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Abstract— Research for new technologies and methods in computational bioinformatics has resulted in many folds biological 

data generation. To cope up with the ever increasing growth of biological data, there is a need for accelerated solutions in 

various domains of computational bioinformatics. In these domains, string matching is a most versatile operation performed at 

various stages of the computational pipeline. For search patterns that are updated with time, there is a need for accelerated and 

reconfigurable string matching to perform faster searching in the ever-growing biological databases. In this paper, we have 

proposed an accelerated and real-time reconfigurable methodology for string matching using hardware-software codesign. 

Using state of the art field programmable gate arrays we have proposed a complete system-on-chip solution for applications 

that require accelerated as well as real-time reconfigurable string matching. The proposed methodology is the first of its kind 

novel approach for high-speed string matching that also supports quick reconfiguration by patterns changing with time. It is 

verified at the string matching stage of protein identification. Experimental results show that the architectures designed using 

our proposed methodology are 4X faster than state-of-the-art software implementation running on a workstation and 1.5X-4X 

faster than hardware accelerators available in the literature. 

Index Terms— Hardware acceleration, hardware-software codesign, real-time reconfiguration, reconfigurable SoC FPGA, 

string matching  

——————————      —————————— 

1 INTRODUCTION

large amount of genomics data is contributed to the 
life science society due to high-throughput next gen-

eration sequencing methods and it is doubling at every 18 
months [5]. Furthermore, due to the advancements in 
liquid chromatography and mass spectrometry, mass 
spectra data in proteomics study is getting generated at a 
very high rate [29]. As a result of the increasing growth of 
data in genomics and proteomics, operations involved in 
various applications of bioinformatics have become sig-
nificantly compute intensive. String matching [1] is one 
such operation that is most widely used in the field of 
computational and information systems with many real-
world applications including web search engines, infor-
mation retrieval, intrusion detection, pattern recognition 
and finding locations of nucleotides and amino acids in 
the field of computational bioinformatics [6], [12], [21], 
[22]. Aho-Corasick (AC) algorithm is a widely used string 
matching algorithm in bioinformatics with various appli-
cations including sequence alignment, locating nucleo-
tides, proteogenomic mapping, etc. [6], [8], [15], [19]. 

In applications of bioinformatics including biomarker 
discovery, basic local alignment search tool, homologous 
series detection, etc., patterns to be searched are constant-
ly varying and these demands to configure the underly-
ing systems with latest patterns [8], [22], [29]. Real-time 

reconfigurable string matching is required in these appli-
cations to search patterns that are continuously updated 
with time. Since the aforementioned applications are 
computationally intensive due to the data growth [5], 
high speed methodologies are of utmost importance to 
perform reconfigurable string matching. In this context 
software, high-performance computing and hardware 
acceleration are the methodologies reported in the litera-
ture [3], [24]. Although software methods are flexible and 
reconfigurable, their running time for string matching is 
turning to be a limiting factor due to the growing size of 
biological databases [3], [4], [13], [16]. On the other hand, 
high-performance computing solutions involve a large 
computational infrastructure including multiprocessors, 
multicore CPUs, clusters, cloud and grid computing, etc., 
making their management very costly [24]. Hence re-
searchers emphasized on hardware accelerators employ-
ing cost- effective field programmable gate arrays 
(FPGAs).  

Computationally intensive algorithms of bioinformat-
ics are efficiently implemented and accelerated using 
high-density FPGAs [3], [4], [7], [14]. Numerous domains 
including pairwise sequence alignment, multiple se-
quence alignment, resequencing, gene-sequence analysis, 
DNA sequencing, database searching, genome assembly 
and study of homologous sequences are reported to use 
FPGAs for acceleration [3], [4]. In [7] performance of long 
read mapping is improved by hardware and it is imple-
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mented by a novel FPGA based system. A hybrid overlap 
searching algorithm of DNA fragments suitable for paral-
lel implementation of FPGA is proposed in [14]. Here the 
time gap required for inserting a new nucleotide is uti-
lized to compare overlapping DNA fragments and thus 
assist the assembly process in real-time [14]. 

In genomics and proteomics, often there is a require-
ment to complete the string matching operations in a 
stipulated time. These include searching genome data-
bases to avoid data pile up and mass spectrometry based 
proteomics study where database search parameters are 
controlled for searching of peptide tags [6], [19], [34], [35], 
[36]. Similarly, online data analysis is part of hypotheses-
driven tandem mass spectrometry (hdMS/MS). 
HdMS/MS require to perform data analysis under a strict 
real-time limits [35], [36]. In LC-MS/MS based shotgun 
proteomics, precursor ion selection is an important task to 
reduce the number of MS/MS peaks. Peptide sequences 
are used to avoid redundant computations and searches 
[36]. In all the above mentioned examples, real-time string 
matching is of utmost importance.  

In the implementation of FPGA based hardware accel-
erators, various design-steps are executed. These steps 
include writing programs in hardware description lan-
guages (HDL), synthesis, translation, mapping, placement 
and routing, programming file generation and configur-
ing FPGA using the configuration file [18], [20]. For prac-
tical designs, commercial tools require hundreds of sec-
onds for executing synthesis, implementation and config-
uration file generation [16]. This methodology is unsuita-
ble and is a limitation for applications where patterns are 
generated at a higher rate than the reconfiguration time of 
FPGAs, for example, the string matching stage of protein 
identification using high-throughput mass spectrometry, 
hdMS/MS, precursor ion selection, etc. [2], [35], [36]. In 
addition, to reconfigure FPGAs using this methodology, 
there is a requirement of a dedicated computer system 
and technical expertise to handle sophisticated proprie-
tary tools.  

Motivated by the aforementioned facts and limitations, 
it can be inferred that there is a need for accelerated 
methodologies for string matching that also support real-
time reconfiguration. In our preliminary work, we identi-
fied this problem and addressed it partially by introduc-
ing the codesign based idea for accelerated string match-
ing [11]. In this paper, we extend this work and propose a 
novel hardware-software codesign based accelerated and 
real-time reconfigurable methodology for string matching 
in computational bioinformatics applications where 
hardware caters the need of acceleration while software 
generates the reconfiguration data and also assists the 
hardware in real-time reconfiguration. The proposed 
methodology is useful for various applications that re-
quire accelerated and real-time reconfigurable string 
matching. The methodology is employed to accelerate 
and implement real-time reconfigurable Aho-Corasick 
algorithm for string matching in computational bioinfor-
matics using hardware-software codesign on SoC FPGA. 
The proposed methodology is evaluated for the time re-
quired for reconfiguration at the string matching stage of 

protein identification using high-throughput mass spec-
trometry and it is observed that the string matching sys-
tem is reconfigurable with new patterns in the order of 
milliseconds. To the best of our knowledge, this is the 
first of its kind novel work where the time required for 
reconfiguration of a hardware assisted string matching 
system for bioinformatics applications is reported in the 
literature. The design implemented using the XC7Z020 
FPGA device running at 100 MHz is reconfigurable in the 
order of milliseconds and achieves 4-fold speed gain in 
comparison with an equivalent software implementation 
running on a 2.60 GHz Xeon workstation with 8 GB of 
memory and 1.5X-4X times faster than a hardware im-
plementation available in the literature [8]. 

The novelties in this paper are summarized as follows: 
 A first of its kind novel approach for high-speed 

string matching that also supports quick reconfigura-
tion by patterns changing with time is proposed in 
this paper. The patterns that are to be matched in the 
database are updated to the hardware system in real-
time and matching in the database is performed in an 
accelerated mode using hardware-software codesign. 

 Two architecture design methodologies- single core 
and multiple core, supporting both accelerated as 
well as real-time reconfigurable string matching are 
proposed based on an intelligent partitioning and op-
timized designing of hardware-software codesign. 
For string matching in multiple large databases with 
a large number of patterns, the multiple core architec-
ture is proposed that is designed using a parallel 
connection of memory saving single cores. 

The rest of the paper is organized as follows: In section 2, 
we review the background and related work. The pro-
posed methodologies for accelerated and reconfigurable 
string matching are presented in Section 3. Section 4 de-
scribes the experimental platform. The performance of the 
proposed methodologies is evaluated in section 5. Section 
6 concludes the paper. 

2 RELATED WORK AND BACKGROUND 

In this section, we present related work on string match-
ing and its applications in computational bioinformatics. 
Later we present relevant background information on the 
hardware-software codesign. 

2.1 String Matching and its Applications in 
Computational Bioinformatics 

In string matching a database or text is searched to identi-
fy locations of strings or patterns [1], [21]. It is utilized in 
various disciplines of computational bioinformatics in-
cluding biomarker discovery, basic local alignment search 
tool, proteogenomic mapping, homologous series detec-
tion, sequence alignment and sequence similarity [12], 
[15], [22]. These disciplines require finding locations of 
multiple patterns which are made of nucleotides or amino 
acids in databases. This requirement necessitates the use 
of multiple pattern matching algorithms. 

Aho-Corasick (AC) algorithm, one of these algorithms, 
is a widely used multi-pattern string matching algorithm 
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[1]. Substantial research works are found on the applica-
tions of Aho-Corasick algorithm (ACA) in computational 
bioinformatics [2], [6], [8], [15], [19]. For fast alignment of 
large genomic sequences, a simplified version of ACA is 
presented in [6]. The SITEBLAST algorithm of [19] uses 
ACA for local alignment of genomic sequences using pri-
or knowledge of biological signatures. ACA performs the 
best of many string matching algorithms to locate unique 
oligonucleotides from DNA databases [15]. In protein 
identification using DNA based search of [2], protein cod-
ing region within the DNA is identified and then using 
ACA this sequence is matched with peptides obtained 
using mass spectrometry. In proteogenomic mapping, 
where genome annotation is performed using proteomics 
data, peptides discovered by mass spectrometry are 
matched by using ACA in a genome database translated 
in all six reading frames [8]. 

2.2 Hardware-Software Codesign 

Hardware-software codesign is a concurrent and coordi-
nated design of a system that includes both hardware and 
software modules/components and they interact with 
each other to perform a complete task [25]. In this 
codesign based approach, the system is made up of a ded-
icated hardware and software that is mapped onto a cen-
tral processing unit (CPU). This approach facilitates with 
the advantages of both hardware and software such as 
speed, power and parallelism of former and flexibility, 
modularity of later [25]. Design constraints are optimized 
by combining the rewards offered by both hardware and 
software [27]. Over the course of time, research in hard-
ware-software codesign has evolved through a number of 
stages and passed through many approaches such as fo-
cusing on partition strategies, architectures, codesign ap-
proaches in multiprocessing, multithreading and multi-
core environments [27].  

Recently, system-on-chip (SoC) that integrates all 
components of a computing and communication system 
on a single chip provides a new paradigm fo r 
codesign [23]. This approach uses the Zynq-7000 system 
on a chip FPGA family that has the capability to imple-
ment a complete hardware-software system on a single 
platform [23]. Such FPGAs take away the need for 
standalone integrated circuits for processor and hardware 
and provide a single chip solution. In addition to Zynq 
family with on chip ARM processor, there are various 
softcore processors that are used in hardware-software 
codesign. These are off-the-shelf, ready to use and syn-
thesizable processor cores that facilitate rapid prototyping 
and final design implementation. They are completely 
customizable as per the demands of the application. 
OpenRISC 1200, PicoBlaze, Leon 3 and Mico32 are open-
source softcore processors while MicroBlaze, PowerPC, 
Nios II and Xtensa LX are commercial softcore processors 
[9], [28]. 

3 PROPOSED ACCELERATED AND 

RECONFIGURABLE METHODOLOGY 

In this section, we present our proposed methodology for 

string matching using hardware-software codesign. Then 
we give brief idea about ACA and its implementation on 
FPGA using memory based technique. Later we propose 
architectures for string matching using the proposed 
methodology and conclude the section with an applica-
tion of the proposed methodology in computational bio-
informatics.  

3.1 Proposed Methodology for String Matching 

In the hardware-software codesign of an application, fre-
quently used and compute intensive functions or tasks of 
the underlying algorithms are offloaded to dedicated 
hardware while control actions are assigned to software 
[25], [27], [28]. Substantial speedup is achieved by em-
ploying fixed hardware accelerators for algorithmic and 
data processing tasks. The flexible software running on a 
processor core is well suited for executing control orient-
ed and decision making tasks. From the view of all the 
above guidelines, we propose a novel hardware-software 
codesign based methodology for string matching. Based 
on the methodology, codesign based algorithmic flow for 
string matching is given in Table 1. 

 

Fig. 1. Time profiling of Aho-Corasick algorithm. Values are shown 
as the percentage of the total time of execution of the AC algorithm. 

TABLE 1 
Flow of the Proposed Methodology 

Algorithm 1: Algorithmic flow of the proposed method-
ology 

Input: Sets of patterns S, database for searching dbase 
Output: locations of patterns with their identification 
1: while S is not empty do 
2: read patterns of set Si and create AC finite state ma-

chine (FSM) –sw 
3: create memory table for the corresponding FSM –sw 
4: initiate hardware and transfer table to local memory of 

hardware –sw 
5: perform string matching –hw  
6: update results and communicate to software –hw 
7: stay in standby till next set of patterns arrive –hw 
8: end 

Abbreviations: sw- software, hw- hardware. 
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In the codesign, profiling and partitioning are per-
formed on the desired functionality of the system [25], 
[27]. In software profiling, the high-level description of 
the system functionality represented by a programming 
language is analyzed thoroughly for resource-intensive 
and time-consuming operations and functions. A profil-
ing software accurately analyze the program and pro-
vides useful insights of the various operations and func-
tions carried in the program. In order to analyze the 
string matching using the Aho-Corasick algorithm, we 
have performed the time profiling operation on the algo-
rithm implemented using C program. Profiling results 
obtained by running the program on multiple test cases 
are shown in Fig. 1. It is observed that 73% of the time, 
which is a significant amount, is consumed in executing 
the search function and operations between the nodes of 
AC finite state machine (FSM). Partitioning is performed 
to implement the node functions and search function in 
hardware, while data control tasks are assigned to soft-
ware. In order to reconfigure the system in real time with 
changing patterns, the functions implemented in hard-
ware are desired to be updated fast and efficiently. This 
profiling and partitioning form the core of the proposed 
methodology using hardware-software codesign.  

For a number of sets of patterns S, string matching op-
eration is required to identify these patterns in the data-
base dbase. Let Si represents a set of patterns that are 
changing with respect to time, while Si+1 represents the 
next set of patterns. The problem statement is to reconfig-
ure the string matching system in real time for the pat-
terns in Si and scan the database for these patterns. 

In the proposed methodology, the software reads the 
patterns and creates an AC finite state machine for these 
patterns. Using the technique of memory based FSM im-
plementation presented in [26], the software creates a 
memory table for the corresponding FSM. A hardware 
accelerator is designed to take characters from the dbase 
and look for patterns of Si in these characters. Software 
behaves as a master and initializes the hardware. It trans-
fers the memory table of patterns to the hardware accel-
erator. String matching operation is performed by hard-
ware and the search results are updated to the software. 
These steps are repetitively run for the next set of patterns 
of Si+1. In the design, as soon as the patterns of Si are 
available, the system has to be reconfigured with them. 
This is an essential feature, for the system to be called as 
runtime reconfigurable.  

Next, we brief about the technique of memory based 
FSM implementation and present the hardware architec-
ture for the search engine. Subsequently, we introduce the 
hardware-software codesign based architecture for real-
time string matching using the above methodology. We 
first present a single core architecture for accelerated and 
reconfigurable string matching followed by a flexible 
multi-core architecture for the same. 

3.1.1 Introduction to Aho-Corasick algorithm with 
illustration 

In this sub-section, we brief about ACA with an example. 
Its linear time complexity and the ability to simultaneous-

ly identify multiple patterns in a given text make ACA 
advantageous than other string matching algorithms [1], 
[15]. Consider four patterns AC, DAC, ABD and ACED. 
In ACA, the group of patterns are preprocessed to create 
an FSM. A large text or database is searched for these pat-
terns by passing the characters from the text to the FSM. 
Fig. 2 (a) shows the FSM generated by ACA for the four 
patterns. In the FSM each circle is called as state or node 
while the initial state or root state is denoted by state 0. 
When a character is read from the text by the FSM, there 
is a transition of state from one to another for the corre-
sponding character. These transitions are represented by 
edges or branches labelled with the corresponding char-
acter. Root state is retained when no part of any pattern is 
present in the text while other states indicate partially or 
fully identified patterns. A double circle is for the state 
where a valid pattern is found. Edges are made of normal 
and failure transitions. Normal transitions occur when 
specific characters are matched while failure transitions 
are useful for finding patterns that overlap with other 
patterns. Failure transitions to root node are not repre-
sented in the diagram for the sake of simplicity.  

3.1.2 Memory based FSM Implementation on 
Hardware 

In this sub-section, we realize the FSM generated by ACA 
using memory based implementation. Owing to the ad-
vances of FPGA technologies and the inclusion of on-chip 
memory, memory based implementation of FSMs on 
FPGAs are receiving considerable attention [26]. Block 
RAM (BRAM) memories can be read and written during 
operation runtime and using them different FSM circuits 
are implemented [26]. Besides the advantage of runtime 
update, for BRAM memories there is no necessity of run-
ning the time consuming synthesis, placement and rout-
ing operations as required in the case of logical elements 
based distributed RAM.  

In a processor or computing machine, FSM can be rep-
resented in the form of a memory table [8], [26]. Fig. 2 (b) 
shows hardware details of the block RAM based FSM for 
the patterns considered in the example. A tabular repre-
sentation of the FSM example is also shown alongside the 
hardware. String matching operation using the FSM table 
is performed in the following manner. At any given time 
the control is at one of the states in the FSM and in the 
table, a row corresponding to that state is read. This row 
of memory is connected as inputs to the multiplexer. The 
multiplexer selects a particular input specific to the char-
acter read from the database. We use the word cell to de-
note a part of the register in memory.  Inputs to the mul-
tiplexer are state-cells while the cells corresponding to 
output match vectors are called output-cells. The control 
shifts to the next state as determined by the contents of 
the state register, which in turn holds the state-cell. The 
pattern match column indicates the patterns that are 
matched for a given state. A null value in the output-cell 
from pattern match column indicates that there are no 
matches for the given state while a non-null value indi-
cates there is a match of patterns. For a non-null value, 
bits of the output-cell indicate their corresponding pat-
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terns that are identified in the database.  

3.1.3 Calculation of memory consumption of FSM 

The FSM table is stored in a block RAM whose depth and 
width are dependent on the size and number of patterns. 
For S patterns each of maximum length L , the maximum 
number of states that are generated in the Aho-Corasick 
FSM isSL , which in turn decides the maximum depth of 
the block RAM. Each cell in a column except the cells of 
the pattern match column holds a state value. The width 
of a state-cell is the ceiling value of 

2
log (SL) . If the width 

of the pattern match column is ω  bits, for a given alpha-
bet of α  symbols the width of each register in the block 
RAM is α ω

2
(og SL)l +  bits. The maximum number of bits 

required to represent a character from the alphabet is de-
cided by α

2
 log ( ) . The maximum number of overlapping 

patterns that are identified in any state is decided by the 
value of ω . Based on the input character symbol, an α -to-
1 multiplexer selects the contents of the state-cell corre-
sponding to that character. The output match vector of 
width ω  carries the information of patterns matched in 
that state. Each bit in the output-cell indicates whether or 
not the corresponding pattern is found in the database.  In 
the aforementioned example the values of S , L , α andω  
are 4, 4, 26 and 4 respectively. The value of SL is 16 but 
due to overlapping of certain parts of the patterns the 
depth of the block RAM is 10 and its width is 108 bits.  

3.1.4 Hardware architecture of search engine  

As described in section 3.1, the search function and the 
node operations of the FSM are the most time-consuming 
tasks in the Aho-Corasick algorithm. For efficient design, 
these tasks are the best suited for acceleration in hard-
ware. A Search Engine is designed for the AC FSM and 
the detailed hardware architecture is shown in Fig. 2 (c). 
Initially, the block RAM in the Search Engine is config-
ured with the FSM table data by enabling memory write 
and memory store signals. Later, the search operation is 
started by enabling and disabling the search and memory 
write signals, respectively. Each character from the data-
base is read and the corresponding part of the memory 
output, which is a state-cell, is selected by the multiplex-
er. The next state address of the memory is hold by a State 
Register at the output of multiplexer, which in turn is 
generated by the state-cells. The Output Match Vector, 
which is the pattern match column, indicates the strings 
that are matched in the respective states. A flag is raised 
whenever a pattern is successfully matched. 

In the next section, we use the block RAM based search 
engine of ACA FSM explained here and propose the ar-
chitecture for accelerated and reconfigurable string 
matching. 

3.2 Hardware-Software Codesign based Single 
Core Architecture for String Matching 
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Fig. 2. Aho-Corasick algorithm: (a) FSM illustration for string matching with patterns AC, DAC, ABD and ACED. (b) 
Hardware details of the illustration (c) Detailed hardware architecture of the search engine 
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The detailed hardware architecture for a single core is 
presented in Fig. 3 (a). The Search Engine of section 3.1.4 
is instantiated inside an AC Core module. The module 
receives the FSM table data for the patterns and the asso-
ciated signals to control the local memory operations 
from the processor or top module where the single core is 
instantiated. The Search Engine Control Logic generates 
the necessary signals to control the search operation in 
the AC core and raises a flag for the processor whenever 
the search operation is completed on the database. A Da-
tabase Memory (DM) is used to store the text before the 
search begins and it feeds the AC Core with the input 
characters. The Dbase (database) Read Address Genera-
tion Circuit (DRAGC) is used to generate the address for 
the DM during the searching operation. The bits of Out-
put Match Vector of the AC Core indicates the patterns 
that are found in a given state and they are converted to 
the corresponding pattern identification numbers in the 
Encoder. The Encoder generates the address for the Glob-
al Memory with the help of an address counter while the 
concatenation circuit generates the memory contents. The 
memory input is obtained by clubbing pattern ID and the 
corresponding location obtained from DRAG circuit. An 
interface is provided with the Global Memory to read the 
search results. 

System level architecture for the proposed reconfigu-
rable string matching using hardware-software codesign 
approach is presented in the Fig. 3 (b). For ease of under-
standing, various signals and control circuits in the above 
description are clubbed to form blocks representing their 
corresponding operation. A processing system is formed 
using an ARM or softcore processor. In the proposed 
codesign, software part of the system is implemented us-
ing the processor. On-chip or on-board DDR memory 
called as Processor Memory is connected to this processor 
for storing the compiled software instructions. Due to the 
limitation of on-chip memory, DDR memory is suitable 
for programs that produce large memory footprint. A 
synchronous reset to the entire system is provided by 
Processor System Reset (PSR) block. Signals from PSR are 
used to reset all the hardware blocks in the system to ini-
tial states. The Memory Controller facilitates a communi-
cation link between the processor and memory modules. 
Advanced Extensible Interface (AXI) memory controller is 
used for AMBA AXI interconnect systems.  

The AC Core block performs string matching opera-
tion. Memory based implementation of FSM shown in 
Fig. 2 (c) is realized using the Local Memory and Control 
Logic. Depending on the contents of the state register, 
which holds the value of state in ACA FSM, a particular 
row is activated in the block RAM which is used to realize 
Local Memory. The AC Core reads characters from the 
database and from this row a state-cell value correspond-
ing to the character is selected by the multiplexer. The 
output of the multiplexer which holds the next state is fed 
to the state register. Output match vector in the activated 
row shows the patterns that are matched. Besides taking 
control actions in the AC Core, the Control Logic keeps 
track of the counter for the characters and the output 
match vector. The entire system is residing on an FPGA. 

Off-chip memories like external hard disc drives, memory 
cards, flash drives or any other portable memories are 
used to store large databases. 

Software program of the proposed hardware-software 
codesign architecture, is designed to read the patterns to 
be searched from an external Secure Digital High Capaci-
ty (SDHC) memory card or come from a host machine. 
These patterns form a set Si. Next, ACA FSM is generated 
for the corresponding patterns. A memory table is created 
for the FSM by the software and it is transferred to the 
Local Memory of the AC Core using the Control Logic. 
String matching operation is performed on the Database 
Memory by the AC Core and the results of the search op-
eration are updated to the processor by writing to Global 
Memory. It can be seen that the AC Core is substituted for 
AC algorithm and this block acts as a hardware accelera-
tor.  

The number of patterns in Si that can be searched in a 
single pass is limited by the size of Local Memory. For a 
large number of patterns, an external memory chip is 
used to replace the Local Memory. In addition, as the 
proposed system has the feature of runtime reconfigura-
tion, this feature can also be used as an alternate way to 
tackle this issue. In such cases of a large number of pat-
terns, if the system can search ω  patterns in one pass then 
initially an ω  number of patterns are searched followed 
by the next ω  patterns. A direct access to database and 
global memories from the AC Core, removes the latency 
in communication and also the overload of memory oper-
ations on the software. Also, as soon as the FSM table is 
stored, AC Core can perform string matching without the 
intervention of software for memory operations. 

3.3 Hardware-Software Codesign based Multiple 
Core Architecture for String Matching 

Due to the ever growing need of computational demand, 
alternate approaches including parallel computing and 
multi-core processing find an essential place in computa-
tional bioinformatics. Many-core or multi-core platforms 
are used to speedup underlying algorithms of various 
bioinformatics applications. Speedup is achieved using 
multithreading in multi-core CPUs [13] and network-on-
chip enabled many-core platforms for sequence analysis 
and phylogeny reconstruction [17]. In these works, fea-
tures of operating systems are employed for dividing the 
task into smaller fragments and speedup is achieved by 
running the fragments in parallel. This approach requires 
multi-tasking operating systems and leads to complex 
programming. In this section, we propose a multi-core 
architecture using hardware-software codesign for string 
matching and achieve speedup by eliminating the need 
for such complex operating systems.  

The proposed multi-core architecture for string match-
ing is presented in Fig. 4. Various advantageous features 
are achieved by the proposed multi-core architecture 
which include completing the search in lesser time by 
dividing the database, ability to simultaneously configure 
AC Cores with patterns of different types, selective pow-
ering of individual AC Cores, etc. The multi-core architec-
ture uses an ARM or softcore processor and a Master 
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Control Logic in a similar fashion as the single core archi-
tecture shown in Fig. 3 (b). In this architecture, N  num-
ber of single AC Cores are connected in parallel and are 
collectively called as an AC Core Section. For searching 
large number of patterns, instead of using a single core 
we use N cores fitted with fewer number of patterns to 
obtain the advantage of memory reduction as discussed 
later.  In a section, each individual AC Core is selectively 
powered on and configured with an AC FSM capable to 
detect a maximum number of ω  patterns. Database Seg-
ment is a partial or whole database in which search is 
performed and each section is connected to a segment. 

In the proposed architecture, depending on the num-
ber of sections, database segments and their arrangement 
there are four possible types of configurations.  

Configuration 1  

In the first configuration, a single section is connected to a 
single database segment. In this configuration, the system 
can identify patterns of N  Aho-Corasick FSMs and a total 
number of ωN  patterns can be searched in the database. 
This configuration is useful to search large number of 
patterns by employing cores fitted with a fewer number 
of patterns. On a careful analysis, discussed in section 5.1, 
it is seen that to search ωN patterns usingN cores, each 
withω patterns, is memory saving than to use a single 
core with ωN  patterns. This configuration allows to 
search multiple sets of patterns in parallel and reduces 
the searching time compared to the repetitive use of a 
single core. For example, to search 256 patterns using a 32 
patterns core, 8 such cores are required. Memory is saved 
while designing a core with 32 patterns than a core with 
256 patterns. 

Configuration 2  

In the second configuration, the number of patterns to 
search is increased by a different arrangement. If the AC 
Core Sections are duplicated M times and are connected 
to the same database, then such a configuration leads to 
identify patterns from MN FSMs and ωMN  patterns can 

be simultaneously searched in the database. In our system 
all the AC Core Sections combined together are termed as 
multi-AC Core Fabric. In this configuration, each individ-
ual AC Core in every section is configured with different 
ω  number of patterns and the same database segment is 
connected for all the M  sections. The same functionality 
can be obtained if the number of cores in the first configu-
ration is extended from N  to MN  cores. This configura-
tion allows for modularity and reduces the design time by 
employing the same design of the AC Core Section re-
peatedly. For example, to search 256 patterns using a sec-
tion with 8 cores each with 32 patterns, 2 such sections are 
required. 

Configuration 3  

In the third configuration, the multi-AC Core Fabric that 
contains multiple sections is connected to a database di-
vided into smaller parts called segments. Here each sec-
tion is configured with patterns from sameN Aho-
Corasick FSMs. This configuration speeds up the search 
process by searching the database parallelly. If the data-
base of sizeD  is divided into M  segments, each ofD/M  
size, then there is M times gain in search time. For exam-
ple, to search 128 patterns in a database of 100 MB, 2 sec-
tions each with the same 128 patterns are used to search 
in 2 segments of 50 MB. 

Configuration 4  

The fourth configuration is similar to the third configura-
tion except that each section is configured with patterns 
from different FSMs. In this configuration, the segments 
contain databases of different types. TheN Aho-Corasick 
FSMs in each section may be same or different. This con-
figuration allows to search different types of databases for 
multiple patterns at once. This configuration can be use-
ful for a simultaneous search of different types of patterns 
in their corresponding databases. For example, to simul-
taneously search 128 patterns in two different types of 
databases each of 50 MB, 2 segments and 2 sections are 
used. A practical scenario would be to search 128 peptide 

 

Fig. 4. System level architecture for hardware-software codesign based Aho-Corasick algorithm using the configurable multi-cores. Here the 
number of AC Cores in every section varies from 1 to N while the number of AC Core Sections varies from 1 to M. The number of sections 
and cores vary depending on the number of patterns, their size and type of database. This leads to various configurations of the architecture. 
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patterns of unknown origin/s in protein databases of dif-
ferent organisms. 

3.4 Application of Proposed Methodology for 
String Matching in Protein Identification 

Hardware accelerated solutions for protein identification 
are used to address the bottlenecks in the computational 
bioinformatics pipeline created as a result of the exces-
sively rising number of proteins [2], [8], [11], [12], [29]. To 
demonstrate our proposed methodology, we use protein 
identification which is a fundamental step in protein se-
quence analysis. In protein identification using tandem 
mass spectrometry, one of the most common procedures, 
peptide fragments obtained by mass spectrometry are 
matched against large protein databases which is similar 
to the operation of string matching in a text [2], [8], [11], 
[12], [29]. Peptides that are obtained from the proteins 
have grown into millions in number and in addition semi 
or non-specific digestion has multiplied the number of 
peptides by many times [29]. To scan databases for these 
peptides and identify a protein accurately, high speed 
methods are necessary which can be fulfilled by the pro-
posed methodology. This benefits the discipline of dis-
ease biomarker identification and aid disease diagnosis 
and prognosis [22]. 

Peptide fragments are the patterns to be searched and 
these are used to create AC FSM as explained in section 
3.1.2. Proposed design is useful to search proteome data-
bases at high speed and simultaneously supports runtime 
reconfiguration with peptides patterns. FASTA format is 
used to store the proteomes in database memory. Simple 
binary coding is used to represent different amino acids 
and additional symbols of the FASTA format. For protein 
identification AC Core is designed to keep track of pro-
tein ID, peptides matched and locations of peptides in the 
protein. These results are stored in global memory and 
updated to software where software does post-processing 
like the ranking of proteins according to their scores. 

4 SYSTEM IMPLEMENTATION ON FPGA 

Zynq SoC FPGA device with an ARM processor or any 

FPGA with a softcore processor can be useful to accom-
plish the proposed reconfigurable hardware-software 
codesign methodology. The Zynq SoC FPGA has a recon-
figurable hardware fabric and a programmable processor 
on the same chip making it an ideal choice. To verify our 
proposed architecture, we have used Xilinx Vivado De-
sign Suite software tools and Avnet Zedboard develop-
ment board. In the system implementation, patterns are 
read from an external SDHC memory card. An AC FSM is 
generated for these patterns in software and converted to 
a table as explained earlier in section 3.1. This FSM table 
is stored in the local BRAM memory with the help of 
Control Logic. The AXI BRAM controller is the hardware 
that is used as the memory controller for the Zynq device 
in the design. For verification, we use the on-chip 
memory for storing the database. 

The proposed system is implemented by following the 
embedded system design flow for Vivado tool [31]. The 
AC Core is synthesized independently using the Vivado 
synthesis tool. For default constraints, the maximum fre-
quency at which the core can run is 316.776 MHz. Higher 
frequency rates are possible by constraining the synthesis 
tool more stringently at the cost of increased area and 
resources. Avnet Zedboard that has an on board XC7Z020 
FPGA device is used for the verification purpose. ARM 
Cortex-A9 MPCore CPU available on this FPGA is used 
as the processing system. The AC Core is packaged as an 
IP and is interfaced to the ZYNQ7 processing system via 
an AXI interconnect.  

A prototype diagram of the system is shown in Fig. 5. 

 

Fig. 5. Prototyped system using Avnet Zedboard 

TABLE 2 
Resource Utilization on FPGA by Single and Multi Core Systems 

Resources Single Core Multi Core Available 

LUT 3318 7380 53200 
LUT memory 182 182 17400 

Flip-flop 4662 11725 106400 
Block RAM 32.5 112 140 

BUFG 1 1 32 
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The hardware accelerator, either single AC core or multi-
AC core, is synthesized and then packaged into an IP us-
ing Vivado tool. The custom IP is instantiated in a top 
module along with the processing system and other re-
quired blocks as depicted in Fig. 3 and Fig. 4. The com-
plete hardware system is synthesized and implemented. 
A bitstream file is generated and it is used to configure 
the Avnet Zedboard using JTAG. A C program is written 
in SDK tool of Vivado suite following the algorithmic 
flow described in Table 1. Using hardware drivers, the C 
program calls the hardware accelerator for matching pat-
terns, stored on the SDHC memory card, in the databases 
which are also stored on the memory card. Zedboard con-
figuration with the bitstream file is a one-time process as 
the hardware logic is not required to modify. String 
matching results can be communicated through the 
UART port or stored on the SDHC card. 

Post-implementation results showing resources uti-
lized by both single and multi-AC core systems are pre-
sented in Table 2. From the resources available on FPGA 
3318 LUT (6.24%), 4662 FF (4.38%) and 32.50 BRAM 
(23.21%) are consumed by the single AC core system and 
total on-chip power consumption of the whole system is 
1.734 watt. For multi-AC core system of M=2  and N=4
values, 7380 (13.87%), 11725 FF (11.02%) and 112 BRAM 
(80%) are consumed and 1.77 watt is the power consump-
tion of the system. Vivado power analysis is used to esti-
mate the power consumption and is presented in Table 3. 
Approximately 86% to 88% power is consumed by the 
processing system (ARM processor). The hardware accel-
erator in single core and multi core systems consumes 
0.023 watt and 0.058 watt respectively which is very small 
in comparison with CPU or GPU based string matching 
systems. 

Each synthesized and implemented system is exported 
to the Xilinx SDK software tool along with their corre-
sponding bitstream file. A C program is written by fol-
lowing the algorithm described in Table 1. As the AC 
Cores are interfaced to the processing system as custom 
IPs, driver functions that are needed to communicate with 
these custom IPs are also written in a separate C header 
file. For interested readers, more details about embedded 
system design flow and custom IP packaging and inter-
face can be found in [31]. Due to the limited BRAM re-

sources on the FPGA we search the entire databases in 
batches. External memories can also be used in place of 
FPGA BRAM and the entire database can be searched in a 
single pass. When off-chip memory is used for storing 
database, driver functions to communicate with the ex-
ternal memory should be written. 

5 EVALUATION  

In this section, we evaluate the performance of the AC 
core hardware and the architectures designed using the 
proposed methodology. Firstly, for a different number of 
patterns, we analyze the memory requirement of the AC 
core. Then we report reconfiguration time of the AC core 
obtained from the hardware setup. Later we evaluate the 
time required for searching databases using the proposed 
architectures and compare the performance with the ex-
isting literature. 

5.1 Analysis for Number of Patterns per AC Core  

To study memory consumption by AC cores, a mathemat-
ical analysis is performed for the memory requirement 
versus the number of patterns per core. For large number 
of patterns, the string matching operation is performed in 
batches of ω  patterns, where ω  is the number of pat-

Fig. 6. Analysis for the number of patterns in a core. Memory re-
quirement for matching Ω  patterns varies depending on the number 
of patterns in the core.  

TABLE 3 
Power Consumption of Single and Multi Core Systems 

Resource Unit Single Core Multi Core 

Clocks 0.013 0.023 
Slice Logic 0.005 0.007 

Signals 0.007 0.01 
Block RAM 0.02 0.039 

PS7 1.527 1.527 
Static Power 0.162 0.164 
Accelerator 0.023 0.058 

Total 1.734 1.77 

Note: All units are in watt 

TABLE 4 
Dependency of Configuration Time on Number of Patterns in Core 

Number of 
Patterns in 

Core 

Maximum 
Memory  
Required 

(kB) 

Recon-
figura-

tion Time 
(ms) 

Number of 
Times 
Core  

Reused 

Search  
Complete 

Time 
(ms) 

4 2.725 39.73 512 6154 
8 6.328 66.72 256 3077 

16 14.648 123.99 128 1538 
32 34.219 247.70 64 769 
64 82.031 602.13 32 385 

128 206.250 1337.67 16 192 

Note: Number of total patterns is 2048 and size of the database to search 

is 1.35 MB. 
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terns per core. For matching Ω  total number of patterns 
whereΩ ω> , the core has to be replicated or reused 
Ω ω/  times. As explained earlier in section 3.1.2, width 
of each register is α ω

2
(og SL)l +  bits. Fig. 6 shows the 

memory required for implementing patterns of various 
numbers using a core fitted with a smaller number of pat-
terns. In the figure, direct implementation refers to realiz-
ing a string matching system for Ω  patterns using a sin-
gle core and in this case, all the Ω  patterns are stored in a 
single FSM. For an example, to realize 128 patterns using 
8 patterns per core, the core has to be replicated or reused 
16 times and in direct implementation a single core can 
search all 128 patterns. 

From the figure, it is evident that lower amounts of 
memory are required when a core with a smaller number 
of patterns is chosen. This advantage is employed in the 
multi-AC core system. The effect of reusing cores for real-
izing Ω  patterns in terms of reconfiguration time is stud-
ied experimentally for the proposed single-core design. In 
Table 4 these results are presented for cores fitted with 4, 
8, 16, 32, 64 and 128 patterns per core. Here we have cho-
sen Ω  as 2048 patterns and a database of 2650 proteins of 
1.35 MB total size is used for searching. Each core is re-
used as many number of times as required to cover Ω  

(2048) patterns. The database has to be rescanned every 
time whenever the core is configured with new patterns. 
It is observed that search time increases linearly with the 
number of times the core is reused. Since the data bus size 
and word alignment in the processor is of 32 bit, we 
choose 32 patterns per core as an optimum number. In 
addition to this, 32 bit word size is also useful to reduce 
the overload of transferring data since lower sizes require 
more number of transfers for the same amount of data. 

5.2 Performance on Reconfiguration Time 

When patterns are changed, an AC FSM is created and 
the cores are reconfigured with new FSM tables. To exam-
ine the proposed system’s use for real-time reconfigura-
tion, we have studied the effect of the number of patterns 
and their size on reconfiguration time of an AC core. Here 
patterns of varying total sizes are considered and the re-
configuration time of AC core obtained from hardware is 
plotted against the number of patterns in Fig. 7. These 
results are obtained for a fabric clock of 100 MHz. From 
the figure, it is evident that there is a linear relation be-
tween reconfiguration time and the number of patterns; 
the reconfiguration time of a core increases linearly with 
the number of patterns in it. It is seen that on an average, 
the reconfiguration time is about a few hundred of milli-
seconds value and thus our proposed methodology is 
worth for employing in applications that demand real-
time or on-field reconfiguration. To the best of our 
knowledge, this work is the first of its kind where the 
time required for reconfiguration of a hardware assisted 
string matching system for bioinformatics applications is 
reported in the literature. 

5.3 Search Time for Single Core System 

In this section, firstly we evaluate single core based string 
matching system regarding search time, throughput, and 
improvement over software approaches for string match-
ing. Next, we perform string matching in large proteomic 
databases to validate the practical use of the proposed 
system. Later, we compare our proposed methodology 
with similar approaches present in the literature. 

 

Fig. 7. Time required to reconfigure the system with patterns. Here 
dependency of reconfiguration time on number of patterns is plotted 
for varying length of patterns.  

TABLE 5 
Features of Patterns and Search Time for Single Core Architecture 

Type of  
Configura-

tion 

Type of 
Dbase 

#patterns1 #bytes2 Max (l)3 
Average 

(l)4 
σ5 

Software 
(PC) 
ms 

Software 
(ARM) 

ms 

Pro-
posed 

ms 

Single Core Dbase1 31.6 397.4 43.4 12.834 9.244 1511.3 9339 418.120 
Dbase2 58.2 708.5 44.5 12.339 8.295 1912.7 10552 751.447 
Dbase3 33.2 496.7 50.6 16.144 11.044 1590.1 9826 504.472 
Dbase4 35.4 525.9 53.6 16.586 13.064 1872.7 10977 526.662 
Dbase5 32.7 430.9 35.6 12.692 8.145 3341.2 18341 673.161 
Dbase5 32.7 430.9 35.6 12.692 8.145 3341.2 18341 673.161 

*Dbase = database, Dbase1 = 13786.526, Dbase2 = 14545.275, Dbase3 = 14954.893, Dbase4 =16944.043, Dbase 5 = 32272.287 (all values in kB)  
1 number of patterns, 2 total number of bytes in all patterns, 3 maximum length pattern, 4 average length of pattern, 5 standard deviation. 
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5.3.1 Performance Evaluation of Single Core System 

To test the proposed singe AC core system for protein 
identification, we have used UniProt proteomics data 
[30]. To demonstrate on-field reconfiguration, we have 
considered data of five different organisms. As explained 
previously in 5.1, a single core system which can search 
32 patterns is designed. In the experiments, different sets 
of proteins in each database is chosen randomly and the 
databases are searched for the peptides obtained from the 
digestion of these proteins. PeptideMass [10], an online 
tool for enzymatic cleavage of proteins, is used to digest 
these selected proteins. The peptides obtained after pro-
teins digestion are stored in different patterns files with 
their corresponding identifier as file names. These pep-
tides are patterns for the string matching and are 
searched in the proteome databases. We have also tested 
the improvement of proposed hardware-software 
codesign methodology over a software only Aho-
Corasick string matching algorithm running on a work-
station. The workstation has Windows 7 operating system 
running on Intel Xeon E5-2650 v2 CPU @ 2.60 GHz with 8 
GB RAM. A similar software version of the ACA is also 
implemented using the ARM processor available on the 
Zynq XC7Z020 FPGA. This implementation demonstrates 
a microprocessor or microcontroller tailored embedded 
system solution for reconfigurable string matching. A 
clock of 100 MHz is used for running the hardware and 
this facilitates with a constant throughput of 800 Mbps. 
The results obtained are shown in Table 5. Only a few sets 
of results are given in the table due to space limitation. 
These results are obtained after calculating average val-
ues for multiple test cases in every database. On an aver-
age, there is a 4 times improvement in search time by the 
proposed hardware-software codesign methodology over 
software only version running on the workstation and 23 
times improvement over the software running on the 

ARM processor. While calculating the gain in speed, we 
have considered the time required for multiple reconfigu-
rations and also the time required for multiple searching 
of database. If only the time required for searching a sin-
gle batch is considered, then the improvement over speed 
is 13 and 70 times for software running on the work-
station and ARM respectively.  

Since the synthesis results permit to use clock up to 
316.776 MHz for the default constraints, by using clocks 
of higher speed search time can be improved further. In 
comparison with the average throughput value of 522.88 
Mbps obtained by Dandass et al [8] for 100 MHz clock, 
our architectures have a throughput of 800 Mbps for the 
same clock. In addition to real-time reconfiguration, these 
results imply the proposed methodology is 1.5 times fast-
er. 

5.3.2 String Matching in Large Proteomic Databases 

To examine the practical applicability of the proposed 
methodology, we constructed a protein database com-
prised of 10 different primate animals [30]. Each database 
has a varying number of proteins and the total number of 
proteins in the concatenated database is 297,293. The da-
tabase size is ~153 MB and it has 159,654,352 amino acids. 
Randomly selected proteins are digested using Pep-
tideMass [10]. The maximum number of peptides ob-
tained from each protein is limited to 32. Table 6 summa-
rizes the results. Due to space limitation, only a few test 
cases are presented in the table.  

Next, to study the effect of the number of patterns and 
their length, we created a set of simulated patterns. The 
number of patterns in each test case is 256 while their 

TABLE 6 
Search Time for String Matching in Large Proteomic Databases 

Peptide set 
AC Core Recon-
figuration Time 

(ms)  

Expected 
Search 

Time1 (ms)  

Actual 
Search Time2  

(s) 

Set #1 161.720 171.188 257.721 
Set #2 207.004 216.475 257.643 
Set #3 203.400 212.867 257.757 
Set #4 98.222 107.689 257.758 
Set #5 1890.387 1966.123 2061.843 
Set #6 2023.072 2098.809 2062.241 
Set #7 2310.427 2386.164 2061.847 
Set #8 3296.980 3372.716 2062.626 
Set #9 1880.969 1956.717 2062.317 

Note: 1 Search time without considering the data transfer overload from 

SDHC card to FPGA, 2 Search time including the time required to transfer 

data from SDHC card to FPGA, Set #1 to Set #4 has 32 patterns and are 

obtained by digestion of proteins, Set #5 to Set #8 has 16, 32, 64, 128 

length patterns respectively and in each set there are 256 patterns, Set #9 

has 256 patterns of random length 

TABLE 7 
Comparison of Proposed Methodology with Similar Method 

Comparison metric Lei [32] Proposed 

Speedup vs CPU 2X 4X 
Speedup vs ARM 5X 23X 

Hardware Accelerator Power 60 mW 23 mW 
Total Power 1.368 W 1.734 W 

Type of pattern searching Single Multiple 
Host PC requirement Yes No 

TABLE 8 
Comparison of Proposed Methodology with Software Methods 

Pattern 
Length 

Faro [33] Proposed 
Speed 
Gain Time 

Time/Pa
ttern 

Time 
Time/Pa

ttern 

4 2320 5.8 42.253 0.16505 35.14 
8 2590 6.475 42.427 0.16573 39.07 

16 1910 4.775 42.269 0.16511 28.92 
32 1560 3.9 42.385 0.16557 23.55 
64 1520 3.8 42.676 0.16670 22.80 

128 1550 3.875 43.722 0.17079 22.69 
256 1210 3.025 43.921 0.17157 17.63 
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length is varied from 16, 32, 64 and 128. Finally, a test case 
comprising of 256 patterns of random lengths is also con-
sidered. For each case, multiple datasets are used for run-
ning the proposed string matching methodology. The 
results obtained are also presented in Table 6. In each 
case, only the average values of the results obtained for 
multiple datasets is presented in the table. From the table, 
it is evident that the proposed system is applicable for 
searching large sized databases within a reasonable time. 

5.3.3 Cross Examination with Similar Approaches 

To compare the performance of the proposed methodolo-
gy, we consider evaluating with similar work reported in 
the literature [32], [33].  

Lei et al proposed a KMP algorithm based accelerator 
for string matching and implemented using Avnet Zed-
board [32]. As the actual time for searching is not availa-
ble, we use normalized speedup for comparing speed 
improvement. The comparison is presented in Table 7. 
The proposed method is 4X faster in comparison with a 
software running on CPU while Lei et al is 2X faster and 
in comparison with ARM version, proposed method is 
23X faster while Lei et al is 5X faster. Overall, the pro-
posed methodology is 2X-4X faster than Lei et al. Except 
for total power, the proposed methodology outperforms 
Lei et al in all metrics since the former has higher power 
consumption as the processing system (PS7) consumes 
more power than the PS in Lei et al. 

Faro et al presented an extensive survey of exact string 

matching algorithms [33]. Experimental results obtained 
by running various algorithms implemented in C pro-
gram are also presented. For experimentation, a 1.66 GHz 
PC with Intel Core2 processor and 2GB RAM is used. A 
protein sequence of 3,295,751 length is taken from Protein 
Corpus for the experimental purpose (http://data-
compression.info/Corpora/ProteinCorpus/). We have 
used the same database and performed string matching 
using the proposed methodology. Patterns of varying 
lengths 4, 8, 16, 32, 64, 128 and 256 are considered. The 
results are tabulated in Table 8. Faro et al considered 400 
patterns. Due to limited BRAM resources, we choose 256 
patterns. The search time for varying lengths of patterns 
and search time per pattern are examined. For every algo-
rithm implemented in C program, the best time reported 
in Faro et al is given in Table 8. On average the proposed 
methodology is 27 times faster than the algorithms sur-
veyed in [33]. Here all the time units are in second. 
Time/Pattern indicates the average time taken to search 
one pattern in the database. 

5.4 Search Time for Multi Core System 

A similar flow that is followed in the single core system is 
also followed for testing the proposed multi-core architec-
ture shown in Fig. 4. As mentioned earlier, there are four 
configurations for the proposed architecture. In the first 
configuration, we have used four cores in the section and 
this configuration can search a maximum of 128 patterns 
in a single pass. We can search more than 128 patterns by 

TABLE 9 
Features of Patterns and Search Time for Multi-core Architectures 

Type of  
Configura-

tion 

Type of 
Dbase 

#patterns1 #bytes2 Max (l)3 
Average 

(l)4 
σ5 

Software 
(PC) 
ms 

Software 
(ARM) 

ms 

Pro-
posed 

ms 

Multi-core  
Configura-

tion 1 

Dbase1 87 1080 36 12.384 7.879 1504.0 10390 814.067 
Dbase2 115 1433 44 12.605 7.942 1582.0 11009 995.799 
Dbase3 57 1168 70 20.738 15.020 1663.0 10645 594.040 
Dbase4 74 1407 90 19.239 16.833 2318.0 11915 767.319 
Dbase5 87 1125 62 12.754 7.844 4277.0 20472 967.080 

Multi-core  
Configura-

tion 2 

Dbase1 202 2621 57 13.026 8.902 1953.0 11479 1936.286 
Dbase2 256 3537 61 12.701 8.430 2082.0 12274 2398.845 
Dbase3 206 3215 75 17.209 11.988 2130.0 20460 1984.032 
Dbase4 212 3424 90 17.658 13.754 2428.0 22659 2085.001 
Dbase5 179 2212 62 12.394 8.079 4281.0 24637 1988.683 

Multi-core  
Configura-

tion 3 

Dbase1 87 1080 36 12.384 7.879 1504.0 10390 753.681 
Dbase2 115 1433 44 12.605 7.942 1582.0 11009 930.794 
Dbase3 57 1168 70 20.738 15.020 1663.0 10645 527.840 
Dbase4 74 1407 90 19.239 16.833 2318.0 11915 692.512 
Dbase5 87 1125 62 12.754 7.8449 4277.0 20472 829.604 

Multi-core 
Configura-

tion 4 

Dbase1 & 
Dbase2 

202 2513 44 12.494 7.911 1953.0 11479 1689.193 

Dbase3 & 
Dbase4 

131 2575 90 19.989 15.927 2082.0 12274 1228.972 

*Dbase = database, Dbase1 = 13786.526, Dbase2 = 14545.275, Dbase3 = 14954.893, Dbase4 =16944.043, Dbase 5 = 32272.287 (all values in kB)  
1 number of patterns, 2 total number of bytes in all patterns, 3 maximum length pattern, 4 average length of pattern, 5 standard deviation. 
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reconfiguring the cores with the next batch of patterns. In 
the second configuration, we have used two sections and 
each section contains four AC cores. Overall, there are 
eight cores and each core is able to search all the patterns 
from its corresponding FSM with which it is configured. 
This configuration can search a maximum of 256 patterns 
in the database segment in a single pass. In the third con-
figuration, we have used two sections, each containing 
same four AC cores. These sections are connected to mul-
tiple database segments obtained by dividing the whole 
database. This configuration can search a maximum of 
128 patterns and can approximately half the search time 
that is obtained by the first configuration. In the fourth 
configuration, we have used two sections with four cores 
in each section and these are connected to two different 
databases. This configuration can search two sets of 128 
patterns in their corresponding databases. The experi-
mental results obtained for all the four configurations are 
tabulated in Table 9. Due to space limitation, only a few 
sets of average results are given in this table. From the 
results, it can be inferred that for all the different types of 
configurations that emerge from various requirements, 
multiple core system is useful and in comparison with 
software running on workstation and ARM, they outper-
form with a speed improvement of 2X-20X. 

6 CONCLUSION 

In this paper, we proposed an accelerated and real-time 
reconfigurable methodology for string matching using 
hardware-software codesign. Using state of the art 
FPGAs, we have proposed a complete system-on-chip 
solution for applications that require accelerated as well 
as real-time reconfigurable string matching and it is veri-
fied at the string matching stage of protein identification. 
By using the proposed methodology, there is a 4X and 
1.5X-4X improvement of search speed in comparison with 
state-of-the-art software and hardware accelerators avail-
able in the literature and at the same time, the methodol-
ogy has real-time reconfiguration feature. The proposed 
methodology achieves reconfigurable string matching 
and also bypasses the use of proprietary tools required 
for reconfiguring the system by patterns changing with 
time. Experimental results show that we are able to 
achieve real-time reconfigurable string matching with an 
average value of the order of milliseconds. The imple-
mented systems have a constant throughput rate that is 
decided by the clock used for the hardware and it can 
search databases at a throughput of approximately 800 
Mbps for a clock of 100 MHz value. 

ACKNOWLEDGMENT 

In this work, V. Y. Gudur was supported by the Visves-
varaya PhD Scheme for Electronics & IT by the Ministry 
of Electronics & Information Technology (MeitY), Gov-
ernment of India. A. Acharyya was supported by Visve-
varaya Young Faculty Fellowship funded by MeitY, Gov-
ernment of India. All the software tools are supported 
under Special Manpower Development Programme for 
Chips to Systems funded by MeitY, Government of India. 

The authors’ would like to thank the anonymous review-
ers for their many insightful comments and suggestions 
that improved the quality of this paper. A. Acharyya is 
the corresponding author. 

REFERENCES 

[1] A. Aho and M. Corasick, "Efficient String Matching: An Aid to 

Bibliographic Search", Communications of the ACM, vol. 18, no. 6, 

pp. 333-340, 1975. 

[2] A. Alex, M. Dumontier, J. Rose and C. Hogue, "Hardware-

Accelerated Protein Identification for Mass Spectrometry", Rap-

id Communications in Mass Spectrometry, vol. 19, no. 6, pp. 833-

837, 2005. 

[3] S. Aluru and N. Jammula, "A Review of Hardware Acceleration 

for Computational Genomics", IEEE Design & Test, vol. 31, no. 

1, pp. 19-30, 2014. 

[4] J. Arram, T. Kaplan, W. Luk and P. Jiang, "Leveraging FPGAs 

for Accelerating Short Read Alignment", IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 14, no. 3, 

pp. 668-677, 2017. 

[5] D. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. 

Lipman, J. Ostell and E. Sayers, "GenBank", Nucleic Acids Re-

search, vol. 45, no. 1, pp. D37-D42, 2016. 

[6] M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou and B. 

Morgenstern, "Fast and Sensitive Multiple Alignment of Large 

Genomic Sequences", BMC Bioinformatics, vol. 4, no. 1, p. 66, 

2003. 

[7] P. Chen, C. Wang, X. Li and X. Zhou, "Accelerating the Next 

Generation Long Read Mapping with the FPGA-Based System", 

IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 11, no. 5, pp. 840-852, 2014. 

[8] Y. Dandass, S. Burgess, M. Lawrence and S. Bridges, "Accelerat-

ing String Set Matching in FPGA Hardware for Bioinformatics 

Research", BMC Bioinformatics, vol. 9, no. 1, p. 197, 2008. 

[9] T. Dorta, J. Jiménez, J. Martín, U. Bidarte and A. Astarloa, "Re-

configurable Multiprocessor Systems: A Review", International 

Journal of Reconfigurable Computing, vol. 2010, pp. 1-10, 2010. 

[10] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. Wilkins, 

R. Appel and A. Bairoch, "Protein Identification and Analysis 

Tools on the ExPASy Server", The Proteomics Protocols Handbook, 

pp. 571-607, 2005. 

[11] V.Y. Gudur, S. Thallada, A. Deevi, V. Gande, A. Acharyya, V. 

Bhandari, P. Sharma, S. Khursheed and G. Naik, "Reconfigura-

ble Hardware-Software Codesign Methodology for Protein 

Identification", 2016 38th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), Orlan-

do, FL, pp. 2456-2459, 2016. 

[12] W. Henzel, C. Watanabe and J. Stults, "Protein Identification: 

The Origins of Peptide Mass Fingerprinting", Journal of the 

American Society for Mass Spectrometry, vol. 14, no. 9, pp. 931-

942, 2003. 

[13] D. Herath, C. Lakmali and R. Ragel, "Accelerating String 

Matching for Bio-computing Applications on Multi-Core 

CPUs," 2012 IEEE 7th International Conference on Industrial and 

Information Systems (ICIIS), Chennai, pp. 1-6, 2012. 

[14] Y. Hu and P. Georgiou, "A Real-Time de novo DNA Sequenc-

ing Assembly Platform Based on an FPGA Implementation", 

IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 13, no. 2, pp. 291-300, 2016. 

[15] H. Hyyrö, M. Juhola and M. Vihinen, "On Exact String Match-



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

14 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,  MANUSCRIPT ID 

 

ing of Unique Oligonucleotides", Computers in Biology and Medi-

cine, vol. 35, no. 2, pp. 173-181, 2005. 

[16] H. Kim and K. Choi, "A Pipelined Non-Deterministic Finite 

Automaton-Based String Matching Scheme Using Merged State 

Transitions in an FPGA", PLOS ONE, vol. 11, no. 10, p. 

e0163535, 2016. 

[17] T. Majumder, P.P. Pande and A. Kalyanaraman, "On-Chip 

Network-Enabled Many-Core Architectures for Computational 

Biology Applications," 2015 Design, Automation & Test in Europe 

Conference & Exhibition (DATE), Grenoble, pp. 259-264, 2015. 

[18] C. Maxfield, The Design Warrior’s Guide to FPGAs: Devices Tools 
and Flows: Newnes, pp. 153-178, 2004. 

[19] M. Michael, C. Dieterich and M. Vingron, "SITEBLAST-Rapid 

and Sensitive Local Alignment of Genomic Sequences Employ-

ing Motif Anchors", Bioinformatics, vol. 21, no. 9, pp. 2093-2094, 

2004. 

[20] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthe-

sis, Noida, India: Dorling Kindersley (India), pp. 45-52, 2006. 

[21] C.S. Rao, K.B. Raju, S.V. Raju, "String Matching Problems with 

Parallel Approaches-An Evaluation for the Most Recent Stud-

ies," Global Journal of Computer Science and Technology, vol. 13, 

11-C, pp. 9-18, 2013. 

[22] Z.J. Sahab, S.M. Semaan, A.S. Qing-Xiang, "Methodology and 

Applications of Disease Biomarker Identification in Human Se-

rum", Biomarker Insights, vol. 2, pp. 21-43, 2007. 

[23] M. Santarini, "Zynq-7000 EPP Sets Stage for New Era of Innova-

tions", Xcell journal, no. 75, pp. 8-13, 2011. 

[24] E. Schadt, M. Linderman, J. Sorenson, L. Lee and G. Nolan, 

"Computational Solutions to Large-Scale Data Management 

and Analysis", Nature Reviews Genetics, vol. 11, no. 9, pp. 647-

657, 2010. 

[25] P.R. Schaumont, “The Nature of Hardware and Software,” A 

Practical Introduction to Hardware/Software Codesign, 2nd ed., 

New York, USA: Springer Science+Business Media, pp. 3-30, 

2013. 

[26] R. Senhadji-Navarro, I. García-Vargas and J.L. Guisado, "Per-

formance Evaluation of RAM-based Implementation of Finite 

State Machines in FPGAs," 2012 19th IEEE International Confer-

ence on Electronics, Circuits, and Systems (ICECS 2012), Seville, 

pp. 225-228, 2012. 

[27] J. Teich, "Hardware/Software Codesign: The Past, the Present, 

and Predicting the Future", Proceedings of the IEEE, vol. 100, no., 

pp. 1411-1430, 2012. 

[28] J.G. Tong, I.D.L. Anderson and M.A.S. Khalid, "Soft-Core Pro-

cessors for Embedded Systems," 2006 International Conference on 

Microelectronics, Dhahran, pp. 170-173, 2006. 

[29] C. Zhou, H. Chi, L. Wang, Y. Li, Y. Wu, Y. Fu, R. Sun and S. He, 

"Speeding Up Tandem Mass Spectrometry-based Database 

Searching by Longest Common Prefix", BMC Bioinformatics, vol. 

11, no. 1, p. 577, 2010. 

[30] The UniProt Consortium, "UniProt: A Hub for Protein Infor-

mation," Nucleic Acids Research, vol. 43, pp. D204-D212, 2015. 

[31] “Zynq-7000 All Programmable SoC: Embedded Design Tutori-

al,” A Hands-On Guide to Effective Embedded System Design, 

UG1165 (v2017.3), Xilinx, Inc. 

[32] S. Lei, C. Wang, H. Fang, X. Li and X. Zhou, "SCADIS: A Scala-

ble Accelerator for Data-Intensive String Set Matching on 

FPGAs," 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, pp. 

1190-1197, 2016. 

[33] S. Faro and T. Lecroq, “The Exact Online String Matching Prob-

lem: A Review of the Most Recent Results,” ACM Computing 
Surveys, vol. 45 (2), pp 13-42, 2013. 

[34] I. A. Bogdan, J. Rivers, J. R. Beynon and D. Coca, "High-

performance hardware implementation of a parallel database 

search engine for realtime peptide mass fingerprinting," Bioin-

formatics, vol. 24, no. 13, pp. 1498-1502, 2008. 

[35] A. Zerck, E. Nordhoff, A. Resemann, E. Mirgorodskaya, D. 

Suckau, K. Reinert, H. Lehrach, and J. Gobom, "An Iterative 

Strategy for Precursor Ion Selection for LC-MS/MS Based Shot-

gun Proteomics," Journal of Proteome Research, vol. 8, no. 7, pp. 

3239-3251, 2009. 

[36] R. J. Peace, H. Mahmoud and J. R. Green, "Exact string match-

ing for MS/MS protein identification using the Cell Broadband 

Engine," Journal of Medical and Biological Engineering, vol. 31, no. 

2, pp. 99-104, 2011. 
 
Venkateshwarlu Y. Gudur received the BE degree in Electronics 
and Telecommunication from Walchand Institute of Technology, 
Solapur and the M.Tech degree in VLSI Design from Shri Ramdeo-
baba College of Engineering and Management, Nagpur, in 2012 and 
2014 respectively. Currently, he is working towards the PhD degree 
in Microelectronics and VLSI at the Department of Electrical Engi-
neering, Indian Institute of Technology (IIT) Hyderabad, India. His 
research interests include hardware acceleration in healthcare appli-
cations, VLSI architectures, multiprocessor SoC and reconfigurable 
computing. 
 
Amit Acharyya received the Ph.D. degree from the School of Elec-
tronics and Computer Science, University of Southampton, U.K., in 
2011. He is currently an Associate Professor with IIT Hyderabad, 
Hyderabad, India. His research interests include signal processing 
algorithms, VLSI architectures, low power design techniques, com-
puter arithmetic, numerical analysis, linear algebra, bio-informatics, 
and electronic aspects of pervasive computing. 


