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Exact solutions are found for an N -fold rotationally symmetric, steadily-rotating hollow
vortex where a continuous real parameter governs its deformation from a circular shape
and N > 2 is an integer. The vortex shape is found as part of the solution. Following the
designation “V-states” assigned to steadily rotating vortex patches [Deem & Zabusky,
Phys. Rev. Lett., 40, (1978)] we call the analogous rotating hollow vortices “H-states”.
Unlike V-states where all but the N = 2 solution – the Kirchhoff ellipse – must be found
numerically, it is shown that all H-state solutions can be written down in closed form.
Surface tension is not present on the boundaries of the rotating H-states but the latter
are shown to be intimately related to solutions for a non-rotating hollow vortex with
surface tension on its boundary [Crowdy, Phys. Fluids, 11, (1999)]. It is also shown how
the results here relate to recent work on constant-vorticity water waves [Hur & Wheeler,
J. Fluid Mech., 896, (2020)] where a connection to classical capillary waves [Crapper, J.
Fluid Mech., 2, (1957)] is made.
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1. Introduction

The two most popular models of a distributed vortex structure – in which vorticity is
not concentrated at a single point as is the case for a point vortex – are the vortex patch
and the hollow vortex (Saffman 1992). In the vortex patch model vorticity is non-zero and
uniform in a bounded region, or patch, of fluid (Newton 2001; Saffman 1992). The circular
patch is known as the Rankine vortex and the rotating elliptical patch is the Kirchhoff
vortex (Newton 2001; Saffman 1992). Nowadays a rotating vortex patch is commonly
given the name “V-state” after an important paper by Deem & Zabusky (1978) which,
arguably, reinvigorated interest in the vortex patch model not only by identifying N -fold
rotationally symmetric dispersive wave solutions of the two-dimensional Euler equations
(the “V-states”) but also by indicating how they may be computed numerically using
contour dynamics methods which quickly became a popular tool (Pullin 1992). Shortly
after the paper by Deem & Zabusky (1978), Saffman & Szeto (1980) computed the shapes
of a pair of corotating (like-signed) vortex patches. Studying vortex pairs is an important
paradigm in understanding basic vortex interactions (Meunier et al. 2002).
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Figure 1. Shapes of two steadily-rotating hollow vortices, in the corotating frame, as computed
numerically by Nelson et al. (2020). The present paper shows that the single rotating hollow
vortices in the three right-most images can in fact be described in analytical form: they are the
N = 2 case of a class of N -fold-symmetric “H-states”.

A hollow vortex is usually defined to be a finite-area constant pressure region having a
non-zero circulation around it (Michell 1890; Baker et al. 1976; Saffman 1992). Although
Pocklington (1895) solved the cotravelling (opposite-signed) hollow vortex pair problem
in the 19th century, the basic problem of the corotating (like-signed) hollow vortex
pair has only recently been treated by Nelson et al. (2020). Indeed there has been a
resurgence of interest in the hollow vortex model. One reason is that it is a useful
model for incorporating the effects of compressibility (Ardalan et al. 1995; Crowdy &
Krishnamurthy 2017); another is that free streamline theory (Lamb 1994) can be used to
find analytical solutions. Pocklington’s solution (Pocklington 1895) has been reappraised
by Crowdy et al. (2013) using a so-called prime function (Crowdy 2020). Baker et al.

(1976) gave an analytical solution for a periodic row of hollow vortices while Crowdy &
Green (2011) found analytical solutions for the hollow-vortex analogue of von Kármán’s
staggered point vortex street. Analytical solutions for a steady hollow vortex in a linear
strain were found by Llewellyn Smith & Crowdy (2012); this was extended by Zannetti
et al. (2016) to hollow vortices in shear (analytical solutions appear not to be available
in this case). Crowdy & Roenby (2014) found exact solutions for a steady hollow vortex
surrounded by an N -fold polygonal array of point vortices thus generalizing a point-
vortex study by Morikawa & Swenson (1971). Those authors also identified solutions for
steadily translating water waves with a cotravelling submerged point vortex row (Crowdy
& Roenby 2014).
When a hollow vortex is steadily rotating an analytical treatment using free streamline

theory is not straightforward since, on moving to a corotating frame, uniform vorticity is
introduced. Nelson et al. (2020) instead devised a numerical method tailored to account
for the doubly connected nature of the fluid exterior to the two vortices. As the angular
velocity increases, each vortex is found to extend a thin finger towards the centre of
rotation until the vortices almost touch; this sequence is shown from left to right in
Figure 1. Nelson et al. (2020) adapted their numerical scheme to compute the shape of
a single 2-fold rotationally-symmetric rotating hollow vortex. In that case a thin waist
forms in the vortex shape which eventually collapses; this sequence is shown from right
to left in Figure 1. Both sequences in Figure 1 are found to approach the same limiting
state. Nelson et al. (2020) argue this to be evidence of a topological singularity since the
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same state is approached from two topologically-distinct directions but with no blow-up
of any physical quantities.
The purpose of this paper is to point out, first, that 2-fold rotationally-symmetric

solutions for a single hollow vortex computed numerically by Nelson et al. (2020) can,
in fact, be written down analytically. It is then shown that this solution is just the
N = 2 case of a family of solutions for N -fold rotationally-symmetric rotating hollow
vortices where N > 2 is an integer. Following Deem & Zabusky (1978), who used “V-
states” to refer to steadily-rotating vortex patches, the analogous rotating hollow vortices
derived here will be called “H-states”. For V-states, the N = 2 solution is the celebrated
rotating Kirchhoff ellipse which is a well-known exact solution of the two-dimensional
Euler equations (Newton 2001; Saffman 1992); none of the N > 2 V-states, however, can
be written down in closed form and must be computed numerically (Deem & Zabusky
1978). All H-state solutions, on the other hand, can be written down explicitly for any
N > 2 as will be shown.

2. The H-state problem

The challenge is to find a single hollow vortex with unchanging shape, an “H-state”,
with non-zero circulation Γ in steady solid body rotation with angular velocity Ω. The
interior of the vortex is a constant pressure region. The flow u = (u, v) is incompressible
so to describe the flow exterior to the vortex in this corotating frame we can introduce
a streamfunction ψ(x, y) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (2.1)

Exterior to the vortex the streamfunction ψ satisfies

∇2ψ = −ω = 2Ω. (2.2)

The kinematic condition that the vortex boundary is a streamline in the corotating frame,
together with Bernoulli’s theorem (Batchelor 2000; Saffman 1992) and the condition that
the pressure is continuous imply that, on the vortex boundary,

u · n = 0, u · t = q, (2.3)

where n is the outward normal to the vortex boundary and t is the tangent vector as
the boundary is traversed in an anticlockwise direction. The constant q is the fluid speed
around the boundary. On introducing the complex variable z = x+ iy the two boundary
conditions (2.3) can be written in complex form as

u+ iv = q
dz

ds
, (2.4)

where dz/ds is the complex tangent and ds is the arclength element that increases
anticlockwise around the boundary. Equation (2.2) takes the form

∂2ψ

∂z∂z
=
Ω

2
(2.5)

which allows an integration with respect to z and z̄:

ψ =
Ω

2
zz + Im[w(z)], (2.6)
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where the analytic function w(z) is the complex potential for an irrotational flow
component exterior to the vortex. From (2.1) and (2.6) it can be deduced that

u− iv = 2i
∂ψ

∂z
= iΩz +

dw

dz
. (2.7)

It follows from (2.4) and (2.7) that, on the H-state boundary,

iΩz +
dw

dz
= q

dz

ds
. (2.8)

This boundary condition will determine both the H-state shape and the flow around it.
The total circulation Γ of the H-state is

Γ = qP + 2ΩA (2.9)

comprising a contribution from the constant tangential velocity q around the perimeter
P and from the uniform vorticity 2Ω over the H-state area A. The relation (2.9) follows
on integrating (2.8) with respect to dz around the H-state boundary.

3. Exact solutions for H-states

It will be shown that the class of conformal mappings from the interior of the unit disc
in a complex ζ-plane to the region exterior to an H-state in the corotating z-plane is

z = Z(ζ) = −
R

ζ

[

1 +
4N

(N − 1)2
ζN

ζN − aN

]

, 1 < a
(N)
crit < a, N > 2, (3.1)

where R > 0 is a real normalization parameter that sets the size of the H-state. The
limit a → ∞ retrieves the circular hollow vortex of radius R. For each N > 2 there is
a minimum critical value of a, denoted by a

(N)
crit , below which the shapes described by

(3.1) are not univalent and are therefore not physically admissible; this loss of univalency
is brought about by two distinct parts of the vortex boundary coming into contact at

a = a
(N)
crit as will we seen later in Figure 2. Actually, the class of conformal mappings

(3.1) was first written down by Crowdy (1999a) for N = 2, and for N > 2 (in a modified
but equivalent form using the exterior of the unit disc as the preimage domain) by
Wegmann & Crowdy (2000). The same mappings (3.1) are also used by Crowdy & Roenby

(2014). All this will be discussed in §4. Crowdy (1999a) reports a
(2)
crit = 3.000. The

values a
(3)
crit = 1.690, a

(4)
crit = 1.400, a

(5)
crit = 1.277 can be derived using the formula a

(N)
crit =

[(N −1)1/N ã
(N)
crit ]

−1 where ã
(N)
crit are the critical values of Wegmann & Crowdy (2000) who

found numerically that ã
(3)
crit = 0.4696, ã

(4)
crit = 0.5426 and ã

(5)
crit = 0.5934. Formula (3.1)

implies that on the H-state boundary, or |ζ| = 1,

Z(ζ−1) = −Rζ

[

1 +
4N

(N − 1)2
1

1− ζNaN

]

, (3.2)

where Z(ζ) = Z(ζ) denotes the Schwarz conjugate function. It can also be verified, by
direct differentiation, that

ζZ ′(ζ) =
R

(N − 1)2ζ

[

(N + 1)ζN + (N − 1)aN

(ζN − aN )

]2

, Z ′(ζ) ≡
dZ

dζ
,

ζ−1Z
′
(ζ−1) =

Rζ

(N − 1)2

[

(N + 1) + (N − 1)ζNaN

(1− ζNaN )

]2

,

(3.3)
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and consequently that

ζ−1Z
′
(ζ−1)

ζZ ′(ζ)
= ζ2

[

(N + 1) + (N − 1)ζNaN

(1− ζNaN )
×

(ζN − aN )

(N + 1)ζN + (N − 1)aN

]2

. (3.4)

Note from (3.3) the interesting features that dZ/dζ is a square of a rational function of
ζ, and has a rational function primitive. The boundary condition (2.8) valid on |ζ| = 1
implies that, on the H-state boundary,

dw

dz
= q

dz

ds
− iΩz = iq

[

ζ−1Z
′
(ζ−1)

ζZ ′(ζ)

]1/2

− iΩZ(1/ζ), (3.5)

where we have used the fact that ζ = 1/ζ on this boundary. On use of (3.2) and (3.4),

dw

dz
= iqζ

[

(N + 1) + (N − 1)ζNaN

(1− ζNaN )
×

(ζN − aN )

(N + 1)ζN + (N − 1)aN

]

+ iΩRζ

[

1 +
4N

(N − 1)2
1

1− ζNaN

]

, on |ζ| = 1,

(3.6)

where we can think of the right hand side as a function of z using the inverse function,
ζ = Z−1(z), of the conformal mapping (3.1). Both sides of (3.6) are analytic functions
of z that can be continued off the H-state boundary into the fluid domain exterior to
it, or equivalently, inside the unit ζ-disc. Remarkably, the right hand side is a rational
function of ζ. Since we require dw/dz to be free of singularities in the fluid region, and
hence in |ζ| < 1, it is necessary to remove the N simple poles of the right hand side of
(3.6) at the roots of ζN = 1/aN which are inside the unit ζ-disc because a > 1. This can
be done, by virtue of the N -fold rotational symmetry, by the single condition

q =
2ΩR

(N − 1)2

[

(N − 1)a2N +N + 1

a2N − 1

]

(3.7)

obtained by setting the coefficient of (1 − ζNaN )−1 evaluated at ζ = 1/a on the right
hand side of (3.6) equal to zero. Since, for the univalency of the mapping, dZ/dζ must not
vanish inside the unit disc, the right hand side of (3.6) has no other singularities in this
disc and therefore dw/dz is analytic there, as required. Since as ζ → 0, or equivalently
as z → ∞, it follows from (3.6) and (3.1) that

dw

dz
∼ −

iR

z

[

−q

(

N + 1

N − 1

)

+ΩR

(

1 +
4N

(N − 1)2

)]

, (3.8)

and since it is required that

dw

dz
∼ −

iΓ

2πz
, as z → ∞, (3.9)

then a comparison of (3.8) and (3.9) shows it necessary to pick parameters satisfying

Γ

2πR
= −q

(

N + 1

N − 1

)

+ΩR

(

1 +
4N

(N − 1)2

)

. (3.10)

Substitution of condition (3.7) into (3.10) produces

Ω =
Γ

2πR2

/[

1 +
4N

(N − 1)2
−

2(N + 1)

(N − 1)3

(

(N − 1)a2N +N + 1

a2N − 1

)]

(3.11)

which, for a given value of Γ , is an explicit expression for the angular velocity Ω in terms
of the geometrical parameters R, a and N . With Ω thus determined, (3.7) gives q. With
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all parameters now known the velocity field follows, as an explicit function of ζ, from
(2.7) and the analytic continuation of (3.6) as

u− iv = iΩZ(ζ) + iqζ

[

(N + 1) + (N − 1)ζNaN

(1− ζNaN )
×

(ζN − aN )

(N + 1)ζN + (N − 1)aN

]

+ iΩRζ

[

1 +
4N

(N − 1)2
1

1− ζNaN

]

.

(3.12)

The solution is complete and the H-states have been determined parametrically as explicit
functions of ζ for any N > 2. Conveniently, from the integral expressions

P =

∮

|ζ|=1

∣

∣

∣

∣

dZ

dζ

∣

∣

∣

∣

dζ

iζ
, A = −

1

2i

∮

|ζ|=1

Z(ζ−1)
dZ

dζ
dζ (3.13)

and use of residue calculus, it is easy to show that

P = 2πR

[

2N

(N − 1)2

(

(N − 1)a2N +N + 1

a2N − 1

)

−
N + 1

N − 1

]

,

A =
πR2

(1− a2N )2(N − 1)2

[(

N + 1

N − 1

)2

(N2 − 6N + 1)− 2

(

N + 1

N − 1

)

(N2 + 4N − 1)a2N

+ a4N (N − 1)2
]

.

(3.14)

Such formulas are useful since if one seeks H-states with fixed area A = π, say, then the
second formula in (3.14) gives an explicit expression for R in terms of N and a. With
parameters q,Ω,P and A determined by (3.7), (3.11) and (3.14), a consistency check on
the solution is provided by confirming that (2.9) holds.
A purely numerical method to compute the H-state for N = 2 was given in Nelson

et al. (2020) where the values of q and Ω associated with the critical state, corresponding

to a = a
(2)
crit = 3.000, are reported for Γ = 2 and A ≈ 2× 0.311. As a check on the above

analysis, we can compute q and Ω using (3.7) and (3.11) with Γ = 2, and R calculated
from the second formula in (3.14) with A = π, to find q ≈ 0.236 and 4πΩ ≈ 1.347
which coincide, to within numerical accuracy, to the (suitably rescaled) values reported
by Nelson et al. (2020). A comparison of the shapes given by formula (3.1) for N = 2 with
those calculated numerically by Nelson et al. (2020) reveals them to be indistinguishable
for arbitrary parameter values.

H-state shapes are shown for N = 2, 3, 4 and 5 in Figure 2. At a = a
(N)
crit the H-states

show an N -fold rotationally symmetric pinch-off where different parts of the boundary
come into contact. These are quite different to the critical V-state shapes which are
known to exhibit 90o corner formation (Overman 1986; Saffman 1992).
Figure 3 shows graphs of Ω and q against a for N = 2, 3, 4 and 5 for Γ = 1 and A = π.

A bifurcation analysis from the circular state – that is, setting Z(ζ) = −ζ−1 + ǫζN−1 in
(3.5) and expanding for small ǫ≪ 1 with Γ = 1 – leads to

Ω ∼
N − 1

2π(N + 1)
, q ∼

1

π(N + 1)
. (3.15)

The curves in Figure 3 tend to the values in (3.15) as a → ∞ which corresponds to the
near-circular state. As a decreases from infinity Ω and q remain close to the values (3.15)

until a gets close to a
(N)
crit when they typically decrease monotonically (although a small

increase in q for N = 5 is observed before it decreases).
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Figure 2. H-states for A = π and (from left to right) N = 2, 3, 4 and 5. Parameter

values are: N = 2, a = a
(2)
crit(= 3.000), 3.5, 5, 10; N = 3, a = a

(3)
crit(= 1.690), 1.8, 2, 5;

N = 4, a = a
(4)
crit(= 1.400), 1.5, 1.8, 5; N = 5, a = a

(5)
crit(= 1.277), 1.3, 1.5, 5.
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Figure 3. Graphs of (left) Ω and (right) q against a for N = 2, 3, 4 and 5 and Γ = 1,A = π.

4. Perspectives

It is surprising that these exact solutions for such a basic class of distributed vortex
structures have escaped notice for so long. This is likely due to the aforementioned obser-
vation that classical free streamline theory is unavailable as a route to their derivation.
Like the Rankine vortex and the Kirchhoff ellipse, the results are valuable pedagogically
in providing mathematically explicit desingularizations of an isolated point vortex.
The class of conformal mappings (3.1) was used first by Crowdy (1999a) and Weg-

mann & Crowdy (2000) to find solutions for a non-rotating hollow vortex but with the
important difference that surface tension acts on its boundary. The boundary conditions
are then more complicated because the fluid pressure is no longer constant on the vortex
boundary but is balanced by a curvature-dependent surface tension term. As has been
shown here, the class of shapes solving that quite different free boundary problem coincide
with the H-state shapes found here. Indeed there is yet another distinct free boundary
problem also solved by the same class of mappings (3.1): Crowdy & Roenby (2014) found
that they also solve the free boundary problem of a central hollow vortex, without surface
tension, in equilibrium with an N -polygonal array of satellite point vortices.
The work of Crowdy (1999a) and Wegmann & Crowdy (2000) emerged from insights

gained from a new approach to free surface Euler flows with surface tension propounded
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by Crowdy (2000). There the author proposed a conformal mapping approach to under-
stand why the classic problem of pure capillary waves on deep water found by Crapper
(1957) admits exact solutions; he also sought to understand how Crapper’s solution
relates to analytical observations made by Tanveer (1996) on the functional form of
conformal mappings to the region exterior to a translating bubble with surface tension,
another example of a free surface Euler flow with surface tension. Crapper (1957) used
hodograph variables but it is not clear from his approach why his proposed solution
ansatz works. Crowdy (2000) gained more insight by observing a Riccati-type structure
to the analytically-continued boundary condition that allowed deductions to be made
on the functional form of the conformal mapping function. He showed why Crapper’s
2π-periodic solution must be given by the following log-rational mapping, from the unit
η-disc, to a physical Z plane

Z = Z̃(η) = i

[

log η −
4â

η − â

]

, â > 1. (4.1)

The arguments of Crowdy (2000) can be adapted to the present H-state problem to argue
why the relevant conformal mappings must have the functional form (3.1).
In view of these analytical connections (Crowdy 2000) between Crapper’s capillary

waves and hollow vortices with surface tension (Crowdy 1999a; Wegmann & Crowdy
2000), and since the same mappings (3.1) used in the latter problem also solve the H-state
problem, it is natural to ask if the new H-state results in this “radial geometry” might
produce analogous exact solutions to some problem in Crapper’s periodic water wave
geometry. It turns out that such solutions have very recently been discovered by Hur &
Wheeler (2020) whose work was motivated by a string of other recent contributions (Hur
& Vanden-Broeck 2020; Hur & Dyachenko 2019a,b) where it was noticed that Crapper’s
capillary wave profiles were emerging in numerical simulations of rotational water waves.
A similar thing happened here: noticing that the critical shape from Nelson et al. (2020)
as shown in Figure 1 is indistinguishable from the critical shape shown in Figure 1 of
Crowdy (1999a) led to the new H-state solutions. On making the identifications

Z = −i log zN , η = ζN , â = aN (4.2)

with z related to ζ via (3.1) it can be shown that (4.1) is retrieved (to within unimportant
additive constants) as N → ∞. That is, the N → ∞ limit of the H-states reproduces the
water wave solutions of Hur & Wheeler (2020).
Actually, the surprising reappearance of Crapper’s profiles in a problem different from

the original problem of capillary water waves was noticed earlier by Crowdy & Roenby
(2014) who found exact solutions, given by Crapper’s profiles (4.1), for steady water waves
with vorticity: in their problem, the vorticity in each period window is concentrated in
a submerged cotravelling point vortex. In view of the recent results of Hur & Wheeler
(2020) the potential theoretic concept of “balayage” (Shapiro 1992) comes to mind: one
imagines that the uniform vorticity in each period window in the Hur & Wheeler (2020)
solutions is “swept” into a single point vortex to give the solutions of Crowdy & Roenby
(2014) and without changing the wave profile.

It is intriguing that the same classes of mapping functions – the radial geometry shapes
embodied in (3.1) and the Crapper-type periodic waves encoded in (4.1) – appear to be
“canonical” in that they recur in at least three physically distinct problems. As discussed
by Crowdy & Roenby (2014), this is likely due to the fact that (3.1) and (4.1) are the
conformal mappings to so-called double quadrature domains which form an important
class having their own mathematical significance; this is related to the features, noted in
§3, that dZ/dζ is both a square of a rational function of ζ and has a rational function
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primitive. A recent monograph (Crowdy 2020) makes the case that the class of quadrature
domains should be known more widely in the applied and physical sciences. They occur
in various guises in fluid dynamics as surveyed by Crowdy (2005). We mention here that
other classes of exact solutions – also viewable as quadrature domains – for steadily-
translating water waves with vorticity have been found by Crowdy & Nelson (2010).
The results here point to the intriguing possibility that other analytical solutions

exist for rotating hollow vortex equilibria or those with background vorticity. In the
corotating frame the H-states have a combination of uniform vorticity and concentrated
boundary vorticity. They have these features in common with Sadovskii vortices (Saffman
1992) which are vortex structures that have also received renewed attention (Freilich &
Llewellyn Smith 2017). Zannetti et al. (2016) computed the steady shapes of a hollow
vortex in simple shear numerically, but it is conceivable that the analytical observations
here are extendible to that problem which has many elements in common. Of course,
whether the corotating hollow vortex pair calculated numerically by Nelson et al. (2020)
– i.e. the detached vortex pairs shown on the left in Figure 1 – also admits analytical
solutions is an open problem. In this regard it should be mentioned that, using the
prime function for a concentric annulus (Crowdy 2020), the author has extended the
work of Crowdy (1999a) and Wegmann & Crowdy (2000) to find exact solutions for
capillary waves on a fluid annulus with two free surfaces (Crowdy 1999b, 2001). Crowdy
(1999b) also offered alternative forms, generalizing (4.1), of the capillary wave solutions
on fluid sheets found by Kinnersley (1977) who used Jacobi elliptic functions to generalize
Crapper’s solution. A similar approach using the prime function (Crowdy et al. 2013)
also obviated the need for Jacobi elliptic functions in describing Pocklington’s cotravelling
hollow vortex pair (Pocklington 1895) and facilitated the calculation of its linear stability
properties. The novel prime function approach to Kinnersley’s solutions in Crowdy
(1999b) might similarly uncover new solutions for water waves with vorticity on fluid
sheets thereby generalizing the results of Hur & Wheeler (2020).

The stability of the H-states is clearly of interest, and can be studied using techniques
similar to those used by Llewellyn Smith & Crowdy (2012) and Crowdy et al. (2013).
This matter remains to be investigated.
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