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Abstract

We present the inclusive transverse momentum distribution for Higgs bosons pro-
duced in bottom quark annihilation at the LHC. The results are obtained in the five-
flavor scheme. The soft and collinear terms at small pT are resummed through NNLL

accuracy and matched to the NNLO transverse momentum distribution at large pT .
We find that the theoretical uncertainty, derived from a variation of the unphysical
scales entering the calculation, is significantly reduced with respect to lower orders.

ar
X

iv
:1

40
3.

71
96

v2
  [

he
p-

ph
] 

 3
 S

ep
 2

01
4



1 Introduction

In the Standard Model (SM), Higgs boson production proceeds predominantly through
gluon fusion. The theoretical efforts that went into the precise prediction of the correspond-
ing total cross section as well as kinematical distributions are enormous (see Refs. [1–3]
for more information). Other processes such as associated VH or tt̄H production, or
weak boson fusion, receive their importance from their characteristic final state particles
or kinematics which typically improve the signal-to-background ratio relative to gluon
fusion.

Similar to tt̄H production, the Higgs boson can also be produced in association with
bottom quarks (bb̄H). Until now, however, this process has been largely disregarded
in SM Higgs searches and studies, even though its cross section is larger than for tt̄H
production [4], since the suppression by the smaller Yukawa coupling is overcompensated
by the increased phase space. However, in searches for a SM Higgs boson, the experimental
significance of the associated production with bottom quarks suffers heavily from the
enormous QCD background.

In theories with an extended Higgs sector, such as the Two-Higgs-Doublet Model (2HDM)
or the Minimal Supersymmetric SM (MSSM), the bottom Yukawa coupling can be en-
hanced relative to the SM so that bb̄H can become the dominant Higgs production mech-
anism. Concerning the theoretical prediction for this process, mainly two complementary
approaches have been pursued in the past. In the four-flavor scheme (4FS), the leading-
order (LO) partonic processes are qq̄ → bb̄H and gg → bb̄H, where q ∈ {u, d, c, s}. This
approach is most suitable when the bottom quarks are considered as part of the signature.
The theoretical prediction is available through next-to-LO (NLO) QCD in the 4FS [5–7].

In the five-flavor scheme (5FS) at LO, the final state bottom quarks are considered as
part of the proton remnants, which are implicitly integrated over in the parton model.
The LO process thus becomes bb̄ → H, which needs to be convolved with appropriate
b-quark density functions. The bb̄H process evaluated in the 5FS is thus also referred to as
bottom quark annihilation. This approach is most suitable for the calculation of the bb̄H
component to inclusive Higgs production. Its advantage with respect to the 4FS in this
case is that, on the one hand, logarithms of the form lnmb/M (mb is the bottom quark
mass, M the Higgs mass) which arise from integrating over the collinear region of the final
state bottom quark momenta, are implicitly resummed through DGLAP evolution. On the
other hand, due to the much simpler structure of the LO process, its theoretical prediction
can be obtained at higher perturbative order than for the 4FS. Indeed, the next-to-NLO

(NNLO) result for the inclusive total cross section in the 5FS has been known for more than
10 years [8]. The theoretical uncertainty, derived from renormalization and factorization
scale variation, is significantly smaller than in the 4FS, in particular, for Higgs masses
above 200GeV. Experimental analyses are currently based on a pragmatic combination of
the NLO 4FS and the NNLO 5FS result, as suggested in Ref. [9].
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With increasing luminosity, kinematical distributions of the Higgs boson will become more
and more important for the clear identification of this particle and the search for possi-
ble deviations from the SM predictions. Among the simplest observables in this respect
is the transverse momentum (pT ) distribution of the Higgs. Comparison to theoretical
predictions will provide a handle to the precise nature of the Higgs couplings, for exam-
ple to gluons [10–12], where the Higgs-gluon coupling is mediated through a quark loop.
Similarly, the associated production of a Higgs with bottom quarks plays a central role to
measure the Higgs-bottom Yukawa coupling, in particular in theories where this coupling
is enhanced.

It is well known that fixed-order predictions of the pT spectrum break down for small values
of pT . A proper theoretical description in this region can be obtained by a resummation of
logarithmic terms in pT , leading to a reordering of the perturbative series. At this point,
it is useful to clarify our notation for the perturbative orders of the pT distribution. In
gluon fusion as well as in bb̄H within the 5FS, the kinematics of the LO partonic process
is 2 → 1, so that the pT distribution vanishes for pT 6= 0. Quite often one therefore speaks
of the “LO pT distribution” only when an additional parton is emitted which can balance
a finite pT of the Higgs. In this paper, however, we will consistently associate the term
“LO” with the 2 → 1 process, so that in our notation, the LO pT distribution in gluon
fusion and 5FS-bb̄H is ∼ δ(pT ).

In gluon fusion, the pT distribution has been studied in great detail. The NNLO result in
the heavy-top limit was presented long ago [13,14]. Subleading top-mass effects were cal-
culated in Ref. [15]. For the resummation in the small-pT region, various approaches have
been pursued. In Ref. [16], a matching procedure between the resummed next-to-next-
to-leading logarithmic (NNLL) terms and the NNLO pT distribution has been suggested
which, when integrated over all pT , reproduces the total cross section at NNLO. Its ap-
plication to the gluon fusion process was implemented in the program HqT [16–18], which
calculates the NNLO+NNLL pT spectrum of the Higgs in the limit of an infinitely heavy top
mass. The effects of exact top and bottom masses on the resummed transverse momentum
distribution were studied at NLO+NLL in Ref. [19, 20].1

For bb̄H, the NNLO pT spectrum of the Higgs for pT > 0 in the 5FS was obtained in
Ref. [23, 24]. The jet- and pT -vetoed rate [23, 25], as well as the fully differential cross
section [26] are also known up to NNLO. The special case ofH+b production was considered
earlier in Ref. [27]. So far, resummation of the pT spectrum of the Higgs produced in
bottom annihilation has been considered only at NLO+NLL [28]. In this paper, we present
the first result of the resummed NNLO+NNLL transverse momentum distribution in the
5FS.

The remainder of the paper is organized as follows: In Section 2.1, we give a brief outline
of the pT resummation formalism for the production of an uncolored final state. This

1A similar study was pursued in Ref. [21], which additionally discusses the mass effects on the pvetoT

cross section, based on the techniques presented in Ref. [22].
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section also defines the notation for the rest of the article. Section 2.2 describes the
matching procedure to the fixed-order result. In Section 2.3, we present our result for
the so-called hard coefficient which was the only missing ingredient for the calculation of
the resummed pT distribution at NNLO+NNLL. Our numerical results are presented in
Section 3, including a description of the consistency checks that have been performed on
the implementation (Section 3.1), the default input parameters (Section 3.2), and finally
the pT distributions (Section 3.3) for the LHC at a center-of-mass energy of 8TeV (results
for 13TeV are presented in Appendix D). We analyze the dependence of the differential
cross section on the unphysical scales and the parton distributions. Section 4 contains
our conclusions. In Appendix C, we give complementary information on complex Mellin
transforms of some transcendental functions, that appear in our calculation.

2 Transverse momentum resummation

2.1 Elements

For the following discussion, it will be convenient to consider the production of a general
colorless particle of mass M with transverse momentum pT in proton-proton collisions.
The specialization to bb̄H, where M =MH , will be done in Section 2.3.

If pT is significantly smaller than M , large logarithms of pT /M arise in the distribution
dσ/dpT due to an incomplete cancellation of soft and collinear contributions. Since each
order of perturbation theory introduces additional powers of these logarithms, the näıve
perturbative expansion in αs is no longer valid as pT → 0. However, factorization of
soft and collinear radiation from the hard process allows us to resum the logarithms to
all orders in αs. This factorization is observed when working in the so-called impact
parameter (b) space, defined via the Fourier transformation2

f(pT ) =
1

(2π)2

∫
d2b e−ib·pT f(b) , (1)

implying that the limit pT → 0 corresponds to b→ ∞. Using rotational invariance around
the beam axis, the angular integration can be performed, so that we may write the pT
distribution in the form

dσF,(res)

dp2T
= τ

∫ ∞

0
db
b

2
J0(bpT )W

F (b,M, τ) , (2)

with the Bessel function J0(x), τ = M2/S, and S the hadronic center-of-mass energy.
By the superscript “(res)” in Eq. (2), we have already indicated that we are going to use

2The momentum conservation relates pT to the transverse momenta KT =
∑

i
ki,T of the outgoing

partons which is factorized in b space using δ(pT +KT ) = (2π)−2
∫
db exp[−ib · pT ] exp[−ib ·KT ].

4



this equation only for pT ≪ M , where the logarithmically enhanced terms need to be
resummed. The proper inclusion of terms pT & M will be described in Section 2.2. Here
and in what follows, the superscript F is attached to process specific quantities; we will
set F =DY for the Drell-Yan production of a vector boson, for example, and F = bb̄H for
the bb̄H process.

It is convenient to consider the Mellin transform with respect to the variable τ of the
resummed cross section in b space,

WF
N (b,M) =

∫ 1

0
dττN−1WF (b,M, τ) , (3)

which can be written as [29, 31]3

WF
N (b,M) =

∑

c

σ̂
F,(0)
cc̄ HF

c (αs)

× exp

{
−
∫ M2

b20/b
2

dk2

k2

[
Ac(αs(k)) ln

M2

k2
+Bc(αs(k))

]}

×
∑

i,j

Cci,N (αs(b0/b))Cc̄j,N (αs(b0/b)) fi,N (b0/b) fj,N (b0/b) ,

(4)

where σ̂
F,(0)
cc̄ is called the Born factor and determines the parton level cross section at LO.

Unless indicated otherwise, the renormalization and factorization scales have been set to
µF = µR =M . The sum

∑
c runs over all relevant quark flavors c = q ∈ {u, d, s, c, b} and

their charge conjugates, as well as gluons, c = g (where ḡ ≡ g). It takes into account that,
already at LO, different initial states can contribute.4 In the bb̄H process though, only
c ∈ {b, b̄} is relevant, and

σ̂
bb̄H,(0)

bb̄
=

πm2
b

6v2M2
, (5)

where M is the Higgs mass, mb the bottom quark mass, and v ≈ 246GeV is the vacuum
expectation value of the Higgs field. The function fi,N (q) in Eq. (4) is the Mellin transform
of the density function fi(x, q) of parton i in the proton, where x is the momentum fraction
and q the momentum transfer. The numerical constant b0 = 2 exp(−γE), with Euler’s
constant γE = 0.5772 . . ., is introduced for convenience.

The perturbative expansion of the resummation coefficients is given by

Cci,N (αs) = δci +

∞∑

n=1

(αs

π

)n
C

(n)
ci,N , X(αs) =

∞∑

n=1

(αs

π

)n
X(n) ,

HF
c (αs) = 1 +

∞∑

n=1

(αs

π

)n
HF,(n)

c ,

(6)

3Throughout this paper, parameters that are not crucial for the discussion will be suppressed in function
arguments.

4For example, the LO DY process receives contributions from all light quark flavors.
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whereX ∈ {Ac, Bc}. The order at which these coefficients are taken into account in Eq. (4)
determines the logarithmic accuracy of the resummed cross section; leading logarithmic

(LL) means that all higher order coefficients except for A
(1)
c are neglected, next-to-LL

(NLL) requires A
(2)
c , B

(1)
c , C

(1)
ci , and H

F,(1)
c , etc. The coefficients required for the bb̄H

process at next-to-NLL (NNLL) accuracy are given in Section 2.3.

The fact that the coefficients Ac, Bc, and Cci in Eq. (4) are process independent (i.e., they
do not carry a superscript F ) assumes a common resummation scheme5 for all (cc̄ initiated,
c ∈ {g, q}) processes F . The entire process dependence is then contained in the hard

coefficient HF
c and the Born factor σ̂

F,(0)
cc̄ . In the following, we will work in the DY scheme,

where HDY
q ≡ 1 through all orders of perturbation theory. All resummation coefficients

are known in the DY scheme up to the order required in this paper (see Section 2.3), with
the exception of Hbb̄H

b ≡ HH
b whose evaluation through NNLO will also be presented in

Section 2.3.

Evolving the parton densities from b0/b to µF in Eq. (4) (see Ref. [16]), one can define the
partonic resummed cross section WF

ij,N through

WF
N (b,M) =

∑

i,j

WF
ij,N (b,M, µF) fi,N (µF)fj,N (µF) . (7)

From a perturbative point of view, WF can be cast into the form

WF
ij,N (b,M, µF) =

∑

c

σ̂
F,(0)
cc̄

{
HF

cc̄←ij,N (M,Q, µF) + ΣF
cc̄←ij,N (L,M,Q, µF)

}
, (8)

where L = ln(Q2b2/b20) denotes the logarithms that are being resummed in WF , and Q
is an arbitrary resummation scale. While WF is formally independent of Q, truncation
of the perturbative series will introduce a dependence on this scale which is, however,
of higher order. The variation of the cross section with Q will be taken into account
when estimating the theoretical uncertainty of our final result in Section 3.3. Note that
the entire b dependence, parametrized in terms of L, is contained in the functions ΣF

cc̄←ij

which are defined to vanish at L = 0. Their generic perturbative expansion through NNLO,
expressed in terms of the resummation coefficients of Eq. (6), can be found in Ref. [16].
The hard-collinear function HF

cc̄←ij depends on the coefficients HF
c and Cci of Eq. (4). For

µF = µR = Q =M and c 6= g (for c = g, see Ref. [32])

HF
cc̄←ij,N = HF

c (αs)Cci,N (αs)Cc̄j,N (αs) , (9)

where αs ≡ αs(M). The expression for HF
cc̄←ij for the bb̄H process including the full scale

dependence through NNLO is given in Eq. (29).

5See Ref. [16] for details.
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Recalling that the formalism discussed in this section is valid only in the small-pT region,
it is convenient to replace [16]

L→ L̃ ≡ ln

(
Q2b2

b20
+ 1

)
, (10)

in the resummed cross section, which will prove useful in the next section to suppress the
impact of ΣF

cc̄←ij in the large-pT region without affecting the logarithmic accuracy under

consideration. Note, however, that this replacement changes the Q dependence of ΣF
cc̄←ij ,

so that Eq. (8)—and therefore dσ(res)/dp2T—becomes explicitely Q dependent. We will
come back to this issue in the next section.

2.2 Matching with the large-pT region

In the previous section we recalled the formalism of transverse momentum resummation
at small pT . In order to obtain a result that is valid for arbitrary values of pT , a matching
to the distribution at high values of pT is required, which is predominantly given by the
fixed-order result. We will follow the additive matching procedure of Ref. [16], where
the resummed-matched result [dσ]f.o.+l.a. is obtained by subtracting from the fixed-order
distribution [dσ]f.o. the logarithms at pT → 0 at the same order in αs, and adding the
resummed expression at the appropriate logarithmic accuracy [dσ(res)]l.a.:

[
dσF

dp2T

]

f.o.+l.a.

=

[
dσF

dp2T

]

f.o.

−
[
dσF,(res)

dp2T

]

f.o.

+

[
dσF,(res)

dp2T

]

l.a.

. (11)

The logarithmic terms [dσ(res)]f.o. are obtained from the perturbative expansion of Eq. (2).
The matching condition is imposed by requiring

[[
dσF,(res)

dp2T

]

l.a.

]

f.o

=

[
dσF,(res)

dp2T

]

f.o.

, (12)

which defines the logarithmic accuracy needed at each perturbative order in αs and vice
versa. Thus, at a given order in αs, it determines to which order the resummation coef-
ficients of Eq. (6) are required. Note that the Q dependence of dσ(res) introduced by the
replacement L→ L̃ of Eq. (10) cancels up to higher orders in Eq. (11).

Integrating Eq. (2) (with L→ L̃) over p2T by using
∫
dp2TJ0(bpT ) = πδ(b2) (or elementary

properties of the Fourier transform) and Σcc̄←ij(L̃ = 0) = 0, it directly follows that

∫
dp2T

dσF,(res)

dp2T
= τ

∑

c,i,j

σ̂
F,(0)
cc̄ (HF

cc̄←ij ⊗ fi ⊗ fj)(τ) , (13)
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where the convolution of two functions h1 and h2 is defined as

(h1 ⊗ h2)(τ) ≡
∫ 1

0
dz1

∫ 1

0
dz2δ(τ − z1z2)h1(z1)h2(z2) . (14)

Needless to say, fi and HF
cc̄←ij in Eq. (13) denote the inverse Mellin transforms of fi,N and

HF
cc̄←ij,N .

For the r.h.s. of Eq. (13), it is [ · ]f.o = [[ · ]l.a.]f.o.; using Eq. (12), it is thus easy to see that
the integral over p2T is the same for [dσ(res)]f.o. and [dσ(res)]l.a.. One therefore obtains a
unitarity constraint on the resummed-matched cross section which implies that the integral
over p2T reproduces the total cross section σtot at fixed order:6

∫
dp2T

[
dσF

dp2T

]

f.o.+l.a.

≡
[
σFtot

]
f.o.
. (15)

This relation will be used in Section 2.3 to determine the second-order coefficient of the
hard function HH

b numerically, which is the only missing piece for carrying out the full
NNLL pT resummation for the bb̄H process in the 5FS.

2.3 Resummation coefficients and determination of H
H,(2)
b

In the DY scheme, the resummation coefficients relevant for the bb̄H process read

A
(1)
b = CF , A

(2)
b =

1

2
CF

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
,

A
(3)
b = C2

ACF

(
11π4

720
− 67π2

216
+

245

96
+

11

24
ζ3

)
+ CACFNf

(
5π2

108
− 209

432
− 7

12
ζ3

)

+ C2
FNf

(
−55

96
+

1

2
ζ3

)
− 1

108
CFN

2
f + 8β0CF

(
CA

(
101

216
− 7

16
ζ3

)
− 7

108
Nf

)

B
(1)
b = −3

2
CF , B

(2)
b =

CF

4

[
CF

(
π2 − 3

4
− 12ζ3

)
+ CA

(
11

9
π2 − 193

12
+ 6 ζ3

)

+Nf

(
17

6
− 2

9
π2

)]
,

(16)

where β0 = (11CA − 2Nf )/12, CF = 4/3, CA = 3, and Nf = 5 is the number of active

quark flavors; furthermore ζ3 ≡ ζ(3) = 1.20206 . . . with Riemann’s ζ function. A
(n)
c and

B
(1)
c are actually resummation scheme independent. Through n ∈ {1, 2}, their expressions
6Note that this line of argumentation assumes that terms propotional to δ(p2T ) are included in

[dσF,(res)]f.o. as well as [dσF ]f.o. (implying also that logarithms are actual plus-distributions). In the
practical application of Eq. (11), however, these terms cancel and can be disregarded.
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have been known for some time [33,34], while A(3) has recently been calculated inRef. [35].

The coefficient B
(2)
b was first obtained in Ref. [36].

The C coefficients which arise in our calculation are of the form C
(n)
bi (n ≤ 2), the index

b denotes the bottom quark, and i ∈ {u, d, s, c, b, g}. Of course, the respective coefficients
for the charge conjugate partons are also implied in this notation. In z space (i.e., inverse
Mellin space), the first-order coefficients in the DY scheme read [36]

C
(1)
bg (z) =

1

2
z(1− z) , C

(1)
bq (z) = C

(1)

bb̄
(z) = 0 ,

C
(1)
bb (z) =

CF

2

[(
π2

2
− 4

)
δ(1− z) + 1− z

]
.

(17)

The off-diagonal NLO coefficients C
(1)
bg , C

(1)
bq , C

(1)

bb̄
(q ∈ {u, d, s, c}) are resummation scheme

independent. The second-order coefficients C
(2)
bi can be found in Ref. [37].

Finally, we need to determine the hard coefficient HH
b for the bottom annihilation process

in the DY scheme. At NLO, it can easily be deduced from the first-order C coefficient in

the DY scheme [36] and in the bb̄H scheme [24],7 leading to H
H,(1)
b = 3CF . On the other

hand, we have calculated the NNLO term H
H,(2)
b in two independent ways.

Numerical evaluation. Using Eqs. (11), (13) and (15), one finds

τ
∑

ij

σ̂
bb̄H,(0)

bb̄
([Hbb̄H

bb̄←ij ]f.o. ⊗ fi ⊗ fj)(τ) =
[
σ(tot)

]

f.o.
−

∫
dp2T

[
dσ(fin)

dp2T

]

f.o.

, (18)

where [dσ(fin)]f.o. ≡ [dσ]f.o − [dσ(res)]f.o.. Eq. (18) holds order by order in αs and for each
channel8 separately.

If we consider ij = bb̄ at O(α2
s), the only unknown in Eq. (18) is the hard coefficient H

H,(2)
b ,

which appears as a constant in the hard-collinear function Hbb̄H,(2)

bb̄←ij
(see Eq. (29)). The full

z dependence of the latter is known from the C functions in the DY scheme. Thus, we

can simply fit H
H,(2)
b using Eq. (18) without any approximations. The numerical result we

obtain is

H
H,(2)
b = 10.47± 0.08, (19)

where the relatively big uncertainty is caused by the cancellation of several digits on the
right-hand side of Eq. (18).

7A general result for C
(1)
ij as a function of the finite part of the one-loop corrections has also been known

for some time [38].
8As usual, the individual partonic subprocesses (channels) ij are defined according to the MS factor-

ization scheme.
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Analytic evaluation. The evaluation of the hard coefficient requires the knowledge of
the purely virtual amplitude for the process bb̄H which was calculated through NNLO in
Refs. [8,39]. We give below the UV renormalized9 bb̄H form factor in d = 4−2ǫ dimensions
for µR =M , where here and in what follows, M denotes the Higgs boson mass MH .

F h
b = F̃ h

b + F̂ h
b , (20)

where

F̂ h
b =

(αs

π

)
CF

[
− 1

2ǫ2
− 1

ǫ

( iπ
2

+
3

4

)
+
π2

24

]
+

(αs

π

)2
[
CF

2

{
1

8ǫ4
+

1

ǫ3

( iπ
4

+
3

8

)

+
1

ǫ2

(3iπ
8

− 13π2

48
+

17

32

)
+

1

ǫ

(
− 5iπ3

24
+
iπ

2
− 4ζ(3)

3
− 5π2

32
+

53

64

)
− 7iπζ(3)

6

+
11iπ

8
− 3iπ3

32
− 7ζ(3)

8
+

83π4

960
− 5π2

12
+

7

4

}
+ CACF

{
11

32ǫ3
+

1

ǫ2

(11iπ
48

+
π2

96
+

1

9

)

+
1

ǫ

( iπ3
48

− 67iπ

144
+

13ζ(3)

16
− 11π2

192
− 961

1728

)
+

11iπ3

288
+

77ζ(3)

144
− π4

288

+
67π2

576
− 607

648

}
+NfCF

{
− 1

16ǫ3
+

1

ǫ2

(
− iπ
24

− 1

36

)
+

1

ǫ

(
5iπ

72
+
π2

96
+

65

864

)

− iπ3

144
− 7ζ(3)

72
− 5π2

288
+

41

324

}]
(21)

and

F̃ h
b = 1 +

αs

π
CF

(
π2

4
− 1

2

)
+
(αs

π

)2
[
CACF

(
37ζ3
72

+
83

144
+

125π2

432
− π4

480

)

+ C2
F

(
−15ζ3

8
+

3

8
+
π2

24
+

23π4

1440

)
+ CFNf

(
ζ3
9

+
1

36
− 5π2

108

)

+ iπ

(
CACF

(
13ζ3
8

− 121

216
− 11π2

288

)
+ C2

F

(
π2

8
− 3ζ3

2

)
+

(
7

54
+

π2

144

)
CFNf

)]
,

(22)

with αs = αs(M). All singular terms are contained in F̂ h
b , while F̃

h
b remains independent

of singularities. Note, however, that F̂ h
b also contains finite terms. The splitting has been

done according to Ref. [40]. The hard coefficient in the hard scheme at µR = M is then
obtained at each order in αs through [40]

HH
b,hard(αs) =

∣∣∣F̃ h
b (αs)

∣∣∣
2
. (23)

9Both αs and mb are renormalized in the MS scheme. In particular, we replace αs in the whole
amplitude according to Eq. (6) of Ref. [39].

10



Using the fact that scheme conversion is process independent, i.e.,

HF
c,hard = (1 +∆hard)H

F
c , (24)

with an appropriate perturbative factor ∆hard = O(αs), and that HDY
q (αs) ≡ 1, the

conversion to the DY scheme is easily carried out using

H
H,(1)
b = H

H,(1)
b,hard −H

DY,(1)
b,hard ,

H
H,(2)
b = H

H,(2)
b,hard −H

DY,(2)
b,hard + (H

DY,(1)
b,hard )2 −H

H,(1)
b,hardH

DY,(1)
b,hard ,

(25)

where HDY
b,hard is the hard coefficient for the DY process in the hard scheme which is

presented in Ref. [40]. In this way we find

H
H,(2)
b = CF

[(
321

64
− 13

48
π2

)
CF +

(
−365

288
+
π2

12

)
Nf

+

(
5269

576
− 5

12
π2 − 9

4
ζ3

)
CA

]
.

(26)

This yields a numerical value of H
H,(2)
b = 10.52 . . ., which is in perfect agreement with

Eq. (19). This serves as an important check of our calculation.

3 Outline of the calculation and results

We are now ready to consider the resummed transverse momentum distribution of the
Higgs boson produced via bottom quark annihilation through NNLO+NNLL. Exemplary
Feynman diagrams that enter our calculation are shown in Appendix A. The LO diagram
in Fig. 11 (a) determines the Born factor given in Eq. (5). The virtual one- and two-
loop corrections (e.g. Fig. 11 (b) and (c)) govern the hard coefficient HH

b as outlined in
Section 2.3. Fig. 12 shows a sample of real and mixed real-virtual diagrams that appear
at NNLO for pT > 0. Note that the various subprocesses enter the calculation at different
orders. The bb̄ initial state is the only subprocess present at LO. At NLO the contribution
of the bg channel also has to be taken into account.10 The gg-, bb-, bq- and qq̄-initiated
subprocesses (q ∈ {u, d, s, c}) enter only at NNLO. The only subprocess which is finite at
small transverse momenta and needs no resummation is the qq̄ channel.

The calculation of the resummed-matched distribution of Eq. (11) requires the differential
cross section11 dσ calculated in various approximations:

10We account all charge conjugated and switched initial states to the same subprocess. Thus, the bg

channel includes bg, b̄g, gb and gb̄.
11The superscript F=bb̄H will be dropped in what follows.
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• The analytic transverse momentum distribution at NNLO, [dσ]f.o., can be taken from
Ref. [24] (for pT > 0, but see footnote 6).

• The logarithms at NNLO, [dσ(res)]f.o., are obtained from the fixed-order expansion
of dσ(res) which was carried out explicitly in Eqs. (72) and (73) of Ref. [16] (again,
only pT > 0 terms are taken into account).12

• For the calculation of the resummed expression, [dσ(res)]l.a., we use a modified version
of the program HqT [16–18], which performs the transverse momentum resummation
for gluon-induced Higgs production in the heavy-top limit. We extended its capa-
bilities to also cover the resummation for quark-induced processes and implemented
the resummation coefficients of the bb̄H process.

3.1 Checks

Before presenting numerical results, we comment on various checks that we made on our
calculation and outline our default input parameters. The analytic pT distribution at
NNLO [24] has been checked numerically against the partonic Monte Carlo program for
H+jet production at the same order of Refs. [23,25], which in turn has been validated by
various related calculations13 [27, 42–45].

The small-pT behavior of the distribution needs to agree with the expansion of dσ(res).
We checked that the limit

[
dσ

dp2T

]

f.o.

pT→0→
[
dσ(res)

dp2T

]

f.o.

(27)

holds to better than one per-mille in the interval 0.001GeV< pT < 0.1GeV. We also
verified that this limit is independent of the resummation scale.

Furthermore, we used our implementation of dσ(res) to calculate a large number of sampling
points in order to approximate the integral over pT . According to Eq. (13), the result has
to yield the (analytically known) hard-collinear function Hbb̄H

bb̄←ij
, which we verified up to

an accuracy of a few per-mille.14 This is quite remarkable, considering the fact that the
determination of dσ(res) includes the numerical transform from b to pT space and from N
to z space, as well as a fit of the parton distributions in Mellin space.

We also checked Eq. (15) for the resummed-matched cross section up to a numerical accu-
racy considerably better than one per-mille, using the analytical result for Hbb̄H

bb̄←ij
as the

12The corresponding coefficients are given in Eqs. (63), (64), (66), (67), (68) and (69) of Ref. [16].
13For more details see also Ref. [41].
14More precisely, to verify Eq. (13) we used resummation scales significantly smaller than the mass of

the Higgs to reduce the impact of resummation at high transverse momenta, because at very high pT
(pT & 300 GeV) the numerical convergence of our implementation of dσ(res) deteriorates.

12



integral of dσ(res). This was already expected from the agreement between Eq. (19) and

the analytical result of Eq. (26) for H
H,(2)
b mentioned above.

All these checks have been performed for various values of the resummation, factorization,
and renormalization scale, separately at order αs and α2

s, and for the individual partonic
subchannels.

At NLO+NLL, the pT spectrum of the Higgs in bb̄H has already been studied in Ref. [28]
within the formalism of Refs. [29,30]. Although their approach—in particular, the match-
ing procedure—differs from ours, the qualitative behavior of our curves is in fairly good
agreement at this order. In particular, we find the same properties of the resummed-
matched curve at high transverse momenta, which is nontrivial as will be shown in Sec-
tion 3.3.

3.2 Input parameters

We present results for the LHC at 8 and 13TeV center-of-mass energy. Our choice for the
central factorization and renormalization scale is µF = µR = µ0 ≡ M ; our default value
for the resummation scale is Q = Q0 ≡ M/4. If not stated otherwise, all numbers are
obtained with theMSTW2008 [46] PDF set, which implies that the input value for the strong
coupling constant is taken as αs (MZ) = 0.12018 at NLO, and αs (MZ) = 0.11707 at NNLO.
For comparison we also report results for the NNPDF2.3 and CT10 PDF sets, with their
corresponding αs (MZ) values. Since we are working in the 5FS, the bottom mass is set to
zero throughout the calculation, except for the bottom-Higgs Yukawa coupling which we
insert in the MS scheme at the scale µR, derived from the input value mb(mb) = 4.16GeV.

All numbers are evaluated within the framework of the SM. Through appropriate rescaling
of the bottom Yukawa coupling, they are obviously also applicable to neutral (CP even
and odd) Higgs production within the 2HDM and, according to the studies of Refs. [47,48],
even within the MSSM.

Sources of theoretical uncertainty and their impact on the numerical results will be studied
in Section 3.3. As usual, the uncertainty due to the truncation of the perturbative series
with respect to αs will be estimated from the dependence of the cross section on the
unphysical scales µF and µR. Similarly, the effect of a finite logarithmic accuracy will be
addressed by a variation of Q. Finally, we will investigate the uncertainty induced by the
PDFs and the input value of αs(MZ).

3.3 Transverse momentum distribution up to NNLO+NNLL

In this section we present our results for the transverse momentum distribution of Higgs
bosons produced in bottom quark annihilation. We study the impact of the newly evalu-
ated terms at NNLO+NNLL by comparing them to NLO+NLL, both in absolute size and

13
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(a) (b)

Figure 1: Transverse momentum spectrum at NLO (blue, dashed line) and at
NLO+NLL (red, solid line) for (a) Q =M/2 and (b) Q =M/4. (Here and in the
following plots, mH =M is the Higgs mass.)

in their theoretical uncertainty.

Fig. 1 shows the NLO+NLL together with the fixed-order NLO distribution for two values
of the resummation scale Q: Fig. 1 (a) uses Q =M/2, which is the default value typically
used in gluon fusion [16], while Fig. 1 (b) uses Q = M/4. Resummation aims at a valid
description of the low-pT region and indeed, the divergence at pT → 0 of the fixed-order
result is turned into a regular behavior. Due to higher-order effects, the fixed-order and the
resummed-matched curve may also significantly differ at pT ∼M [28], as is also observed
for gluon fusion [19,21].15 Fig. 1 shows that for bottom quark annihilation, this difference
is significantly smaller for Q =M/4 than for Q =M/2. This observation motivates us to
use Q = Q0 ≡ M/4 as the central resummation scale choice also at NNLO+NNLL in the
following.16 Nevertheless, for reference, we include results for Q0 =M/2 in Appendix E.

At NNLO+NNLL, we find that the agreement between the fixed-order and the resummed-
matched curve is further improved with respect to NLO+NLL, see Fig. 2 (a). This confirms
that the difference between these two results at pT ∼M is due to higher-order effects. For
pT & 50GeV, the resummed-matched curve is practically on top of the fixed-order curve.
We note in passing that the agreement between the fixed-order and the resummed-matched
curve results from nontrivial cancellations among the individual partonic subchannels. For
example, considering only the bb̄ channel, there are still large differences between the two

15A standard option in HqT [16–18], for example, is to use an intersection point between the fixed-order
and the resummed-matched curve in order to switch from the latter to the former towards large pT .

16We thank an anonymous referee for this suggestion.
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(a) (b)

Figure 2: (a) Transverse momentum spectrum at NNLO (blue, dashed line) and
at NNLO+NNLL (red, solid line) for the central scales; (b) only the bb̄ channel for
that quantity.
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Figure 3: Resummed-matched pT distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to µF, µR-variation.
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Figure 4: Resummed-matched pT distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to Q-variation.

curves, see Fig. 2 (b), which are, however, compensated by the other partonic channels. In
conclusion, the NNLO+NNLL result is the first to combine the small and high-pT region
in a satisfactory way. This indicates its importance to obtain a distribution valid at all
transverse momenta.

Let us now consider the effect of the higher orders on the dependence due to the renor-
malization and the factorization scale, while fixing the resummation scale at its default
value, Q = Q0. The bands in Fig. 3 correspond to an independent variation of µF and µR
in the range [µ0/2, 2µ0], while excluding the region where µF/µR > 2 and µF/µR < 1/2.
Comparing the red NNLO+NNLL with the blue NLO+NLL band, a considerable decrease
of the scale uncertainties is only observed for pT & 20 GeV, while in the region where
resummation is crucial the error bands have a similar size.

Including higher orders in the logarithmic accuracy, one also expects a reduction of the
dependence of the pT distribution on the resummation scale. This is impressively con-
firmed in Fig. 4, which shows the cross sections at NLO+NLL and at NNLO+NNLL, where
µF and µR are fixed at their default values (see Section 3.2). The bands are obtained by
varying Q between Q0/2 and 2Q0; the lines correspond to Q = Q0. The variation of the
cross section with respect to Q at NNLL is indeed significantly reduced with respect to
NLL.
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Figure 5: Resummed-matched pT distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to variation of all scales.
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Figure 6: Transverse momentum spectrum using Q0 =M/4 (red, solid line) and
Q0 =M/2 (blue, dashed line) as the central resummation scale. The bands indi-
cate the theoretical uncertainty of the prediction as in Fig. 5. (a) NNLO+NNLL;
(b) NLO+NLL.

17



��

������

������

������

������

�����

������

�� ��� ��� ��� ��� ��� ��� ��� ��� ���
���������

����������������

������������
�������������
������������

���������
��������������
������������������

��

������

������

������

������

�����

������

�� ��� ��� ��� ��� ��� ��� ��� ��� ���
���������

����������������

��������������
���������������
��������������

���������
��������������
������������������

(a) (b)

Figure 7: Resummed-matched pT distribution at (a) NLO+NLL and (b)
NNLO+NNLL for MSTW2008 (blue, dotted line), NNPDF2.3 (red, solid line) and
CT10 (black, dash-dotted line); lines: central curves; bands: PDF+αs uncertain-
ties at 68% CL.

Finally, Fig. 5 shows the result for an independent variation of all three scales within
Q ∈ [Q0/2, 2Q0] and µF, µR ∈ [µ0/2, 2µ0], where again we exclude the regions µF/µR > 2
and µF/µR < 1/2. For all values of pT , one observes a reduction of the uncertainty of
the resummed-matched NNLO+NNLL cross section with respect to the one at NLO+NLL.
The relative uncertainty at the maximum amounts to +23/−23% for the NNLL curve and
+48/− 41% at NLL.

The corresponding plots for 13 TeV are shown in Appendix D, Fig. 15-13. Qualitatively,
the above statements also apply here, only the absolute cross section is larger.

At this point, we would like to get back to the central choice of the resummation scale.
As we have argued before, Q = M/4 results in a good agreement in the high-pT tail of
the resummed-matched and fixed-order distribution, particularly at NNLO+NNLL. Fur-
thermore, at this order, the choice of Q0 only has a small impact on the distribution
and the corresponding scale uncertainties at low pT . This is shown in Fig. 6 (a), which
compares the curves for Q0 = M/2 (blue, dotted line) and Q0 = M/4 (red, solid line) at
NNLO+NNLL. The bands correspond to the variation of all scales as described above. The
height of the peak differs only by about 3% between the two choices. The corresponding
curves at NLO+NLL show a significantly larger difference, which is about 23% at the peak,
see Fig. 6 (b). Let us note again that, for further comparison, plots for Q0 =M/2 are given
in Appendix E, Fig. 16-20.

Finally, let us discuss the uncertainties arising from the PDF and αs choices. Besides
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Figure 8: Relative uncertainties (68% CL) for the MSTW2008 PDF set of the
resummed-matched pT distribution at NLO+NLL (blue band) and NNLO+NNLL

(red band).
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Figure 9: Relative uncertainties (68% CL) for the NNPDF2.3 PDF set of the
resummed-matched pT distribution at NLO+NLL (blue band) and NNLO+NNLL

(red band).
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Figure 10: Relative uncertainties (68% CL) for the CT10 PDF set of the
resummed-matched pT distribution at NLO+NLL (blue band) and NNLO+NNLL

(red band).

the importance for our calculation, this study is particularly interesting regarding the
treatment of the bottom densities of the various PDF groups, given the fact that the bb̄H
process in the 5FS is directly sensitive to the bottom densities. We consider three different
PDF sets: MSTW2008, NNPDF2.3 and CT10. The combined PDF+αs uncertainties are
determined following the recommendations of the corresponding PDF groups [46, 49, 50].
In contrast to MSTW and CTEQ, there is no central PDF set for NNPDF, which is why the
central value is calculated as the mean value of all considered PDF members.

Fig. 7 compares the resummed-matched distributions obtained with the three PDF sets
and their intrinsic uncertainties, for (a) NLO+NLL and (b) NNLO+NNLL accuracy. At
NLO+NLL, the MSTW and NNPDF results are very consistent within their uncertainties,
while the CTEQ band is right below the MSTW band. At NNLO+NNLL, on the other hand,
the situation is the other way round: The bands of MSTW and CTEQ overlap, while the
NNPDF band lies right on top of them. In both cases the biggest discrepancies are observed
around the maximum of the distribution. This property may be due to the rather special
role of the bottom densities which are not determined directly from experimental data, but
are theoretically derived from the other parton densities and thus, are strongly dependent
on their specific treatment in the different PDF groups. Furthermore, considering the
relative uncertainties in Fig. 8 (MSTW), Fig. 9 (NNPDF) and Fig. 10 (CTEQ), we observe
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PDF+αs uncertainties of similar size for the NLO and NNLO densities. This is expected
since the PDF uncertainties arise only from the experimental input data. In fact, the
NNLO uncertainties are slightly increased with respect to the NLO ones. In general the
uncertainties of both cross sections NLO+NLL and NNLO+NNLL are rather small, . 4%,
. 3% and . 5% for MSTW, NNPDF and CTEQ, respectively.

The overall theoretical uncertainty on the cross section is clearly dominated by unphysical
scales, in particular the factorization and renormalisation scale. It is therefore convenient
to simply add the PDF+αs and scale uncertainty in quadrature.

4 Conclusions

The transverse momentum distribution of Higgs bosons produced in bottom quark an-
nihilation has been presented through NNLO+NNLL accuracy, following the method of

Ref. [16]. For this purpose, we calculated the missing second-order hard coefficient H
H,(2)
b

both numerically and analytically. By choosing an appropriate resummation scale, we
obtain a resummed-matched distribution that matches well to the fixed-order prediction
at large pT already at NLO+NLL. At NNLO+NNLL, we observe excellent agreement be-
tween the resummed-matched and the fixed-order curve already above around 50 GeV.
Our results therefore represent a precise prediction in the dominant region of low and
intermediate values of transverse momenta.

Concerning the variation of the cross section with the unphysical scales, we observe a
significant reduction when going from NLO+NLL to NNLO+NNLL. In fact, the extremely
weak dependence of the NNLO+NNLL result on the resummation scale is remarkable. The
PDF uncertainties are roughly of the same size at NLO+NLL and NNLO+NNLL, as it is
expected from their purely experimental origin.

Our results should prove useful, in particular, in scenarios with enhanced bottom quark
Yukawa coupling, such as supersymmetric or Two-Higgs-Doublet Models with large values
of tanβ, but they may even be an important complement in the SM, especially once the
statistics for Higgs events has improved. Not least of all, differential quantities in the
bb̄H process provide good physical observables to study various parametrizations and
implementations of b densities.
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Appendix A Feynman diagrams

b b b

(a) (b) (c)

Figure 11: A sample of Feynman diagrams for bb̄→ H contributing to the NNLO

cross section at pT = 0 ; (a) LO, (b) one-loop and (c) two-loop.

❜ ❜ ❜

(a) (b) (c)

b b
❜

(d) (e) (f)

Figure 12: A sample of Feynman diagrams for bb̄→ H contributing to the NNLO

cross section at pT > 0 ; (a-b) single-real, (c-e) double-real, (f) mixed real-virtual.

Appendix B Hard-collinear coefficient with full scale de-

pendence

In this appendix, we present expressions for the hard-collinear function to second order
with complete scale dependence for the bb̄H process:

Hbb̄H,(1)

bb̄←ij
(z) = δ(1− z) δbi δb̄j

[
H

H,(1)
b −

(
B

(1)
b +

1

2
A

(1)
b

)
− 2 γ0 ln(M2/µ2R)

]

+ δbiC
(1)

b̄j
(z) + δb̄j C

(1)
bi (z) +

1

2

(
δbi P

(0)

b̄j
(z) + δb̄j P

(0)
bi (z)

)
ln3(M2/Q2) ,

(28)
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Hbb̄H,(2)

bb̄←ij
(z) = δ(1− z) δbi δb̄j H

H,(2)
b + δbiC

(2)

b̄j
(z) + δb̄j C

(2)
bi (z) + (C

(1)
bi ⊗ C

(1)

b̄j
)(z)

+H
h(1)
b

(
δbiC

(1)

b̄j
(z) + δb̄j C

(1)
bi (z)

)
+ δ(1− z) δbi δb̄j

1

6
A

(1)
b β0 ln3(M2/Q2)

+
1

2

[
δ(1− z) δbi δb̄j A

(2)
b + β0Σ

(1;1)

bb̄←ij
(z)

]
ln2(M2/Q2)

−
[
δ(1− z) δbi δb̄j

(
B

(2)
b +A

(2)
b ln(M2/Q2)

)

− β0

(
δbiC

(1)

b̄j
(z) + δb̄j C

(1)
bi (z)

)
+ δbi

1

4
P

(1)

b̄j
(z) + δb̄j

1

4
P

(1)
bi (z)

]
ln(M2/Q2)

+
1

4
β0

(
δbi P

(0)

b̄j
(z) + δb̄j P

(0)
bi (z)

)
ln2(M2/µ2F)

+
1

4

(
δbi P

(1)

b̄j
(z) + δb̄j P

(1)
bi (z)

)
ln(M2/µ2F)−Hbb̄H,(1)

bb̄←ij
(z)β0 ln(M

2/µ2R)

+
1

2

∑

i′,j′

[
Hbb̄H,(1)

bb̄←ij
(z) + δ(1− z) δbi′ δb̄j′ H

H,(1)
b + δbi′ C

(1)

b̄j′
(z) + δb̄j′ C

(1)
bi′ (z)

]

×
{
1

2

(
δi′i P

(0)
j′j (z) + δj′j P

(0)
i′i (z)

)
ln(Q2/µ2F)− δ(1− z) δi′i δj′j

×
[(

B
(1)
b +

1

2
A(1) ln(M2/Q2)

)
ln(M2/Q2) + 2 γ0 ln(M

2/µ2R)

]}

− δ(1− z) δbi δb̄j
[
γ0 β0 ln

2(M2/µ2R) + 2γ1 ln(M
2/µ2R)

]
,

(29)

where M denotes the Higgs mass, Σ
(1;1)

bb̄←ij
is defined in Eq. (64) of Ref. [16], and P

(n)
ij (z)

denotes the Altrelli-Parisi splitting functions. Their expressions can be found in Ref.
[51], for example. The quark mass anomalous dimension enters due to the fact that the
Born factor is proportional to the square of the bottom quark mass (see Eq. (5)) which is
normalized in the MS scheme:

γ0 =
3

4
CF ,

γ1 =
1

16

(
3

2
C2
F +

97

6
CF CA − 10

3
CF TF Nf

)
,

(30)

while the power of αs at LO vanishes.
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Appendix C Mellin transforms

Mellin transforms of several transcendental functions which appear in two-loop calculations
are reported for integer N in Ref. [52]. Ref. [53] gives a FORTRAN code that numerically
approximates the analytic continuation of the moments of 25 basic functions17 termed

g(1, z), . . . , g(25, z) (see Section 3 of Ref. [53]). The resummation coefficients C
(1)
N and C

(2)
N

can be expressed in terms of the moments of these 25 basic functions g(1, N), . . . , g(25, N),
and the analytic continuation of the single harmonic sums Sk(N). Below, we give analytic
expressions for Mellin transforms defined by

f(N) =

∫ 1

0
dzzN−1f(z) (31)

of some of the transcedental functions, true for complex N , which appear in the coefficients
C(2) of our calculation. The general definition of the harmonic sums is given by

Sk1,....km(N) =
N∑

n1=1

(sign(k1))
n1

n
|k1|
1

· · ·
nm−1∑

nm=1

(sign(km))nm

n
|km|
m

, (32)

which are defined, of course, only for integer N and for ki 6= 0. The analytic continuations
are known for single sums and are expressed in terms of the digamma function ψ(N) =
ψ(0)(N) and the polygamma functions ψ(m)(N). They are given by

Sk(N) = (−1)k−1
1

(k − 1)!
ψ(k−1)(N + 1) + c+k ,

S−k(N) = (−1)k−1+N 1

(k − 1)!
β(k−1)(N + 1)− c−k ,

(33)

where

ψ(N) =
1

Γ(N)

dΓ(N)

dN
, ψ(m)(N) =

dmψ(N)

dNm
,

β(N) =
1

2

[
ψ

(
N + 1

2

)
− ψ

(
N

2

)]
, β(m)(N) =

dmβ(N)

dNm

(34)

and

c+1 = γE , c+k = ζk ≡ ζ(k), k ≥ 2,

c−1 = log 2, c−k =

(
1− 1

2k−1

)
ζk, k ≥ 2.

(35)

17The formula for g(11, N) in Eq. (30) of Ref. [53] contains a typo: The last term 1
4
ln4 2 should be

replaced by 1
8
ln4 2. We would like to thank J. Blümlein for confirmation.
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We obtained the following Mellin transforms by modifying some of the formulas in Ref.
[52, 53] such that they become valid for complex N :

ln(1 + z) → 1

2N

[
S1

(
N − 1

2

)
− S1

(
N

2

)
+ 2 log 2

]
(36)

Li2(−z) → 1

2N2

[
S1

(
N − 1

2

)
− S1

(
N

2

)
+ 2 log 2

]
− ζ2

2N
(37)

ln(z) ln(1 + z) → − 1

2N2

[
S1

(
N − 1

2

)
− S1

(
N

2

)
+ 2 log 2

]

− 1

4N

[
S2

(
N − 1

2

)
− S2

(
N

2

)] (38)

Li3

(
1− z

1 + z

)
− Li3

(
−1− z

1 + z

)
→

(
S1

(
N − 1

2

)
− S1

(
N

2

))

× 1

8N

[
ψ(1)

(
N + 1

2

)
− 4ψ(1)(N + 1)− ψ(1)

(
N + 2

2

)
+ π2

]

+
1

4N

[
ψ(1)

(
N + 1

2

)
− 4ψ(1)(N + 1)− ψ(1)

(
N + 2

2

)]
(S1 (N) + ln 2)

+
1

N

[
g(3, N + 1)− g(4, N + 1) + g(18, N + 1)− g(19, N + 1)

]
,

(39)

ln(1 + z) ln2(z)

1 + z
→ 2 g(5, N)− 2 g(6, N)− 2 g(7, N)

+ (−1)−N

[
− 1

2
ζ3S−1(N − 1) +

3

2
ζ3S1(N − 1) + 4S−4(N − 1)

− 1

2
π2S−2(N − 1) + 2S−3(N − 1)S1(N − 1) + 2S−2(N − 1)S2(N − 1)

+
1

6
π2S2(N − 1)− 1

2
ζ3 ln(2)−

π4

360

]
,

(40)

25



1

1 + z

[
Li3

(
1

1 + z

)
− 1

6
ln3(1 + z)

]
→

1

192

[
ψ(0)

(
N

2

)(
−24 g

(
18,

N

2

)
+ 24 g(19, N)− 9ζ3 + π2(6γ + ln(16))

)

− ψ(0)

(
N + 1

2

)(
−24 g

(
18,

N + 1

2

)
+ 24 g(19, N)− 9ζ3 + π2(6γ + ln(16))

)

− 4π2 g(1, N)− 144 g(5, N) + 192 g(6, N) + 144 g(7, N) + 96 g(8, N) + 48 g(10, N)

+ 96 g(11, N) + 48 g(12, N) + 24 g

(
20,

N

2

)
− 24 g

(
20,

N + 1

2

)
+ 24 g

(
21,

N

2

)

− 24 g

(
21,

N + 1

2

)
+ 24

(
− γ g

(
18,

N

2

)
+ γ g

(
18,

N + 1

2

)
+ ln(4) g(4, N)

+ 4(ψ(0)(N) + γ)(g(3, N)− g(4, N))

)
+ 9ψ(1)

(
N

2

)
ψ(0)

(
N

2

)2

− 12ψ(2)

(
N

2

)
ψ(0)

(
N

2

)
+ 3ψ(1)

(
N + 1

2

)
ψ(0)

(
N

2

)2

+ 6π2ψ(0)(N)ψ(0)

(
N

2

)

+ 6ψ(0)

(
N + 1

2

)
ψ(1)

(
N

2

)
ψ(0)

(
N

2

)
+ 24γ ψ(1)

(
N

2

)
ψ(0)

(
N

2

)

− 6ψ(0)

(
N + 1

2

)
ψ(1)

(
N + 1

2

)
ψ(0)

(
N

2

)
− 12ψ(0)(N)2ψ(1)

(
N + 1

2

)

+ 48ψ(2)(N)ψ(0)

(
N

2

)
− 6π2ψ(0)(N)ψ(0)

(
N + 1

2

)
+ 12ψ(0)(N)2ψ(1)

(
N

2

)

− 3ψ(0)

(
N + 1

2

)2

ψ(1)

(
N

2

)
+ 48ψ(0)(N)ψ(0)

(
N + 1

2

)
ψ(1)(N)

− 9ψ(0)

(
N + 1

2

)2

ψ(1)

(
N + 1

2

)
− 24γψ(0)

(
N + 1

2

)
ψ(1)

(
N + 1

2

)

− 48ψ(0)

(
N + 1

2

)
ψ(2)(N) + 12ψ(0)

(
N + 1

2

)
ψ(2)

(
N + 1

2

)
+ ψ(3)

(
N

2

)

− ψ(3)

(
N + 1

2

)
+ 6

(
−π2 − 2 ln2(2) + γ(4γ + ln(16))

)
ψ(1)

(
N

2

)
+ 6

[
π2

+ 2 ln2(2)− γ(4γ + ln(16))
]
ψ(1)

(
N + 1

2

)
+ 48(ln(2)− γ)ψ(1)(N)ψ(0)

(
N

2

)

+ 24(γ + ln(2))ψ(0)(N)ψ(1)

(
N

2

)
+ 48(γ − ln(2))ψ(0)

(
N + 1

2

)
ψ(1)(N)

− 24(γ + ln(2))ψ(0)(N)ψ(1)

(
N + 1

2

)
− 12(γ + ln(2))ψ(2)

(
N

2

)

+ 12(γ + ln(2))ψ(2)

(
N + 1

2

)
− 48ψ(0)(N)ψ(1)(N)ψ(0)

(
N

2

)]
,

(41)
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where γ = γE . Note that in Eq. (40) factors of the form (−1)N cancel out completely
upon insertion of the single harmonic sums in Eq. (33) .

Appendix D Results for 13 TeV
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Figure 13: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to µF, µR-variation. (Same as Fig. 3, but for

√
s = 13TeV.)
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Figure 14: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to Q-variation. (Same as Fig. 4, but for

√
s = 13TeV.)
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Figure 15: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to variation of all scales. (Same as Fig. 5, but for

√
s = 13TeV.)
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Appendix E Results for Q0 = mH/2

In this appendix, we present the main results of the paper for a central resummation scale
of Q0 =M/2.

������

������

������

�������

������

�����

����

�� ��� ���� ���� ���� ���� ����
���������

����������������

���������
����

���������
��������������
������������������

������

������

������

�������

������

�����

����

�� ��� ���� ���� ���� ���� ����
���������

�������������������

���������
����

���������
��������������
������������������

(a) (b)

Figure 16: (a) Transverse momentum spectrum at NNLO (blue, dashed line) and
at NNLO+NNLL (red, solid line) for the central scales; (b) only the bb̄ channel for
that quantity. (Same as Fig. 2, but for Q0 =M/2.)
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Figure 17: Resummed-matched pT -distribution at NLO+NLL (blue, dashed) and
NNLO+NNLL (red, solid); lines: central scale choices; bands: uncertainty due to
µF, µR-variation. (Same as Fig. 3, but for Q0 =M/2.)
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Figure 18: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to Q-variation. (Same as Fig. 4, but for Q0 =M/2.)
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Figure 19: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to variation of all scales. (Same as Fig. 5, but for Q0 =M/2.)
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Figure 20: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to µF, µR-variation. (Same as Fig. 13, but for Q0 =M/2.)
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Figure 21: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to Q-variation. (Same as Fig. 14, but for Q0 =M/2.)

��

������

�����

������

�����

������

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���
���������

����������������

�������
���������

����������
��������������
������������������

Figure 22: Resummed-matched pT -distribution at NLO+NLL (blue, dashed line)
and NNLO+NNLL (red, solid line); lines: central scale choices; bands: uncertainty
due to variation of all scales. (Same as Fig. 15, but for Q0 =M/2.)
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