based devices with enhanced

functionalities operating through the whole visible spec-

trum including the deep blue spectral region around

450 nm. As a proof-of-concept demonstration, we have

experimentally showed an epitaxially grown GaN based

polarization insensitive metasurface that diffracts incom-

ing light at 460 nm wavelength to an angle of 20� with

�70% absolute transmission efficiency and �90% relative

transmission efficiency. These reasonably high efficiencies

are achieved despite the fact that the refractive index

of the metasurface is the same as the underlying substrate,

which is widely believed to lower the efficiency.

Additionally, we have also demonstrated a polarization

beam splitter working at 430 nm wavelength and capable

of separating the p- and s-polarizations with the relative

efficiencies of 73% and 67%, respectively. The corre-

sponding extinction ratios of 8.6/1 and 6.2/1 for the p- and

s- polarizations, respectively, were obtained. We expect

that further development of metasurfaces based on GaN

and its alloys with InN and AlN will pave the way for

active, nonlinear, and quantum nanophotonics compatible

with the emission wavelengths of atomic quantum emitters

such as Caþ and Srþ ions.39

See supplementary material for a complete description

of the nanofabrication and optical characterization methods

and design of the polarizing beam splitter.

FIG. 3. (a) Schematic illustration of the phase gradients employed to demonstrate polarization beam splitting metasurface. The phase introduced by each nano-

pillar is dependent on the radii and the orientation relative to the polarization direction. (b) A representative SEM image of the fabricated GaN device. (c) and

(f) Spectrally resolved back focal plane images showing the intensity of light transmitted in various diffraction orders for the p- and s-polarizations, respec-

tively. For the p-polarized illumination, the transmitted light deflects predominantly into the T�1 diffraction order, while for the s-polarized illumination, the

light is directed into the Tþ1 order. (d) and (g) Spectral dependence of intensity in the T�1, T0, and Tþ1 diffraction orders for the p- and s-polarizations, respec-

tively. (e) and (h) Relative efficiencies of light channeling into the Tþ1 and T�1 orders, for the p- and s-polarizations, respectively. The measured peak relative

efficiencies of beam deflection are 73% for the p-polarization and 67% for the s-polarization at 430 nm illumination. The solid colored curves represent the

measured values, while the black dashed ones correspond to the numerical simulations.

221101-4 Emani et al. Appl. Phys. Lett. 111, 221101 (2017)



This research was financially supported by A*STAR

SERC Pharos program (Grant No. 152 73 00025). Fabrication

and Scanning Electron Microscope imaging works were

carried out at the SnFPC cleanroom facility at Data Storage

Institute (SERC Grant No. 092 160 0139).

1N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z.

Gaburro, Science 334(6054), 333 (2011).
2N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso,

Nano Lett. 12(12), 6328 (2012).
3S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev,

Opt. Lett. 36(4), 451 (2011).
4O. Akın and H. V. Demir, Appl. Phys. Lett. 110(14), 143106 (2017).
5A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Nano Lett.

13(2), 829 (2013).
6X. Ni, A. V. Kildishev, and V. M. Shalaev, Nat. Commun. 4, 2807 (2013).
7N. Yu and F. Capasso, Nat. Mater. 13(2), 139 (2014).
8F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review

of fundamentals and applications,” Rep. Prog. Phys. (to be published).
9J. B. Khurgin and A. Boltasseva, MRS Bull. 37(08), 768 (2012).
10A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar,

and B. Luk’yanchuk, Science 354(6314), aag2472 (2016).
11M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener,

T. Pertsch, and Y. S. Kivshar, Adv. Opt. Mater. 3(6), 813 (2015).
12D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Science 345(6194),

298 (2014).
13R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso,

in Proceedings of the National Academy of Sciences (2016),

p. 201611740.
14E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E.

Hasman, Science 352(6290), 1202 (2016).
15M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F.

Capasso, Science 352(6290), 1190 (2016).
16A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Nat. Nanotechnol. 10,

937 (2015).
17M. Khorasaninejad, A. Y. Zhu, R.-C. Charles, W. T. Chen, J. Oh, I.

Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16(11), 7229 (2016).
18A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, Nat.

Commun. 7, 13682 (2016).

19P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov,

F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, Opt.

Express 22(21), 26212 (2014).
20P. Lalanne and P. Chavel, Laser Photonics Rev. 11(3), 1600295 (2017).
21D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok,

A. B. Evlyukhin, and B. N. Chichkov, Optica 4(7), 814 (2017).
22A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A.

Majumdar, ACS Photonics 3(2), 209 (2016).
23S. Liu, G. A. Keeler, J. L. Reno, M. B. Sinclair, and I. Brener, Adv. Opt.

Mater. 4(10), 1457 (2016).
24M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P.

Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, and I.

Brener, Nat. Commun. 8(1), 17 (2017).
25Y. Yang, N. Kamaraju, S. Campione, S. Liu, J. L. Reno, M. B. Sinclair, R.

P. Prasankumar, and I. Brener, ACS Photonics 4, 15–21 (2017).
26J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cort�es, and S. A. Maier,

Nano Lett. 17(2), 1219 (2017).
27I. A. Walmsley, Science 348(6234), 525 (2015).
28S. Deshpande, J. Heo, A. Das, and P. Bhattacharya, Nat. Commun. 4, 1675

(2013).
29M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, Nano Lett.

14(2), 982 (2014).
30Z. Wang, S. He, Q. Liu, and W. Wang, Opt. Commun. 367, 144 (2016).
31B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W.

Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, Nano Lett.

17(10), 6345 (2017).
32S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen,

S. Tanaka, Y. Zhao, N. Pfaff, and R. Farrell, Acta Mater. 61(3), 945 (2013).
33A. W. Snyder and J. Love, Optical Waveguide Theory (Springer Science

& Business Media, 2012).
34V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. D�ıaz-Rubio, Y. Ra’di,

and S. A. Tretyakov, Phys. Rev. B 94(7), 075142 (2016).
35N. M. Estakhri and A. Al�u, Phys. Rev. X 6(4), 041008 (2016).
36G. J. Swanson, MIT Tech. Report No. 854, 1989.
37R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, R. M. Bakker, X. Liang,

Y. H. Fu, and A. I. Kuznetsov, preprint arXiv:1705.00895 (2017).
38E. Khaidarov, H. Hao, R. Paniagua-Dominguez, Y. Yu, Y. H. Fu, V.

Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, Nano

Lett. 17(10), 6267 (2017).
39H. H€affner, C. F. Roos, and R. Blatt, Phys. Rep. 469(4), 155 (2008).

221101-5 Emani et al. Appl. Phys. Lett. 111, 221101 (2017)


	l
	n1
	n2
	n3
	f1
	f2
	f3
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39

