
1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 1

Hardware-Software Codesign based
Accelerated and Reconfigurable Methodology

for String Matching in Computational
Bioinformatics Applications

Venkateshwarlu Y. Gudur, and Amit Acharyya, Member, IEEE

Abstract— Research for new technologies and methods in computational bioinformatics has resulted in many folds biological

data generation. To cope up with the ever increasing growth of biological data, there is a need for accelerated solutions in

various domains of computational bioinformatics. In these domains, string matching is a most versatile operation performed at

various stages of the computational pipeline. For search patterns that are updated with time, there is a need for accelerated and

reconfigurable string matching to perform faster searching in the ever-growing biological databases. In this paper, we have

proposed an accelerated and real-time reconfigurable methodology for string matching using hardware-software codesign.

Using state of the art field programmable gate arrays we have proposed a complete system-on-chip solution for applications

that require accelerated as well as real-time reconfigurable string matching. The proposed methodology is the first of its kind

novel approach for high-speed string matching that also supports quick reconfiguration by patterns changing with time. It is

verified at the string matching stage of protein identification. Experimental results show that the architectures designed using

our proposed methodology are 4X faster than state-of-the-art software implementation running on a workstation and 1.5X-4X

faster than hardware accelerators available in the literature.

Index Terms— Hardware acceleration, hardware-software codesign, real-time reconfiguration, reconfigurable SoC FPGA,

string matching

—————————— ——————————

1 INTRODUCTION

large amount of genomics data is contributed to the
life science society due to high-throughput next gen-

eration sequencing methods and it is doubling at every 18
months [5]. Furthermore, due to the advancements in
liquid chromatography and mass spectrometry, mass
spectra data in proteomics study is getting generated at a
very high rate [29]. As a result of the increasing growth of
data in genomics and proteomics, operations involved in
various applications of bioinformatics have become sig-
nificantly compute intensive. String matching [1] is one
such operation that is most widely used in the field of
computational and information systems with many real-
world applications including web search engines, infor-
mation retrieval, intrusion detection, pattern recognition
and finding locations of nucleotides and amino acids in
the field of computational bioinformatics [6], [12], [21],
[22]. Aho-Corasick (AC) algorithm is a widely used string
matching algorithm in bioinformatics with various appli-
cations including sequence alignment, locating nucleo-
tides, proteogenomic mapping, etc. [6], [8], [15], [19].

In applications of bioinformatics including biomarker
discovery, basic local alignment search tool, homologous
series detection, etc., patterns to be searched are constant-
ly varying and these demands to configure the underly-
ing systems with latest patterns [8], [22], [29]. Real-time

reconfigurable string matching is required in these appli-
cations to search patterns that are continuously updated
with time. Since the aforementioned applications are
computationally intensive due to the data growth [5],
high speed methodologies are of utmost importance to
perform reconfigurable string matching. In this context
software, high-performance computing and hardware
acceleration are the methodologies reported in the litera-
ture [3], [24]. Although software methods are flexible and
reconfigurable, their running time for string matching is
turning to be a limiting factor due to the growing size of
biological databases [3], [4], [13], [16]. On the other hand,
high-performance computing solutions involve a large
computational infrastructure including multiprocessors,
multicore CPUs, clusters, cloud and grid computing, etc.,
making their management very costly [24]. Hence re-
searchers emphasized on hardware accelerators employ-
ing cost- effective field programmable gate arrays
(FPGAs).

Computationally intensive algorithms of bioinformat-
ics are efficiently implemented and accelerated using
high-density FPGAs [3], [4], [7], [14]. Numerous domains
including pairwise sequence alignment, multiple se-
quence alignment, resequencing, gene-sequence analysis,
DNA sequencing, database searching, genome assembly
and study of homologous sequences are reported to use
FPGAs for acceleration [3], [4]. In [7] performance of long
read mapping is improved by hardware and it is imple-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 V.Y. Gudur and A. Acharyya are with Department of Electrical Engineer-
ing, Indian Institute of Technology Hyderabad, 502285, Telangana, India.
E-mail: {ee15resch02009, amit_acharyya}@iith.ac.in.

A

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

mented by a novel FPGA based system. A hybrid overlap
searching algorithm of DNA fragments suitable for paral-
lel implementation of FPGA is proposed in [14]. Here the
time gap required for inserting a new nucleotide is uti-
lized to compare overlapping DNA fragments and thus
assist the assembly process in real-time [14].

In genomics and proteomics, often there is a require-
ment to complete the string matching operations in a
stipulated time. These include searching genome data-
bases to avoid data pile up and mass spectrometry based
proteomics study where database search parameters are
controlled for searching of peptide tags [6], [19], [34], [35],
[36]. Similarly, online data analysis is part of hypotheses-
driven tandem mass spectrometry (hdMS/MS).
HdMS/MS require to perform data analysis under a strict
real-time limits [35], [36]. In LC-MS/MS based shotgun
proteomics, precursor ion selection is an important task to
reduce the number of MS/MS peaks. Peptide sequences
are used to avoid redundant computations and searches
[36]. In all the above mentioned examples, real-time string
matching is of utmost importance.

In the implementation of FPGA based hardware accel-
erators, various design-steps are executed. These steps
include writing programs in hardware description lan-
guages (HDL), synthesis, translation, mapping, placement
and routing, programming file generation and configur-
ing FPGA using the configuration file [18], [20]. For prac-
tical designs, commercial tools require hundreds of sec-
onds for executing synthesis, implementation and config-
uration file generation [16]. This methodology is unsuita-
ble and is a limitation for applications where patterns are
generated at a higher rate than the reconfiguration time of
FPGAs, for example, the string matching stage of protein
identification using high-throughput mass spectrometry,
hdMS/MS, precursor ion selection, etc. [2], [35], [36]. In
addition, to reconfigure FPGAs using this methodology,
there is a requirement of a dedicated computer system
and technical expertise to handle sophisticated proprie-
tary tools.

Motivated by the aforementioned facts and limitations,
it can be inferred that there is a need for accelerated
methodologies for string matching that also support real-
time reconfiguration. In our preliminary work, we identi-
fied this problem and addressed it partially by introduc-
ing the codesign based idea for accelerated string match-
ing [11]. In this paper, we extend this work and propose a
novel hardware-software codesign based accelerated and
real-time reconfigurable methodology for string matching
in computational bioinformatics applications where
hardware caters the need of acceleration while software
generates the reconfiguration data and also assists the
hardware in real-time reconfiguration. The proposed
methodology is useful for various applications that re-
quire accelerated and real-time reconfigurable string
matching. The methodology is employed to accelerate
and implement real-time reconfigurable Aho-Corasick
algorithm for string matching in computational bioinfor-
matics using hardware-software codesign on SoC FPGA.
The proposed methodology is evaluated for the time re-
quired for reconfiguration at the string matching stage of

protein identification using high-throughput mass spec-
trometry and it is observed that the string matching sys-
tem is reconfigurable with new patterns in the order of
milliseconds. To the best of our knowledge, this is the
first of its kind novel work where the time required for
reconfiguration of a hardware assisted string matching
system for bioinformatics applications is reported in the
literature. The design implemented using the XC7Z020
FPGA device running at 100 MHz is reconfigurable in the
order of milliseconds and achieves 4-fold speed gain in
comparison with an equivalent software implementation
running on a 2.60 GHz Xeon workstation with 8 GB of
memory and 1.5X-4X times faster than a hardware im-
plementation available in the literature [8].

The novelties in this paper are summarized as follows:
 A first of its kind novel approach for high-speed

string matching that also supports quick reconfigura-
tion by patterns changing with time is proposed in
this paper. The patterns that are to be matched in the
database are updated to the hardware system in real-
time and matching in the database is performed in an
accelerated mode using hardware-software codesign.

 Two architecture design methodologies- single core
and multiple core, supporting both accelerated as
well as real-time reconfigurable string matching are
proposed based on an intelligent partitioning and op-
timized designing of hardware-software codesign.
For string matching in multiple large databases with
a large number of patterns, the multiple core architec-
ture is proposed that is designed using a parallel
connection of memory saving single cores.

The rest of the paper is organized as follows: In section 2,
we review the background and related work. The pro-
posed methodologies for accelerated and reconfigurable
string matching are presented in Section 3. Section 4 de-
scribes the experimental platform. The performance of the
proposed methodologies is evaluated in section 5. Section
6 concludes the paper.

2 RELATED WORK AND BACKGROUND

In this section, we present related work on string match-
ing and its applications in computational bioinformatics.
Later we present relevant background information on the
hardware-software codesign.

2.1 String Matching and its Applications in
Computational Bioinformatics

In string matching a database or text is searched to identi-
fy locations of strings or patterns [1], [21]. It is utilized in
various disciplines of computational bioinformatics in-
cluding biomarker discovery, basic local alignment search
tool, proteogenomic mapping, homologous series detec-
tion, sequence alignment and sequence similarity [12],
[15], [22]. These disciplines require finding locations of
multiple patterns which are made of nucleotides or amino
acids in databases. This requirement necessitates the use
of multiple pattern matching algorithms.

Aho-Corasick (AC) algorithm, one of these algorithms,
is a widely used multi-pattern string matching algorithm

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 3

[1]. Substantial research works are found on the applica-
tions of Aho-Corasick algorithm (ACA) in computational
bioinformatics [2], [6], [8], [15], [19]. For fast alignment of
large genomic sequences, a simplified version of ACA is
presented in [6]. The SITEBLAST algorithm of [19] uses
ACA for local alignment of genomic sequences using pri-
or knowledge of biological signatures. ACA performs the
best of many string matching algorithms to locate unique
oligonucleotides from DNA databases [15]. In protein
identification using DNA based search of [2], protein cod-
ing region within the DNA is identified and then using
ACA this sequence is matched with peptides obtained
using mass spectrometry. In proteogenomic mapping,
where genome annotation is performed using proteomics
data, peptides discovered by mass spectrometry are
matched by using ACA in a genome database translated
in all six reading frames [8].

2.2 Hardware-Software Codesign

Hardware-software codesign is a concurrent and coordi-
nated design of a system that includes both hardware and
software modules/components and they interact with
each other to perform a complete task [25]. In this
codesign based approach, the system is made up of a ded-
icated hardware and software that is mapped onto a cen-
tral processing unit (CPU). This approach facilitates with
the advantages of both hardware and software such as
speed, power and parallelism of former and flexibility,
modularity of later [25]. Design constraints are optimized
by combining the rewards offered by both hardware and
software [27]. Over the course of time, research in hard-
ware-software codesign has evolved through a number of
stages and passed through many approaches such as fo-
cusing on partition strategies, architectures, codesign ap-
proaches in multiprocessing, multithreading and multi-
core environments [27].

Recently, system-on-chip (SoC) that integrates all
components of a computing and communication system
on a single chip provides a new paradigm fo r
codesign [23]. This approach uses the Zynq-7000 system
on a chip FPGA family that has the capability to imple-
ment a complete hardware-software system on a single
platform [23]. Such FPGAs take away the need for
standalone integrated circuits for processor and hardware
and provide a single chip solution. In addition to Zynq
family with on chip ARM processor, there are various
softcore processors that are used in hardware-software
codesign. These are off-the-shelf, ready to use and syn-
thesizable processor cores that facilitate rapid prototyping
and final design implementation. They are completely
customizable as per the demands of the application.
OpenRISC 1200, PicoBlaze, Leon 3 and Mico32 are open-
source softcore processors while MicroBlaze, PowerPC,
Nios II and Xtensa LX are commercial softcore processors
[9], [28].

3 PROPOSED ACCELERATED AND

RECONFIGURABLE METHODOLOGY

In this section, we present our proposed methodology for

string matching using hardware-software codesign. Then
we give brief idea about ACA and its implementation on
FPGA using memory based technique. Later we propose
architectures for string matching using the proposed
methodology and conclude the section with an applica-
tion of the proposed methodology in computational bio-
informatics.

3.1 Proposed Methodology for String Matching

In the hardware-software codesign of an application, fre-
quently used and compute intensive functions or tasks of
the underlying algorithms are offloaded to dedicated
hardware while control actions are assigned to software
[25], [27], [28]. Substantial speedup is achieved by em-
ploying fixed hardware accelerators for algorithmic and
data processing tasks. The flexible software running on a
processor core is well suited for executing control orient-
ed and decision making tasks. From the view of all the
above guidelines, we propose a novel hardware-software
codesign based methodology for string matching. Based
on the methodology, codesign based algorithmic flow for
string matching is given in Table 1.

Fig. 1. Time profiling of Aho-Corasick algorithm. Values are shown
as the percentage of the total time of execution of the AC algorithm.

TABLE 1
Flow of the Proposed Methodology

Algorithm 1: Algorithmic flow of the proposed method-
ology

Input: Sets of patterns S, database for searching dbase
Output: locations of patterns with their identification
1: while S is not empty do
2: read patterns of set Si and create AC finite state ma-

chine (FSM) –sw
3: create memory table for the corresponding FSM –sw
4: initiate hardware and transfer table to local memory of

hardware –sw
5: perform string matching –hw
6: update results and communicate to software –hw
7: stay in standby till next set of patterns arrive –hw
8: end

Abbreviations: sw- software, hw- hardware.

47%

16%

26%

11% Node functions

Text streaming

Search function

Miscellaneous

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

In the codesign, profiling and partitioning are per-
formed on the desired functionality of the system [25],
[27]. In software profiling, the high-level description of
the system functionality represented by a programming
language is analyzed thoroughly for resource-intensive
and time-consuming operations and functions. A profil-
ing software accurately analyze the program and pro-
vides useful insights of the various operations and func-
tions carried in the program. In order to analyze the
string matching using the Aho-Corasick algorithm, we
have performed the time profiling operation on the algo-
rithm implemented using C program. Profiling results
obtained by running the program on multiple test cases
are shown in Fig. 1. It is observed that 73% of the time,
which is a significant amount, is consumed in executing
the search function and operations between the nodes of
AC finite state machine (FSM). Partitioning is performed
to implement the node functions and search function in
hardware, while data control tasks are assigned to soft-
ware. In order to reconfigure the system in real time with
changing patterns, the functions implemented in hard-
ware are desired to be updated fast and efficiently. This
profiling and partitioning form the core of the proposed
methodology using hardware-software codesign.

For a number of sets of patterns S, string matching op-
eration is required to identify these patterns in the data-
base dbase. Let Si represents a set of patterns that are
changing with respect to time, while Si+1 represents the
next set of patterns. The problem statement is to reconfig-
ure the string matching system in real time for the pat-
terns in Si and scan the database for these patterns.

In the proposed methodology, the software reads the
patterns and creates an AC finite state machine for these
patterns. Using the technique of memory based FSM im-
plementation presented in [26], the software creates a
memory table for the corresponding FSM. A hardware
accelerator is designed to take characters from the dbase
and look for patterns of Si in these characters. Software
behaves as a master and initializes the hardware. It trans-
fers the memory table of patterns to the hardware accel-
erator. String matching operation is performed by hard-
ware and the search results are updated to the software.
These steps are repetitively run for the next set of patterns
of Si+1. In the design, as soon as the patterns of Si are
available, the system has to be reconfigured with them.
This is an essential feature, for the system to be called as
runtime reconfigurable.

Next, we brief about the technique of memory based
FSM implementation and present the hardware architec-
ture for the search engine. Subsequently, we introduce the
hardware-software codesign based architecture for real-
time string matching using the above methodology. We
first present a single core architecture for accelerated and
reconfigurable string matching followed by a flexible
multi-core architecture for the same.

3.1.1 Introduction to Aho-Corasick algorithm with
illustration

In this sub-section, we brief about ACA with an example.
Its linear time complexity and the ability to simultaneous-

ly identify multiple patterns in a given text make ACA
advantageous than other string matching algorithms [1],
[15]. Consider four patterns AC, DAC, ABD and ACED.
In ACA, the group of patterns are preprocessed to create
an FSM. A large text or database is searched for these pat-
terns by passing the characters from the text to the FSM.
Fig. 2 (a) shows the FSM generated by ACA for the four
patterns. In the FSM each circle is called as state or node
while the initial state or root state is denoted by state 0.
When a character is read from the text by the FSM, there
is a transition of state from one to another for the corre-
sponding character. These transitions are represented by
edges or branches labelled with the corresponding char-
acter. Root state is retained when no part of any pattern is
present in the text while other states indicate partially or
fully identified patterns. A double circle is for the state
where a valid pattern is found. Edges are made of normal
and failure transitions. Normal transitions occur when
specific characters are matched while failure transitions
are useful for finding patterns that overlap with other
patterns. Failure transitions to root node are not repre-
sented in the diagram for the sake of simplicity.

3.1.2 Memory based FSM Implementation on
Hardware

In this sub-section, we realize the FSM generated by ACA
using memory based implementation. Owing to the ad-
vances of FPGA technologies and the inclusion of on-chip
memory, memory based implementation of FSMs on
FPGAs are receiving considerable attention [26]. Block
RAM (BRAM) memories can be read and written during
operation runtime and using them different FSM circuits
are implemented [26]. Besides the advantage of runtime
update, for BRAM memories there is no necessity of run-
ning the time consuming synthesis, placement and rout-
ing operations as required in the case of logical elements
based distributed RAM.

In a processor or computing machine, FSM can be rep-
resented in the form of a memory table [8], [26]. Fig. 2 (b)
shows hardware details of the block RAM based FSM for
the patterns considered in the example. A tabular repre-
sentation of the FSM example is also shown alongside the
hardware. String matching operation using the FSM table
is performed in the following manner. At any given time
the control is at one of the states in the FSM and in the
table, a row corresponding to that state is read. This row
of memory is connected as inputs to the multiplexer. The
multiplexer selects a particular input specific to the char-
acter read from the database. We use the word cell to de-
note a part of the register in memory. Inputs to the mul-
tiplexer are state-cells while the cells corresponding to
output match vectors are called output-cells. The control
shifts to the next state as determined by the contents of
the state register, which in turn holds the state-cell. The
pattern match column indicates the patterns that are
matched for a given state. A null value in the output-cell
from pattern match column indicates that there are no
matches for the given state while a non-null value indi-
cates there is a match of patterns. For a non-null value,
bits of the output-cell indicate their corresponding pat-

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 5

terns that are identified in the database.

3.1.3 Calculation of memory consumption of FSM

The FSM table is stored in a block RAM whose depth and
width are dependent on the size and number of patterns.
For S patterns each of maximum length L , the maximum
number of states that are generated in the Aho-Corasick
FSM isSL , which in turn decides the maximum depth of
the block RAM. Each cell in a column except the cells of
the pattern match column holds a state value. The width
of a state-cell is the ceiling value of

2
log (SL) . If the width

of the pattern match column is ω bits, for a given alpha-
bet of α symbols the width of each register in the block
RAM is α ω

2
(og SL)l + bits. The maximum number of bits

required to represent a character from the alphabet is de-
cided by α

2
 log () . The maximum number of overlapping

patterns that are identified in any state is decided by the
value of ω . Based on the input character symbol, an α -to-
1 multiplexer selects the contents of the state-cell corre-
sponding to that character. The output match vector of
width ω carries the information of patterns matched in
that state. Each bit in the output-cell indicates whether or
not the corresponding pattern is found in the database. In
the aforementioned example the values of S , L , α andω
are 4, 4, 26 and 4 respectively. The value of SL is 16 but
due to overlapping of certain parts of the patterns the
depth of the block RAM is 10 and its width is 108 bits.

3.1.4 Hardware architecture of search engine

As described in section 3.1, the search function and the
node operations of the FSM are the most time-consuming
tasks in the Aho-Corasick algorithm. For efficient design,
these tasks are the best suited for acceleration in hard-
ware. A Search Engine is designed for the AC FSM and
the detailed hardware architecture is shown in Fig. 2 (c).
Initially, the block RAM in the Search Engine is config-
ured with the FSM table data by enabling memory write
and memory store signals. Later, the search operation is
started by enabling and disabling the search and memory
write signals, respectively. Each character from the data-
base is read and the corresponding part of the memory
output, which is a state-cell, is selected by the multiplex-
er. The next state address of the memory is hold by a State
Register at the output of multiplexer, which in turn is
generated by the state-cells. The Output Match Vector,
which is the pattern match column, indicates the strings
that are matched in the respective states. A flag is raised
whenever a pattern is successfully matched.

In the next section, we use the block RAM based search
engine of ACA FSM explained here and propose the ar-
chitecture for accelerated and reconfigurable string
matching.

3.2 Hardware-Software Codesign based Single
Core Architecture for String Matching

1 0 0 3 8 0 … 0 AC
4 0 0 3 0 0 … 0 Ф
1 6 5 3 0 0 … 0 Ф
1 0 0 3 8 0 … 0 AC,DAC
1 0 0 7 0 0 … 0 Ф
4 0 0 3 0 0 … 0 ABD
1 0 0 9 0 0 … 0 Ф
4 0 0 3 0 0 … 0 ACED

1 6 2 3 0 0 … 0 Ф

Multiplexer

1 0 0 3 0 0 … 0 Ф

Output

Match

VectorState Register

Input

Character

……...

D
e

m
u

lt
ip

le
xe

r

2

3

4

5

6

7

8

9

1

0

Input

Character
Current

State Memory

A B C D E F … Z
Pattern

Match

(a) (b) (c)

En Store

Memory

Memory

SL X datawidth

State Register

1 0

Local Memory

Address

FSM Table

Data In

Match Found

Input

Character

En Search En

Output Match

Vector
Local Memory

Write En

Din

We

Addr

Dout

Multiplexer

Search Engine

Din
Dout

ω

α

log2(SL)

ω

αlog2(SL)

αlog2(SL)+ω

log2(SL)
log2(SL)

log2(SL)log2(SL)

Fig. 2. Aho-Corasick algorithm: (a) FSM illustration for string matching with patterns AC, DAC, ABD and ACED. (b)
Hardware details of the illustration (c) Detailed hardware architecture of the search engine

Database

Memory

Global Memory

AC Core

En Store Memory

Local Memory Address
FSM Table Data In

Local Memory Write En

Master Start Search

Dbase Write Addr

Dbase Data In

Global Memory Write En

Search Completed

Database

Memory

Update

Dbase Write En

Dbase Read Addr

Din

We

Addr

Dout

Search Engine

FSM Table Data In

Local Memory Write En

En Store Memory

Input Character

Search En

Local Memory Address

Output Match Vector

Match Found

1 0

Search Engine

Control and Dbase

Read Address

Generation Circuit Global Memory

Address CounterEn
Addr

We

Match Vector to

Pattern ID Encoder

{Pattern ID,Pattern

Location}

Din
Dbase Size

Interface to Processor

(a)

FPGA

Global

Memory

Processing

System with

ARM/Softcore

Processor

Processor

System Reset

Processor

Memory

Memory

Controller

AXI Interconnect

AC

Control

Logic

AC Core

AC Local

Memory

FSM for Aho-

Corasick Algorithm

Database

Memory

Patterns

storage

PC/SDHC Card

(b)
Fig. 3. (a) Hardware architecture of single core (b) System level architecture for hardware-software codesign based Aho-Corasick algorithm
using the single core.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

6 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

The detailed hardware architecture for a single core is
presented in Fig. 3 (a). The Search Engine of section 3.1.4
is instantiated inside an AC Core module. The module
receives the FSM table data for the patterns and the asso-
ciated signals to control the local memory operations
from the processor or top module where the single core is
instantiated. The Search Engine Control Logic generates
the necessary signals to control the search operation in
the AC core and raises a flag for the processor whenever
the search operation is completed on the database. A Da-
tabase Memory (DM) is used to store the text before the
search begins and it feeds the AC Core with the input
characters. The Dbase (database) Read Address Genera-
tion Circuit (DRAGC) is used to generate the address for
the DM during the searching operation. The bits of Out-
put Match Vector of the AC Core indicates the patterns
that are found in a given state and they are converted to
the corresponding pattern identification numbers in the
Encoder. The Encoder generates the address for the Glob-
al Memory with the help of an address counter while the
concatenation circuit generates the memory contents. The
memory input is obtained by clubbing pattern ID and the
corresponding location obtained from DRAG circuit. An
interface is provided with the Global Memory to read the
search results.

System level architecture for the proposed reconfigu-
rable string matching using hardware-software codesign
approach is presented in the Fig. 3 (b). For ease of under-
standing, various signals and control circuits in the above
description are clubbed to form blocks representing their
corresponding operation. A processing system is formed
using an ARM or softcore processor. In the proposed
codesign, software part of the system is implemented us-
ing the processor. On-chip or on-board DDR memory
called as Processor Memory is connected to this processor
for storing the compiled software instructions. Due to the
limitation of on-chip memory, DDR memory is suitable
for programs that produce large memory footprint. A
synchronous reset to the entire system is provided by
Processor System Reset (PSR) block. Signals from PSR are
used to reset all the hardware blocks in the system to ini-
tial states. The Memory Controller facilitates a communi-
cation link between the processor and memory modules.
Advanced Extensible Interface (AXI) memory controller is
used for AMBA AXI interconnect systems.

The AC Core block performs string matching opera-
tion. Memory based implementation of FSM shown in
Fig. 2 (c) is realized using the Local Memory and Control
Logic. Depending on the contents of the state register,
which holds the value of state in ACA FSM, a particular
row is activated in the block RAM which is used to realize
Local Memory. The AC Core reads characters from the
database and from this row a state-cell value correspond-
ing to the character is selected by the multiplexer. The
output of the multiplexer which holds the next state is fed
to the state register. Output match vector in the activated
row shows the patterns that are matched. Besides taking
control actions in the AC Core, the Control Logic keeps
track of the counter for the characters and the output
match vector. The entire system is residing on an FPGA.

Off-chip memories like external hard disc drives, memory
cards, flash drives or any other portable memories are
used to store large databases.

Software program of the proposed hardware-software
codesign architecture, is designed to read the patterns to
be searched from an external Secure Digital High Capaci-
ty (SDHC) memory card or come from a host machine.
These patterns form a set Si. Next, ACA FSM is generated
for the corresponding patterns. A memory table is created
for the FSM by the software and it is transferred to the
Local Memory of the AC Core using the Control Logic.
String matching operation is performed on the Database
Memory by the AC Core and the results of the search op-
eration are updated to the processor by writing to Global
Memory. It can be seen that the AC Core is substituted for
AC algorithm and this block acts as a hardware accelera-
tor.

The number of patterns in Si that can be searched in a
single pass is limited by the size of Local Memory. For a
large number of patterns, an external memory chip is
used to replace the Local Memory. In addition, as the
proposed system has the feature of runtime reconfigura-
tion, this feature can also be used as an alternate way to
tackle this issue. In such cases of a large number of pat-
terns, if the system can search ω patterns in one pass then
initially an ω number of patterns are searched followed
by the next ω patterns. A direct access to database and
global memories from the AC Core, removes the latency
in communication and also the overload of memory oper-
ations on the software. Also, as soon as the FSM table is
stored, AC Core can perform string matching without the
intervention of software for memory operations.

3.3 Hardware-Software Codesign based Multiple
Core Architecture for String Matching

Due to the ever growing need of computational demand,
alternate approaches including parallel computing and
multi-core processing find an essential place in computa-
tional bioinformatics. Many-core or multi-core platforms
are used to speedup underlying algorithms of various
bioinformatics applications. Speedup is achieved using
multithreading in multi-core CPUs [13] and network-on-
chip enabled many-core platforms for sequence analysis
and phylogeny reconstruction [17]. In these works, fea-
tures of operating systems are employed for dividing the
task into smaller fragments and speedup is achieved by
running the fragments in parallel. This approach requires
multi-tasking operating systems and leads to complex
programming. In this section, we propose a multi-core
architecture using hardware-software codesign for string
matching and achieve speedup by eliminating the need
for such complex operating systems.

The proposed multi-core architecture for string match-
ing is presented in Fig. 4. Various advantageous features
are achieved by the proposed multi-core architecture
which include completing the search in lesser time by
dividing the database, ability to simultaneously configure
AC Cores with patterns of different types, selective pow-
ering of individual AC Cores, etc. The multi-core architec-
ture uses an ARM or softcore processor and a Master

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 7

Control Logic in a similar fashion as the single core archi-
tecture shown in Fig. 3 (b). In this architecture, N num-
ber of single AC Cores are connected in parallel and are
collectively called as an AC Core Section. For searching
large number of patterns, instead of using a single core
we use N cores fitted with fewer number of patterns to
obtain the advantage of memory reduction as discussed
later. In a section, each individual AC Core is selectively
powered on and configured with an AC FSM capable to
detect a maximum number of ω patterns. Database Seg-
ment is a partial or whole database in which search is
performed and each section is connected to a segment.

In the proposed architecture, depending on the num-
ber of sections, database segments and their arrangement
there are four possible types of configurations.

Configuration 1

In the first configuration, a single section is connected to a
single database segment. In this configuration, the system
can identify patterns of N Aho-Corasick FSMs and a total
number of ωN patterns can be searched in the database.
This configuration is useful to search large number of
patterns by employing cores fitted with a fewer number
of patterns. On a careful analysis, discussed in section 5.1,
it is seen that to search ωN patterns usingN cores, each
withω patterns, is memory saving than to use a single
core with ωN patterns. This configuration allows to
search multiple sets of patterns in parallel and reduces
the searching time compared to the repetitive use of a
single core. For example, to search 256 patterns using a 32
patterns core, 8 such cores are required. Memory is saved
while designing a core with 32 patterns than a core with
256 patterns.

Configuration 2

In the second configuration, the number of patterns to
search is increased by a different arrangement. If the AC
Core Sections are duplicated M times and are connected
to the same database, then such a configuration leads to
identify patterns from MN FSMs and ωMN patterns can

be simultaneously searched in the database. In our system
all the AC Core Sections combined together are termed as
multi-AC Core Fabric. In this configuration, each individ-
ual AC Core in every section is configured with different
ω number of patterns and the same database segment is
connected for all the M sections. The same functionality
can be obtained if the number of cores in the first configu-
ration is extended from N to MN cores. This configura-
tion allows for modularity and reduces the design time by
employing the same design of the AC Core Section re-
peatedly. For example, to search 256 patterns using a sec-
tion with 8 cores each with 32 patterns, 2 such sections are
required.

Configuration 3

In the third configuration, the multi-AC Core Fabric that
contains multiple sections is connected to a database di-
vided into smaller parts called segments. Here each sec-
tion is configured with patterns from sameN Aho-
Corasick FSMs. This configuration speeds up the search
process by searching the database parallelly. If the data-
base of sizeD is divided into M segments, each ofD/M
size, then there is M times gain in search time. For exam-
ple, to search 128 patterns in a database of 100 MB, 2 sec-
tions each with the same 128 patterns are used to search
in 2 segments of 50 MB.

Configuration 4

The fourth configuration is similar to the third configura-
tion except that each section is configured with patterns
from different FSMs. In this configuration, the segments
contain databases of different types. TheN Aho-Corasick
FSMs in each section may be same or different. This con-
figuration allows to search different types of databases for
multiple patterns at once. This configuration can be use-
ful for a simultaneous search of different types of patterns
in their corresponding databases. For example, to simul-
taneously search 128 patterns in two different types of
databases each of 50 MB, 2 segments and 2 sections are
used. A practical scenario would be to search 128 peptide

Fig. 4. System level architecture for hardware-software codesign based Aho-Corasick algorithm using the configurable multi-cores. Here the
number of AC Cores in every section varies from 1 to N while the number of AC Core Sections varies from 1 to M. The number of sections
and cores vary depending on the number of patterns, their size and type of database. This leads to various configurations of the architecture.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

8 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

patterns of unknown origin/s in protein databases of dif-
ferent organisms.

3.4 Application of Proposed Methodology for
String Matching in Protein Identification

Hardware accelerated solutions for protein identification
are used to address the bottlenecks in the computational
bioinformatics pipeline created as a result of the exces-
sively rising number of proteins [2], [8], [11], [12], [29]. To
demonstrate our proposed methodology, we use protein
identification which is a fundamental step in protein se-
quence analysis. In protein identification using tandem
mass spectrometry, one of the most common procedures,
peptide fragments obtained by mass spectrometry are
matched against large protein databases which is similar
to the operation of string matching in a text [2], [8], [11],
[12], [29]. Peptides that are obtained from the proteins
have grown into millions in number and in addition semi
or non-specific digestion has multiplied the number of
peptides by many times [29]. To scan databases for these
peptides and identify a protein accurately, high speed
methods are necessary which can be fulfilled by the pro-
posed methodology. This benefits the discipline of dis-
ease biomarker identification and aid disease diagnosis
and prognosis [22].

Peptide fragments are the patterns to be searched and
these are used to create AC FSM as explained in section
3.1.2. Proposed design is useful to search proteome data-
bases at high speed and simultaneously supports runtime
reconfiguration with peptides patterns. FASTA format is
used to store the proteomes in database memory. Simple
binary coding is used to represent different amino acids
and additional symbols of the FASTA format. For protein
identification AC Core is designed to keep track of pro-
tein ID, peptides matched and locations of peptides in the
protein. These results are stored in global memory and
updated to software where software does post-processing
like the ranking of proteins according to their scores.

4 SYSTEM IMPLEMENTATION ON FPGA

Zynq SoC FPGA device with an ARM processor or any

FPGA with a softcore processor can be useful to accom-
plish the proposed reconfigurable hardware-software
codesign methodology. The Zynq SoC FPGA has a recon-
figurable hardware fabric and a programmable processor
on the same chip making it an ideal choice. To verify our
proposed architecture, we have used Xilinx Vivado De-
sign Suite software tools and Avnet Zedboard develop-
ment board. In the system implementation, patterns are
read from an external SDHC memory card. An AC FSM is
generated for these patterns in software and converted to
a table as explained earlier in section 3.1. This FSM table
is stored in the local BRAM memory with the help of
Control Logic. The AXI BRAM controller is the hardware
that is used as the memory controller for the Zynq device
in the design. For verification, we use the on-chip
memory for storing the database.

The proposed system is implemented by following the
embedded system design flow for Vivado tool [31]. The
AC Core is synthesized independently using the Vivado
synthesis tool. For default constraints, the maximum fre-
quency at which the core can run is 316.776 MHz. Higher
frequency rates are possible by constraining the synthesis
tool more stringently at the cost of increased area and
resources. Avnet Zedboard that has an on board XC7Z020
FPGA device is used for the verification purpose. ARM
Cortex-A9 MPCore CPU available on this FPGA is used
as the processing system. The AC Core is packaged as an
IP and is interfaced to the ZYNQ7 processing system via
an AXI interconnect.

A prototype diagram of the system is shown in Fig. 5.

Fig. 5. Prototyped system using Avnet Zedboard

TABLE 2
Resource Utilization on FPGA by Single and Multi Core Systems

Resources Single Core Multi Core Available

LUT 3318 7380 53200
LUT memory 182 182 17400

Flip-flop 4662 11725 106400
Block RAM 32.5 112 140

BUFG 1 1 32

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 9

The hardware accelerator, either single AC core or multi-
AC core, is synthesized and then packaged into an IP us-
ing Vivado tool. The custom IP is instantiated in a top
module along with the processing system and other re-
quired blocks as depicted in Fig. 3 and Fig. 4. The com-
plete hardware system is synthesized and implemented.
A bitstream file is generated and it is used to configure
the Avnet Zedboard using JTAG. A C program is written
in SDK tool of Vivado suite following the algorithmic
flow described in Table 1. Using hardware drivers, the C
program calls the hardware accelerator for matching pat-
terns, stored on the SDHC memory card, in the databases
which are also stored on the memory card. Zedboard con-
figuration with the bitstream file is a one-time process as
the hardware logic is not required to modify. String
matching results can be communicated through the
UART port or stored on the SDHC card.

Post-implementation results showing resources uti-
lized by both single and multi-AC core systems are pre-
sented in Table 2. From the resources available on FPGA
3318 LUT (6.24%), 4662 FF (4.38%) and 32.50 BRAM
(23.21%) are consumed by the single AC core system and
total on-chip power consumption of the whole system is
1.734 watt. For multi-AC core system of M=2 and N=4
values, 7380 (13.87%), 11725 FF (11.02%) and 112 BRAM
(80%) are consumed and 1.77 watt is the power consump-
tion of the system. Vivado power analysis is used to esti-
mate the power consumption and is presented in Table 3.
Approximately 86% to 88% power is consumed by the
processing system (ARM processor). The hardware accel-
erator in single core and multi core systems consumes
0.023 watt and 0.058 watt respectively which is very small
in comparison with CPU or GPU based string matching
systems.

Each synthesized and implemented system is exported
to the Xilinx SDK software tool along with their corre-
sponding bitstream file. A C program is written by fol-
lowing the algorithm described in Table 1. As the AC
Cores are interfaced to the processing system as custom
IPs, driver functions that are needed to communicate with
these custom IPs are also written in a separate C header
file. For interested readers, more details about embedded
system design flow and custom IP packaging and inter-
face can be found in [31]. Due to the limited BRAM re-

sources on the FPGA we search the entire databases in
batches. External memories can also be used in place of
FPGA BRAM and the entire database can be searched in a
single pass. When off-chip memory is used for storing
database, driver functions to communicate with the ex-
ternal memory should be written.

5 EVALUATION

In this section, we evaluate the performance of the AC
core hardware and the architectures designed using the
proposed methodology. Firstly, for a different number of
patterns, we analyze the memory requirement of the AC
core. Then we report reconfiguration time of the AC core
obtained from the hardware setup. Later we evaluate the
time required for searching databases using the proposed
architectures and compare the performance with the ex-
isting literature.

5.1 Analysis for Number of Patterns per AC Core

To study memory consumption by AC cores, a mathemat-
ical analysis is performed for the memory requirement
versus the number of patterns per core. For large number
of patterns, the string matching operation is performed in
batches of ω patterns, where ω is the number of pat-

Fig. 6. Analysis for the number of patterns in a core. Memory re-
quirement for matching Ω patterns varies depending on the number
of patterns in the core.

TABLE 3
Power Consumption of Single and Multi Core Systems

Resource Unit Single Core Multi Core

Clocks 0.013 0.023
Slice Logic 0.005 0.007

Signals 0.007 0.01
Block RAM 0.02 0.039

PS7 1.527 1.527
Static Power 0.162 0.164
Accelerator 0.023 0.058

Total 1.734 1.77

Note: All units are in watt

TABLE 4
Dependency of Configuration Time on Number of Patterns in Core

Number of
Patterns in

Core

Maximum
Memory
Required

(kB)

Recon-
figura-

tion Time
(ms)

Number of
Times
Core

Reused

Search
Complete

Time
(ms)

4 2.725 39.73 512 6154
8 6.328 66.72 256 3077

16 14.648 123.99 128 1538
32 34.219 247.70 64 769
64 82.031 602.13 32 385

128 206.250 1337.67 16 192

Note: Number of total patterns is 2048 and size of the database to search

is 1.35 MB.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

10 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

terns per core. For matching Ω total number of patterns
whereΩ ω> , the core has to be replicated or reused
Ω ω/ times. As explained earlier in section 3.1.2, width
of each register is α ω

2
(og SL)l + bits. Fig. 6 shows the

memory required for implementing patterns of various
numbers using a core fitted with a smaller number of pat-
terns. In the figure, direct implementation refers to realiz-
ing a string matching system for Ω patterns using a sin-
gle core and in this case, all the Ω patterns are stored in a
single FSM. For an example, to realize 128 patterns using
8 patterns per core, the core has to be replicated or reused
16 times and in direct implementation a single core can
search all 128 patterns.

From the figure, it is evident that lower amounts of
memory are required when a core with a smaller number
of patterns is chosen. This advantage is employed in the
multi-AC core system. The effect of reusing cores for real-
izing Ω patterns in terms of reconfiguration time is stud-
ied experimentally for the proposed single-core design. In
Table 4 these results are presented for cores fitted with 4,
8, 16, 32, 64 and 128 patterns per core. Here we have cho-
sen Ω as 2048 patterns and a database of 2650 proteins of
1.35 MB total size is used for searching. Each core is re-
used as many number of times as required to cover Ω

(2048) patterns. The database has to be rescanned every
time whenever the core is configured with new patterns.
It is observed that search time increases linearly with the
number of times the core is reused. Since the data bus size
and word alignment in the processor is of 32 bit, we
choose 32 patterns per core as an optimum number. In
addition to this, 32 bit word size is also useful to reduce
the overload of transferring data since lower sizes require
more number of transfers for the same amount of data.

5.2 Performance on Reconfiguration Time

When patterns are changed, an AC FSM is created and
the cores are reconfigured with new FSM tables. To exam-
ine the proposed system’s use for real-time reconfigura-
tion, we have studied the effect of the number of patterns
and their size on reconfiguration time of an AC core. Here
patterns of varying total sizes are considered and the re-
configuration time of AC core obtained from hardware is
plotted against the number of patterns in Fig. 7. These
results are obtained for a fabric clock of 100 MHz. From
the figure, it is evident that there is a linear relation be-
tween reconfiguration time and the number of patterns;
the reconfiguration time of a core increases linearly with
the number of patterns in it. It is seen that on an average,
the reconfiguration time is about a few hundred of milli-
seconds value and thus our proposed methodology is
worth for employing in applications that demand real-
time or on-field reconfiguration. To the best of our
knowledge, this work is the first of its kind where the
time required for reconfiguration of a hardware assisted
string matching system for bioinformatics applications is
reported in the literature.

5.3 Search Time for Single Core System

In this section, firstly we evaluate single core based string
matching system regarding search time, throughput, and
improvement over software approaches for string match-
ing. Next, we perform string matching in large proteomic
databases to validate the practical use of the proposed
system. Later, we compare our proposed methodology
with similar approaches present in the literature.

Fig. 7. Time required to reconfigure the system with patterns. Here
dependency of reconfiguration time on number of patterns is plotted
for varying length of patterns.

TABLE 5
Features of Patterns and Search Time for Single Core Architecture

Type of
Configura-

tion

Type of
Dbase

#patterns1 #bytes2 Max (l)3
Average

(l)4
σ5

Software
(PC)
ms

Software
(ARM)

ms

Pro-
posed

ms

Single Core Dbase1 31.6 397.4 43.4 12.834 9.244 1511.3 9339 418.120
Dbase2 58.2 708.5 44.5 12.339 8.295 1912.7 10552 751.447
Dbase3 33.2 496.7 50.6 16.144 11.044 1590.1 9826 504.472
Dbase4 35.4 525.9 53.6 16.586 13.064 1872.7 10977 526.662
Dbase5 32.7 430.9 35.6 12.692 8.145 3341.2 18341 673.161
Dbase5 32.7 430.9 35.6 12.692 8.145 3341.2 18341 673.161

*Dbase = database, Dbase1 = 13786.526, Dbase2 = 14545.275, Dbase3 = 14954.893, Dbase4 =16944.043, Dbase 5 = 32272.287 (all values in kB)
1 number of patterns, 2 total number of bytes in all patterns, 3 maximum length pattern, 4 average length of pattern, 5 standard deviation.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 11

5.3.1 Performance Evaluation of Single Core System

To test the proposed singe AC core system for protein
identification, we have used UniProt proteomics data
[30]. To demonstrate on-field reconfiguration, we have
considered data of five different organisms. As explained
previously in 5.1, a single core system which can search
32 patterns is designed. In the experiments, different sets
of proteins in each database is chosen randomly and the
databases are searched for the peptides obtained from the
digestion of these proteins. PeptideMass [10], an online
tool for enzymatic cleavage of proteins, is used to digest
these selected proteins. The peptides obtained after pro-
teins digestion are stored in different patterns files with
their corresponding identifier as file names. These pep-
tides are patterns for the string matching and are
searched in the proteome databases. We have also tested
the improvement of proposed hardware-software
codesign methodology over a software only Aho-
Corasick string matching algorithm running on a work-
station. The workstation has Windows 7 operating system
running on Intel Xeon E5-2650 v2 CPU @ 2.60 GHz with 8
GB RAM. A similar software version of the ACA is also
implemented using the ARM processor available on the
Zynq XC7Z020 FPGA. This implementation demonstrates
a microprocessor or microcontroller tailored embedded
system solution for reconfigurable string matching. A
clock of 100 MHz is used for running the hardware and
this facilitates with a constant throughput of 800 Mbps.
The results obtained are shown in Table 5. Only a few sets
of results are given in the table due to space limitation.
These results are obtained after calculating average val-
ues for multiple test cases in every database. On an aver-
age, there is a 4 times improvement in search time by the
proposed hardware-software codesign methodology over
software only version running on the workstation and 23
times improvement over the software running on the

ARM processor. While calculating the gain in speed, we
have considered the time required for multiple reconfigu-
rations and also the time required for multiple searching
of database. If only the time required for searching a sin-
gle batch is considered, then the improvement over speed
is 13 and 70 times for software running on the work-
station and ARM respectively.

Since the synthesis results permit to use clock up to
316.776 MHz for the default constraints, by using clocks
of higher speed search time can be improved further. In
comparison with the average throughput value of 522.88
Mbps obtained by Dandass et al [8] for 100 MHz clock,
our architectures have a throughput of 800 Mbps for the
same clock. In addition to real-time reconfiguration, these
results imply the proposed methodology is 1.5 times fast-
er.

5.3.2 String Matching in Large Proteomic Databases

To examine the practical applicability of the proposed
methodology, we constructed a protein database com-
prised of 10 different primate animals [30]. Each database
has a varying number of proteins and the total number of
proteins in the concatenated database is 297,293. The da-
tabase size is ~153 MB and it has 159,654,352 amino acids.
Randomly selected proteins are digested using Pep-
tideMass [10]. The maximum number of peptides ob-
tained from each protein is limited to 32. Table 6 summa-
rizes the results. Due to space limitation, only a few test
cases are presented in the table.

Next, to study the effect of the number of patterns and
their length, we created a set of simulated patterns. The
number of patterns in each test case is 256 while their

TABLE 6
Search Time for String Matching in Large Proteomic Databases

Peptide set
AC Core Recon-
figuration Time

(ms)

Expected
Search

Time1 (ms)

Actual
Search Time2

(s)

Set #1 161.720 171.188 257.721
Set #2 207.004 216.475 257.643
Set #3 203.400 212.867 257.757
Set #4 98.222 107.689 257.758
Set #5 1890.387 1966.123 2061.843
Set #6 2023.072 2098.809 2062.241
Set #7 2310.427 2386.164 2061.847
Set #8 3296.980 3372.716 2062.626
Set #9 1880.969 1956.717 2062.317

Note: 1 Search time without considering the data transfer overload from

SDHC card to FPGA, 2 Search time including the time required to transfer

data from SDHC card to FPGA, Set #1 to Set #4 has 32 patterns and are

obtained by digestion of proteins, Set #5 to Set #8 has 16, 32, 64, 128

length patterns respectively and in each set there are 256 patterns, Set #9

has 256 patterns of random length

TABLE 7
Comparison of Proposed Methodology with Similar Method

Comparison metric Lei [32] Proposed

Speedup vs CPU 2X 4X
Speedup vs ARM 5X 23X

Hardware Accelerator Power 60 mW 23 mW
Total Power 1.368 W 1.734 W

Type of pattern searching Single Multiple
Host PC requirement Yes No

TABLE 8
Comparison of Proposed Methodology with Software Methods

Pattern
Length

Faro [33] Proposed
Speed
Gain Time

Time/Pa
ttern

Time
Time/Pa

ttern

4 2320 5.8 42.253 0.16505 35.14
8 2590 6.475 42.427 0.16573 39.07

16 1910 4.775 42.269 0.16511 28.92
32 1560 3.9 42.385 0.16557 23.55
64 1520 3.8 42.676 0.16670 22.80

128 1550 3.875 43.722 0.17079 22.69
256 1210 3.025 43.921 0.17157 17.63

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

12 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

length is varied from 16, 32, 64 and 128. Finally, a test case
comprising of 256 patterns of random lengths is also con-
sidered. For each case, multiple datasets are used for run-
ning the proposed string matching methodology. The
results obtained are also presented in Table 6. In each
case, only the average values of the results obtained for
multiple datasets is presented in the table. From the table,
it is evident that the proposed system is applicable for
searching large sized databases within a reasonable time.

5.3.3 Cross Examination with Similar Approaches

To compare the performance of the proposed methodolo-
gy, we consider evaluating with similar work reported in
the literature [32], [33].

Lei et al proposed a KMP algorithm based accelerator
for string matching and implemented using Avnet Zed-
board [32]. As the actual time for searching is not availa-
ble, we use normalized speedup for comparing speed
improvement. The comparison is presented in Table 7.
The proposed method is 4X faster in comparison with a
software running on CPU while Lei et al is 2X faster and
in comparison with ARM version, proposed method is
23X faster while Lei et al is 5X faster. Overall, the pro-
posed methodology is 2X-4X faster than Lei et al. Except
for total power, the proposed methodology outperforms
Lei et al in all metrics since the former has higher power
consumption as the processing system (PS7) consumes
more power than the PS in Lei et al.

Faro et al presented an extensive survey of exact string

matching algorithms [33]. Experimental results obtained
by running various algorithms implemented in C pro-
gram are also presented. For experimentation, a 1.66 GHz
PC with Intel Core2 processor and 2GB RAM is used. A
protein sequence of 3,295,751 length is taken from Protein
Corpus for the experimental purpose (http://data-
compression.info/Corpora/ProteinCorpus/). We have
used the same database and performed string matching
using the proposed methodology. Patterns of varying
lengths 4, 8, 16, 32, 64, 128 and 256 are considered. The
results are tabulated in Table 8. Faro et al considered 400
patterns. Due to limited BRAM resources, we choose 256
patterns. The search time for varying lengths of patterns
and search time per pattern are examined. For every algo-
rithm implemented in C program, the best time reported
in Faro et al is given in Table 8. On average the proposed
methodology is 27 times faster than the algorithms sur-
veyed in [33]. Here all the time units are in second.
Time/Pattern indicates the average time taken to search
one pattern in the database.

5.4 Search Time for Multi Core System

A similar flow that is followed in the single core system is
also followed for testing the proposed multi-core architec-
ture shown in Fig. 4. As mentioned earlier, there are four
configurations for the proposed architecture. In the first
configuration, we have used four cores in the section and
this configuration can search a maximum of 128 patterns
in a single pass. We can search more than 128 patterns by

TABLE 9
Features of Patterns and Search Time for Multi-core Architectures

Type of
Configura-

tion

Type of
Dbase

#patterns1 #bytes2 Max (l)3
Average

(l)4
σ5

Software
(PC)
ms

Software
(ARM)

ms

Pro-
posed

ms

Multi-core
Configura-

tion 1

Dbase1 87 1080 36 12.384 7.879 1504.0 10390 814.067
Dbase2 115 1433 44 12.605 7.942 1582.0 11009 995.799
Dbase3 57 1168 70 20.738 15.020 1663.0 10645 594.040
Dbase4 74 1407 90 19.239 16.833 2318.0 11915 767.319
Dbase5 87 1125 62 12.754 7.844 4277.0 20472 967.080

Multi-core
Configura-

tion 2

Dbase1 202 2621 57 13.026 8.902 1953.0 11479 1936.286
Dbase2 256 3537 61 12.701 8.430 2082.0 12274 2398.845
Dbase3 206 3215 75 17.209 11.988 2130.0 20460 1984.032
Dbase4 212 3424 90 17.658 13.754 2428.0 22659 2085.001
Dbase5 179 2212 62 12.394 8.079 4281.0 24637 1988.683

Multi-core
Configura-

tion 3

Dbase1 87 1080 36 12.384 7.879 1504.0 10390 753.681
Dbase2 115 1433 44 12.605 7.942 1582.0 11009 930.794
Dbase3 57 1168 70 20.738 15.020 1663.0 10645 527.840
Dbase4 74 1407 90 19.239 16.833 2318.0 11915 692.512
Dbase5 87 1125 62 12.754 7.8449 4277.0 20472 829.604

Multi-core
Configura-

tion 4

Dbase1 &
Dbase2

202 2513 44 12.494 7.911 1953.0 11479 1689.193

Dbase3 &
Dbase4

131 2575 90 19.989 15.927 2082.0 12274 1228.972

*Dbase = database, Dbase1 = 13786.526, Dbase2 = 14545.275, Dbase3 = 14954.893, Dbase4 =16944.043, Dbase 5 = 32272.287 (all values in kB)
1 number of patterns, 2 total number of bytes in all patterns, 3 maximum length pattern, 4 average length of pattern, 5 standard deviation.

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

GUDUR ET AL.: HARDWARE-SOFTWARE CODESIGN BASED ACCELERATED AND RECONFIGURABLE METHODOLOGY FOR STRING MATCHING IN

COMPUTATIONAL BIOINFORMATICS APPLICATIONS 13

reconfiguring the cores with the next batch of patterns. In
the second configuration, we have used two sections and
each section contains four AC cores. Overall, there are
eight cores and each core is able to search all the patterns
from its corresponding FSM with which it is configured.
This configuration can search a maximum of 256 patterns
in the database segment in a single pass. In the third con-
figuration, we have used two sections, each containing
same four AC cores. These sections are connected to mul-
tiple database segments obtained by dividing the whole
database. This configuration can search a maximum of
128 patterns and can approximately half the search time
that is obtained by the first configuration. In the fourth
configuration, we have used two sections with four cores
in each section and these are connected to two different
databases. This configuration can search two sets of 128
patterns in their corresponding databases. The experi-
mental results obtained for all the four configurations are
tabulated in Table 9. Due to space limitation, only a few
sets of average results are given in this table. From the
results, it can be inferred that for all the different types of
configurations that emerge from various requirements,
multiple core system is useful and in comparison with
software running on workstation and ARM, they outper-
form with a speed improvement of 2X-20X.

6 CONCLUSION

In this paper, we proposed an accelerated and real-time
reconfigurable methodology for string matching using
hardware-software codesign. Using state of the art
FPGAs, we have proposed a complete system-on-chip
solution for applications that require accelerated as well
as real-time reconfigurable string matching and it is veri-
fied at the string matching stage of protein identification.
By using the proposed methodology, there is a 4X and
1.5X-4X improvement of search speed in comparison with
state-of-the-art software and hardware accelerators avail-
able in the literature and at the same time, the methodol-
ogy has real-time reconfiguration feature. The proposed
methodology achieves reconfigurable string matching
and also bypasses the use of proprietary tools required
for reconfiguring the system by patterns changing with
time. Experimental results show that we are able to
achieve real-time reconfigurable string matching with an
average value of the order of milliseconds. The imple-
mented systems have a constant throughput rate that is
decided by the clock used for the hardware and it can
search databases at a throughput of approximately 800
Mbps for a clock of 100 MHz value.

ACKNOWLEDGMENT

In this work, V. Y. Gudur was supported by the Visves-
varaya PhD Scheme for Electronics & IT by the Ministry
of Electronics & Information Technology (MeitY), Gov-
ernment of India. A. Acharyya was supported by Visve-
varaya Young Faculty Fellowship funded by MeitY, Gov-
ernment of India. All the software tools are supported
under Special Manpower Development Programme for
Chips to Systems funded by MeitY, Government of India.

The authors’ would like to thank the anonymous review-
ers for their many insightful comments and suggestions
that improved the quality of this paper. A. Acharyya is
the corresponding author.

REFERENCES

[1] A. Aho and M. Corasick, "Efficient String Matching: An Aid to

Bibliographic Search", Communications of the ACM, vol. 18, no. 6,

pp. 333-340, 1975.

[2] A. Alex, M. Dumontier, J. Rose and C. Hogue, "Hardware-

Accelerated Protein Identification for Mass Spectrometry", Rap-

id Communications in Mass Spectrometry, vol. 19, no. 6, pp. 833-

837, 2005.

[3] S. Aluru and N. Jammula, "A Review of Hardware Acceleration

for Computational Genomics", IEEE Design & Test, vol. 31, no.

1, pp. 19-30, 2014.

[4] J. Arram, T. Kaplan, W. Luk and P. Jiang, "Leveraging FPGAs

for Accelerating Short Read Alignment", IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 14, no. 3,

pp. 668-677, 2017.

[5] D. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D.

Lipman, J. Ostell and E. Sayers, "GenBank", Nucleic Acids Re-

search, vol. 45, no. 1, pp. D37-D42, 2016.

[6] M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou and B.

Morgenstern, "Fast and Sensitive Multiple Alignment of Large

Genomic Sequences", BMC Bioinformatics, vol. 4, no. 1, p. 66,

2003.

[7] P. Chen, C. Wang, X. Li and X. Zhou, "Accelerating the Next

Generation Long Read Mapping with the FPGA-Based System",

IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 11, no. 5, pp. 840-852, 2014.

[8] Y. Dandass, S. Burgess, M. Lawrence and S. Bridges, "Accelerat-

ing String Set Matching in FPGA Hardware for Bioinformatics

Research", BMC Bioinformatics, vol. 9, no. 1, p. 197, 2008.

[9] T. Dorta, J. Jiménez, J. Martín, U. Bidarte and A. Astarloa, "Re-

configurable Multiprocessor Systems: A Review", International

Journal of Reconfigurable Computing, vol. 2010, pp. 1-10, 2010.

[10] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. Wilkins,

R. Appel and A. Bairoch, "Protein Identification and Analysis

Tools on the ExPASy Server", The Proteomics Protocols Handbook,

pp. 571-607, 2005.

[11] V.Y. Gudur, S. Thallada, A. Deevi, V. Gande, A. Acharyya, V.

Bhandari, P. Sharma, S. Khursheed and G. Naik, "Reconfigura-

ble Hardware-Software Codesign Methodology for Protein

Identification", 2016 38th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), Orlan-

do, FL, pp. 2456-2459, 2016.

[12] W. Henzel, C. Watanabe and J. Stults, "Protein Identification:

The Origins of Peptide Mass Fingerprinting", Journal of the

American Society for Mass Spectrometry, vol. 14, no. 9, pp. 931-

942, 2003.

[13] D. Herath, C. Lakmali and R. Ragel, "Accelerating String

Matching for Bio-computing Applications on Multi-Core

CPUs," 2012 IEEE 7th International Conference on Industrial and

Information Systems (ICIIS), Chennai, pp. 1-6, 2012.

[14] Y. Hu and P. Georgiou, "A Real-Time de novo DNA Sequenc-

ing Assembly Platform Based on an FPGA Implementation",

IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 13, no. 2, pp. 291-300, 2016.

[15] H. Hyyrö, M. Juhola and M. Vihinen, "On Exact String Match-

1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2018.2885296, IEEE/ACM Transactions on Computational Biology and Bioinformatics

14 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

ing of Unique Oligonucleotides", Computers in Biology and Medi-

cine, vol. 35, no. 2, pp. 173-181, 2005.

[16] H. Kim and K. Choi, "A Pipelined Non-Deterministic Finite

Automaton-Based String Matching Scheme Using Merged State

Transitions in an FPGA", PLOS ONE, vol. 11, no. 10, p.

e0163535, 2016.

[17] T. Majumder, P.P. Pande and A. Kalyanaraman, "On-Chip

Network-Enabled Many-Core Architectures for Computational

Biology Applications," 2015 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Grenoble, pp. 259-264, 2015.

[18] C. Maxfield, The Design Warrior’s Guide to FPGAs: Devices Tools
and Flows: Newnes, pp. 153-178, 2004.

[19] M. Michael, C. Dieterich and M. Vingron, "SITEBLAST-Rapid

and Sensitive Local Alignment of Genomic Sequences Employ-

ing Motif Anchors", Bioinformatics, vol. 21, no. 9, pp. 2093-2094,

2004.

[20] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthe-

sis, Noida, India: Dorling Kindersley (India), pp. 45-52, 2006.

[21] C.S. Rao, K.B. Raju, S.V. Raju, "String Matching Problems with

Parallel Approaches-An Evaluation for the Most Recent Stud-

ies," Global Journal of Computer Science and Technology, vol. 13,

11-C, pp. 9-18, 2013.

[22] Z.J. Sahab, S.M. Semaan, A.S. Qing-Xiang, "Methodology and

Applications of Disease Biomarker Identification in Human Se-

rum", Biomarker Insights, vol. 2, pp. 21-43, 2007.

[23] M. Santarini, "Zynq-7000 EPP Sets Stage for New Era of Innova-

tions", Xcell journal, no. 75, pp. 8-13, 2011.

[24] E. Schadt, M. Linderman, J. Sorenson, L. Lee and G. Nolan,

"Computational Solutions to Large-Scale Data Management

and Analysis", Nature Reviews Genetics, vol. 11, no. 9, pp. 647-

657, 2010.

[25] P.R. Schaumont, “The Nature of Hardware and Software,” A

Practical Introduction to Hardware/Software Codesign, 2nd ed.,

New York, USA: Springer Science+Business Media, pp. 3-30,

2013.

[26] R. Senhadji-Navarro, I. García-Vargas and J.L. Guisado, "Per-

formance Evaluation of RAM-based Implementation of Finite

State Machines in FPGAs," 2012 19th IEEE International Confer-

ence on Electronics, Circuits, and Systems (ICECS 2012), Seville,

pp. 225-228, 2012.

[27] J. Teich, "Hardware/Software Codesign: The Past, the Present,

and Predicting the Future", Proceedings of the IEEE, vol. 100, no.,

pp. 1411-1430, 2012.

[28] J.G. Tong, I.D.L. Anderson and M.A.S. Khalid, "Soft-Core Pro-

cessors for Embedded Systems," 2006 International Conference on

Microelectronics, Dhahran, pp. 170-173, 2006.

[29] C. Zhou, H. Chi, L. Wang, Y. Li, Y. Wu, Y. Fu, R. Sun and S. He,

"Speeding Up Tandem Mass Spectrometry-based Database

Searching by Longest Common Prefix", BMC Bioinformatics, vol.

11, no. 1, p. 577, 2010.

[30] The UniProt Consortium, "UniProt: A Hub for Protein Infor-

mation," Nucleic Acids Research, vol. 43, pp. D204-D212, 2015.

[31] “Zynq-7000 All Programmable SoC: Embedded Design Tutori-

al,” A Hands-On Guide to Effective Embedded System Design,

UG1165 (v2017.3), Xilinx, Inc.

[32] S. Lei, C. Wang, H. Fang, X. Li and X. Zhou, "SCADIS: A Scala-

ble Accelerator for Data-Intensive String Set Matching on

FPGAs," 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, pp.

1190-1197, 2016.

[33] S. Faro and T. Lecroq, “The Exact Online String Matching Prob-

lem: A Review of the Most Recent Results,” ACM Computing
Surveys, vol. 45 (2), pp 13-42, 2013.

[34] I. A. Bogdan, J. Rivers, J. R. Beynon and D. Coca, "High-

performance hardware implementation of a parallel database

search engine for realtime peptide mass fingerprinting," Bioin-

formatics, vol. 24, no. 13, pp. 1498-1502, 2008.

[35] A. Zerck, E. Nordhoff, A. Resemann, E. Mirgorodskaya, D.

Suckau, K. Reinert, H. Lehrach, and J. Gobom, "An Iterative

Strategy for Precursor Ion Selection for LC-MS/MS Based Shot-

gun Proteomics," Journal of Proteome Research, vol. 8, no. 7, pp.

3239-3251, 2009.

[36] R. J. Peace, H. Mahmoud and J. R. Green, "Exact string match-

ing for MS/MS protein identification using the Cell Broadband

Engine," Journal of Medical and Biological Engineering, vol. 31, no.

2, pp. 99-104, 2011.

Venkateshwarlu Y. Gudur received the BE degree in Electronics
and Telecommunication from Walchand Institute of Technology,
Solapur and the M.Tech degree in VLSI Design from Shri Ramdeo-
baba College of Engineering and Management, Nagpur, in 2012 and
2014 respectively. Currently, he is working towards the PhD degree
in Microelectronics and VLSI at the Department of Electrical Engi-
neering, Indian Institute of Technology (IIT) Hyderabad, India. His
research interests include hardware acceleration in healthcare appli-
cations, VLSI architectures, multiprocessor SoC and reconfigurable
computing.

Amit Acharyya received the Ph.D. degree from the School of Elec-
tronics and Computer Science, University of Southampton, U.K., in
2011. He is currently an Associate Professor with IIT Hyderabad,
Hyderabad, India. His research interests include signal processing
algorithms, VLSI architectures, low power design techniques, com-
puter arithmetic, numerical analysis, linear algebra, bio-informatics,
and electronic aspects of pervasive computing.

