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Abstract—In this paper a MIMO quasi static block fading
channel is considered in which the transmitter has partial channel
knowledge obtained via a finite N -ary delay-free, noise-free
feedback from the receiver. The transmitter uses a set of N

Space-Time Block Codes (STBCs), one corresponding to each
of the N possible feedback values, to encode and transmit
information bits. The particular feedback function used at the
receiver and the N component STBCs used at the transmitter
together constitute a Finite Feedback Scheme (FFS). If each of
the component codes encodes K independent complex symbols
and is of transmission duration T , the rate of the FFS is K

T

complex symbols per channel use. Although a number of FFSs
are available in the literature that provably achieve full-diversity,
such as transmit antenna selection, beamforming, and precoding
of STBCs, there is no known universal criterion to determine
whether a given arbitrary FFS achieves full-diversity or not.
Further, all known full-diversity FFSs for T < Nt where Nt

is the number of transmit antennas, have rate at the most 1.
In this paper a universal necessary condition for any FFS to
achieve full-diversity is given, using which the notion of Feedback-
Transmission duration optimal (FT-Optimal) FFSs - schemes that
use minimum amount of feedback N given the transmission
duration T , and minimum transmission duration given the
amount of feedback to achieve full-diversity - is introduced. When
there is no feedback, i.e., when N = 1, an FT-optimal scheme
consists of a single STBC with T = Nt, and the universal
necessary condition reduces to the well known necessary and
sufficient condition for an STBC to achieve full-diversity viz.,
every non-zero codeword difference matrix of the STBC must
be of rank Nt. Also, a sufficient condition for full-diversity is
given for the class of FFSs in which the feedback chooses the
component STBC with the largest minimum Euclidean distance.
Using this sufficient condition full-rate (rate Nt) full-diversity
FT-Optimal schemes are constructed for all triples (Nt, T, N)
with NT = Nt. These are the first full-rate full-diversity FFSs
reported in the literature for T < Nt. Finally, simulation results
are presented that show that the new FFSs have the best error
performance among all the schemes available in the literature.

Index Terms—Diversity, finite feedback, MIMO, rate, space-
time block codes, transmission duration.

I. INTRODUCTION

We consider quasi-static block fading multiple-input

multiple-output (MIMO) wireless channel with Rayleigh flat

fading. We assume that the receiver has full-channel state

information, and the transmitter has only a partial knowledge

of the channel obtained through a delay-free noise-free N -

ary feedback index conveyed by the receiver. The transmitter
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is equipped with N Space-Time Block Codes (STBCs), one

corresponding to each of the N different values of the feed-

back index, and based on the received feedback value, it uses

the corresponding STBC to encode and transmit information

bits. The receiver, knowing the feedback index that it has sent

to the transmitter and hence the STBC used for encoding,

performs maximum-likelihood (ML) decoding of transmitted

codeword to estimate the information bits. The feedback

function used by the receiver to generate the N -ary feedback

index, and the N component STBCs used by the transmitter

determine the communication protocol implemented on the

MIMO channel with feedback. Throughout this paper we will

refer to the combination of the particular feedback function

used at the receiver with the N component STBCs used at the

transmitter as a Finite Feedback Scheme (FFS). If each of the

component STBCs encodes K independent complex symbols

and has transmission duration T , we say that the FFS has

rate R = K
T

complex symbols per channel use. The definition

of FFS is universal and subsumes all schemes available in

the literature for delay-free noise-free finite feedback chan-

nels with quasi-static block fading, such as transmit antenna

selection [1], precoding for spatial multiplexing systems [2],

beamforming [3]–[6], combining space-time codes with beam-

forming [7]–[9], extending orthogonal STBCs [10], switching

between orthogonal STBC and spatial multiplexing [11], and

code diversity [12] (See Section II-A for formal definition of

an FFS, and Table I for a summary of some of the FFSs

available in the literature).

A number of FFSs are available in the literature that

provably achieve full-diversity such as transmit antenna se-

lection [1] and the schemes in [4]–[12]. However, there is no

known universal criterion (applicable to any finite feedback

scheme, including those in [1]–[12] as special cases) to deter-

mine whether a given arbitrary FFS achieves full-diversity or

not. Further, all known full-diversity FFSs for T < Nt, where

Nt is the number of transmit antennas, have rate at the most

1. In this context the contributions (and organization) of this

paper are as follows.

• We first give a universal necessary condition for any

FFS to achieve full-diversity (Corollary 1, Section II-B).

Using this necessary condition we introduce the notion

of Feedback-Transmission duration optimal (FT-Optimal)

FFSs - schemes that use minimum amount of feedback

given the transmission duration and minimum transmis-

sion duration given the amount of feedback to achieve
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full-diversity. The class of FT-optimal FFSs consists of all

full-diversity schemes for which the product of feedback

index set cardinality N and transmission duration T

equals the number of transmit antennas Nt. When there

is no feedback, i.e., when N = 1, an FT-optimal scheme

consists of a single STBC with T = Nt, and the universal

necessary condition reduces to the well known necessary

and sufficient condition for an STBC to achieve full-

diversity viz., every non-zero codeword difference matrix

of the STBC must be of rank Nt (Section II-B).

• For FFSs which use the feedback function that chooses

the component STBC with the largest minimum Eu-

clidean distance, we give a sufficient condition for full-

diversity (Theorem 2, Section II-C).

• Using the sufficient criterion and tools from algebraic

number theory we construct full-rate (rate R = Nt) full-

diversity FT-Optimal schemes for all triples (Nt, T,N)
with NT = Nt (Section III). These are the first full-rate

full-diversity FFSs reported in the literature for T < Nt.

• We present simulation results comparing the bit error

rate performance of the new schemes with the schemes

already available in the literature which show that the

new FFSs have the best performance while utilizing

the least amount of feedback and transmission duration

(Section IV).

The system model is explained in Section II-A, the defini-

tions and results from algebraic number theory that we have

used in this paper are briefly reviewed in Section III-A, and

finally the paper is concluded in Section V.

Notation: Throughout the paper, matrices (column vectors)

are denoted by bold, uppercase (lowercase) letters. For a

complex matrix A, the transpose, the conjugate-transpose and

the Frobenius norm are denoted by AT , AH and ||A||F
respectively. For a square matrix A, det(A) is the determinant

of A, and tr(A) is the trace of A. For any positive integer n,

In is the n×n identity matrix, and 0 is the all zero matrix of

appropriate dimension. Unless used as a subscript i denotes√
−1. The indicator function is denoted by 1(·), and for any

vector u, its ℓth component is denoted by u(ℓ).

II. FULL-DIVERSITY CRITERIA:

A UNIVERSAL NECESSARY CONDITION, AND A

SUFFICIENT CONDITION

A. System Model

We consider an Nt × Nr quasi-static Rayleigh flat fading

MIMO channel Y =
√
EXH+W, where Y is the T ×Nr

received matrix, X is the T × Nt transmit matrix, H is the

Nt×Nr channel matrix, W is the T ×Nr matrix representing

the additive noise at the receiver and E is the average transmit

power. The entries of H and W are independent, zero mean,

circularly symmetric complex Gaussian random variables, with

the variance of each entry of H being 1, and the variance

of each entry of W being N0. The receiver uses a feedback

function f : CNt×Nr → {1, . . . , N} to send the feedback in-

dex f(H) to the transmitter through a delay-free, noise-free

feedback channel. A Space-Time Block Code (STBC) C is

a finite set of T × Nt complex matrices. The transmitter is

equipped with N STBCs C1, . . . , CN , with |C1| = · · · = |CN |,
one corresponding to each of the N possible feedback indices.

When f(H) = n, the transmitter uses the code Cn to encode

the information bits. Upon receiving Y, knowing the feedback

index, and hence knowing the codebook used for transmission,

the receiver performs ML decoding

X̂ = arg min
X∈Cf(H)

||Y −
√
EXH||2F . (1)

Definition 1: A Finite Feedback Scheme (FFS) for an Nt×
Nr MIMO channel with N -ary noise-free, delay-free feedback

and transmission duration T is a tuple (f, C1, . . . , CN), where

f : CNt×Nr → {1, . . . , N} is the feedback function, and

C1, . . . , CN are the T × Nt STBCs corresponding to each of

the N feedback indices.

Example 1: The FFS of [6], known as Grassmannian beam-

forming, is of transmission duration T = 1. The transmitter

is equipped with N unit norm vectors u1, . . . ,uN ∈ CNt×1

known as the beamforming vectors. Let A ⊂ C be a fi-

nite signal set such as QAM, HEX or a PSK constella-

tion. Then, for n ∈ {1, . . . , N}, the nth component STBC

of the FFS from [6] is Cn =
{
auT

n |a ∈ A
}

. The feed-

back function used is f(H) = argmaxn∈{1,...,N} ||uT
nH||2F .

Table I summarizes some of the FFSs available in the liter-

ature. The scheme from [11] uses two codes of different rates:

the Alamouti code [14] with rate 1 and spatial multiplexing

with rate 2, hence the rate of this FFS is not defined. The

last row corresponds to N = 1, i.e., MIMO channels without

feedback. In this case the FFS consists of a single STBC C1,

and the feedback value is equal to 1 for all H ∈ CNt×Nr .

An FFS is said to achieve a diversity order d if the

probability of decoding error Pe at the receiver decays as(
E
N0

)−d

i.e., if there exists a constant c > 0 such that

Pe ≤ c
(

E
N0

)−d

, and an FFS is of full-diversity if it achieves

a diversity order of NtNr.

If an STBC encodes K independent complex symbols,

its rate is K
T

complex symbols per channel use. The FFS

(f, C1, . . . , CN) is said to be of rate R if each of the N STBCs

C1, . . . , CN is of rate R, and the FFS is of full-rate if R = Nt.

B. A Universal Necessary Condition

Some notations are introduced before stating the criterion.

For any STBC C, let ∆C denote the set of non-zero codeword

difference matrices, i.e.,

∆C = {X1 −X2 | X1,X2 ∈ C,X1 6= X2} .

For a given FFS S = (f, C1, . . . , CN ) define the set ∆S of

NT ×Nt matrices as

∆S =








X1

X2

...

XN




∣∣∣∣∣ X1 ∈ ∆C1, . . . ,XN ∈ ∆CN





,

i.e., ∆S is the set of all combinations of N non-zero codeword

difference matrices, one corresponding to each of the N codes,
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TABLE I
EXAMPLES OF FINITE FEEDBACK SCHEMES AVAILABLE IN THE LITERATURE

(See table footnotes for notation.)

Scheme Setting
Component Code Feedback function Rate

Cn f(H) R

Antenna Selection [1]
Nt > 1, N = Nt, T = 1,

{seT
n |s ∈ A}

argmaxn∈{1,...,N} 1
e1, . . . , eNt

are columns of INt
||eT

nH||2F

{sTFn|s ∈ AM}

fd(H)

M

Precoded Spatial- Nt, N > 1, T = 1, M < Nt argmaxn∈{1,...,N}

Multiplexing [2] λmin(FnH)

F1, . . . ,FN ∈ CM×Nt argmaxn∈{1,...,N}

det(IM + E

N0
FnHHHFH

n
)

Heath, Jr. & Paulraj [4]
Nt = 2, N > 1, T = 1,

{[s sγn]|s ∈ A}
argmaxn∈{1,...,N} 1

γn = ei
2πn

N , n ∈ {1, . . . , N} || [1 γn]
TH ||2F

Grassmannian Nt, N > 1, T = 1,

{suT
n |s ∈ A}

argmaxn∈{1,...,N}

1Beamforming [6] u1, . . . ,uN ∈ CNt×1 ||uT
nH||2F

have unit norm

Precoded Nt, N > 1, M < Nt, C is a

{XFn|X ∈ C}

argmaxn∈{1,...,N}

≤ 1Orthogonal STBCs [8] T ×M rate R orthogonal STBC, ||FnH||2F

F1, . . . ,FN ∈ CM×Nt

Heath, Jr. & Paulraj [11]
Nt = N = T = 2, C1 is Alamouti code using A

fd(H) NA

|A| = |A′|2 C2 =











s1 s2

s3 s4





∣

∣

∣

∣

∣

si ∈ A′







No feedback [13] N = 1, Nt, T ≥ 1 C1 ⊂ CT×Nt 1 ≤ Nt

Notation:

•A,A′ ⊂ C are complex constellations such as QAM, HEX or PSK.
• fd(H) = argmaxn∈{1,...,N}

{

minX∈∆Cn
||XH||2F

}

, where ∆Cn = {X1 −X2 | X1,X2 ∈ Cn,X1 6= X2}.

• λmin(A) is the smallest singular value of A.

stacked on top of one another. Further, let

r(∆S) = min{rank(X)|X ∈ ∆S}.

Since the matrices in the set ∆S are of dimension NT ×Nt,

we have r(∆S) ≤ Nt.

Theorem 1: An FFS S achieves a diversity order of at the

most r(∆S)Nr .

Proof: Proof is given in Appendix A.

The following necessary condition for full-diversity follows

immediately from the above theorem.

Corollary 1: If an FFS S achieves full-diversity, then

r(∆S) = Nt and NT ≥ Nt.

Proof: Since S achieves full-diversity, from Theorem 1,

NtNr ≤ r(∆S)Nr i.e., r(∆S) ≥ Nt. But ∆S is a set of

NT × Nt matrices, and the matrices belonging to ∆S can

have rank at the most equal to Nt, thus we have r(∆S) = Nt.

It follows that the rank of each X ∈ ∆S is Nt and hence the

number of rows of X NT ≥ Nt.

Example 2: Continuing with Example 1, we have that

∆Cn = {auT
n |a ∈ ∆A}, where ∆A = {a1 − a2|a1, a2,∈

A, a1 6= a2}. Each member of ∆S is a matrix of the form

[a1u1 a2u2 · · · aNuN ]T , where a1, a2, . . . , aN ∈ ∆A and

hence are non-zero. This matrix will have rank Nt if and only

if the linear span of the vectors u1, . . . ,uN is CNt×1. In [6] it

is shown that this is also a sufficient condition for this scheme

to attain full-diversity.

From Corollary 1, for a scheme to achieve full-diversity

the product of its transmission duration and the cardinality of

feedback index set must be at least Nt.

Definition 2: A full-diversity FFS is said to be Feedback-

Transmission duration optimal (FT-optimal) if NT = Nt.

An FT-optimal scheme uses the minimum amount of feed-

back N given the transmission duration T , and minimum

transmission duration given the amount of feedback to attain

full-diversity. When there is no feedback, i.e., when N = 1, an

FT-optimal scheme consists of a single STBC with T = Nt,

and the necessary condition of Corollary 1 reduces to the

well known necessary and sufficient condition of [13] for an

STBC to achieve full-diversity viz., every non-zero codeword

difference matrix of the STBC must be of rank Nt. On the

other hand, for the case of least possible transmission duration

T = 1, an FT-optimal scheme uses an N = Nt-ary feedback.

In Section III we construct FT-optimal schemes for all Nt ≥ 1
and all pairs (N, T ) such that NT = Nt.

C. A Sufficient Condition

Let fd(H) be the feedback function that returns the index

of the codebook with largest minimum Euclidean distance for
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the given channel H, i.e.,

fd(H) = arg max
n∈{1,...,N}

{
min

X∈∆Cn

||XH||2F
}
. (2)

We now show that for any FFS that uses f = fd, the necessary

condition of Corollary 1 is also a sufficient condition to

achieve full-diversity.

Theorem 2: The FFS S = (fd, C1, . . . , CN) achieves full-

diversity if r(∆S) = Nt.

Proof: See Appendix B.

1) A new full-diversity FFS: As an example for the ap-

plication of Theorem 2, we now construct a new N = 2,

T = 1 FT-optimal, full-rate, full-diversity FFS for Nt = 2
antennas. Let x1,x2 be complex symbols encoded using

a QAM constellation A ⊂ Z[i]. Let Q(i,
√
5) be the field

obtained from Q by the adjunction of elements i =
√
−1 and√

5, and σ : Q(i,
√
5) → Q(i,

√
5) be the automorphism on

Q(i,
√
5) that fixes Q(i) and maps

√
5 to −

√
5. Define

C1 =

{[
α(x1 + x2θ) σ (α(x1 + x2θ))

] ∣∣∣∣ x1, x2 ∈ A
}

and

C2 =

{[
α(x1 + x2θ) iσ (α(x1 + x2θ))

] ∣∣∣∣ x1, x2 ∈ A
}
,

where θ = 1+
√
5

2 and α = 1 + i− iθ.

The Golden code [15], which is a full-diversity STBC for

2 transmit antennas with large coding gain is CGolden =
{[

α(x1 + x2θ) iσ (α(y1 + y2θ))
α(y1 + y2θ) σ (α(x1 + x2θ))

] ∣∣∣∣∣ x1, x2, y1, y2 ∈ A
}
.

The codes C1 and C2 correspond to the two ‘threads’ of the

Golden code - C1 is obtained from the entries on the main

diagonal of CGolden and C2 from the entries in the off-diagonal.

Lemma 1: The FFS S = (fd, C1, C2) achieves full-diversity.

Proof: We need to show that every X ∈ ∆S has full

rank. Since both C1 and C2 are linear, for any given X ∈ ∆S
there exist [x1 x2]

T , [y1 y2]
T ∈ Z[i]2 \ {0}, such that

X =

[
α(x1 + x2θ) σ (α(x1 + x2θ))
α(y1 + y2θ) iσ (α(y1 + y2θ))

]
.

Since x1, x2 ∈ Q(i) and {1, θ} is a basis of Q(i,
√
5) as a

vector space over Q(i), we have that x = α(x1 + x2θ) 6= 0.

Similarly, y = α(y1 + y2θ) 6= 0. Since det(X) = ixσ(y) −
yσ(x) and σ2 is the identity map on Q(i,

√
5), we have

det(X) = iz − σ(z), where z = xσ(y) ∈ Q(i,
√
5) \ {0}.

If X is not of full rank, det(X) = 0, i.e., i = σ(z)
z

for some

z ∈ Q(i,
√
5). This would imply that

i = σ(i) = σ

(
σ(z)

z

)
=

z

σ(z)
=

(
σ(z)

z

)−1

= −i,

which is not true. Hence, i 6= σ(z)
z

for any z ∈ Q(i,
√
5), and

X is of full rank.

III. NEW FULL-RATE FULL-DIVERSITY FT-OPTIMAL

FINITE FEEDBACK SCHEMES

In this section, using tools from algebraic number theory, we

construct full-rate full-diversity FT-optimal FFSs with f = fd

for all parameters N, T and Nt such that Nt = NT . In

Section III-A we briefly review some definitions and results

from algebraic number theory which we use to construct new

schemes in Section III-B (T = 1 case) and Section III-C

(T > 1 case).

A. Preliminaries

For any two fields K and F, if F ⊆ K then K is said to be

an extension of F, and F a subfield of K. For any α ∈ K, F(α)
denotes the smallest subfield of K that contains F and α, and it

consists of all the elements of the form
f(α)
h(α) , where f, h ∈ F[x]

are polynomials over F and h(x) 6= 0. An element α ∈ C is

said to be an algebraic number, or simply algebraic, if there

exists a non-zero polynomial f ∈ Q[x] such that f(α) = 0.

If α is algebraic, the field Q(α) is said to be an algebraic

number field.

Example 3: For any a ∈ Q,
√
a is algebraic, since it

satisfies the equation x2−a = 0. Hence,
√
2,
√
3, i =

√
−1 are

all algebraic. Also, 1+
√
5

2 is algebraic since it is a root of the

equation x2−x−1 = 0.

Lemma 2 ([16, p. 107]): The sum, difference, product and

quotient of algebraic numbers are themselves algebraic num-

bers.

We will use the following result to prove the full-diversity

property of our FFSs.

Theorem 3 (Lindemann-Weierstrass Theorem [17, p. 6]):

If α1, . . . , αm are distinct algebraic numbers, and c1, . . . , cm
are algebraic numbers that are not all equal to zero, then

c1e
α1 + c2e

α2 + · · ·+ cmeαm 6= 0.

The following result gives a procedure to construct sets

of algebraic numbers, of any desired finite cardinality, that

are linearly independent over Q. We will use this result to

construct full-diversity FFSs for T > 1 in Section III-C.

Theorem 4 ([18]): Let n1, . . . , nm be positive integers,

p1, . . . , pm be distinct primes, and b1, . . . , bm be positive in-

tegers not divisible by any of these primes. For k = 1, . . . ,m,

let αk = n
k

√
bkpk, and f(x1, . . . , xm) ∈ Q[x1, . . . , xm] be any

polynomial in indeterminates x1, . . . , xm with degree less than

or equal to nk−1 with respect to xk. Then, f(α1, . . . , αm) = 0
if and only if all the coefficients of f are equal to zero.

It follows immediately from the above theorem that the set

{
αℓ1
1 αℓ2

2 · · ·αℓm
m

∣∣ 0 ≤ ℓk < nk, k = 1, . . . ,m
}
,

with cardinality
∏m

k=1 nk, is linearly independent over Q.

Note that the above set of algebraic numbers obtained from

Theorem 4 is real. On multiplying each of the elements of

this set with i, we get a set of purely imaginary algebraic

numbers that are Q-linearly independent. We are interested

in purely imaginary numbers as these will lead to FFSs in

Section III with the same average transmit energy per each

transmit antenna.

Example 4: Let m = 2, p1 = 2 and p2 = 3 be the two

distinct primes, and b1 = b2 = 1. Suppose we want a set of

n1n2 = 4 algebraic numbers that are linearly independent over
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Q. Choosing n1 = n2 = 2, we have α1 =
√
2 and α2 =

√
3.

From Theorem 4,

{
αℓ1
1 αℓ2

2

∣∣ 0 ≤ ℓ1, ℓ2 < 2
}
=
{
1,
√
2,
√
3,
√
6
}

is linearly independent over Q. On multiplying each of the

elements of the above set by i, we see that {i, i
√
2, i

√
3, i

√
6}

is linearly independent over Q.

In [19]–[22] rotation matrices U ∈ Cm×m where con-

structed for all m > 1 with non-zero minimum product

distance, i.e., with the property that for any a ∈ Z[i]m \ {0}
and s = Ua,

∏m
ℓ=1 |s(ℓ)| > 0, where s(ℓ) denotes the ℓth

component of s. Further, these matrices were constructed over

algebraic number fields, i.e., each component of U is an

algebraic number. These matrices are known as full-diversity

algebraic rotations, and a table of the best known (in terms of

minimum product distance) full-diversity algebraic rotations is

available in [23].

B. New Finite Feedback Schemes with T = 1

Let U ∈ CNt×Nt be any full-diversity algebraic rotation,

α ∈ C be any non-zero algebraic number, and γ = eα. The

proposed FT-optimal FFS uses N = Nt component STBCs,

C1, . . . , CNt
⊂ C1×Nt , each of which encodes Nt independent

QAM symbols as follows. Let a = [a(1) a(2) · · · a(Nt)]
T

be a vector of Nt independent symbols that take value from

a QAM constellation A ⊂ Z[i], and

s =
[
s(1) s(2) · · · s(Nt)

]T
= Ua.

The Nt component STBCs of the proposed FFS are

C1 =
{[

γs(1) s(2) · · · s(Nt)
] ∣∣∣ s = Ua, a ∈ ANt

}
,

C2 =
{[

s(1) γs(2) · · · s(Nt)
] ∣∣∣ s = Ua, a ∈ ANt

}
,

...

CNt
=
{[

s(1) s(2) · · · γs(Nt)
] ∣∣∣ s = Ua, a ∈ ANt

}
.

(3)

Each of the above STBCs is obtained from sT by multiplying

one of its components with γ. Note that the rate of the

proposed scheme is R = Nt. Although the full-diversity

property to be proved in Lemma 3 is valid for any non-zero

algebraic α, choosing α to be purely imaginary would ensure

that |γ| = 1, and that for each of the component codes the

average energy transmitted on each of the Nt antennas is same.

Example 5: Consider the case Nt = 3. Using

α = i
(

1+
√
5

2

)
, γ = eα and the 3 × 3 full-diversity rotation

matrix

U =





−0.328 −0.591 −0.737
−0.737 −0.328 0.591
−0.591 0.737 −0.328





from [23], we get the following STBCs

C1 =
{[

γs(1) s(2) s(3)
] ∣∣∣ s = Ua, a ∈ ANt

}
,

C2 =
{[

s(1) γs(2) s(3)
] ∣∣∣ s = Ua, a ∈ ANt

}
and

C3 =
{[

s(1) s(2) γs(3)
] ∣∣∣ s = Ua, a ∈ ANt

}
.

Lemma 3: If U is a full-diversity algebraic rotation and α

is a non-zero algebraic number, the FFS S = (fd, C1, . . . , CNt
)

achieves full-diversity, where C1, . . . , CNt
are given in (3).

Proof: All the component codes are linear, i.e., for every

STBC Cn each entry of the codeword matrix is a linear

combination of the QAM symbols {a(i)|i = 1, . . . , Nt}, and

hence for any X ∈ ∆S, there exist a1, . . . , aNt
∈ Z[i]Nt \{0}

and sn = Uan, n = 1, . . . , Nt such that

X =




γs1(1) s1(2) · · · s1(Nt)
s2(1) γs2(2) · · · s2(Nt)

...
. . .

...

sNt
(1) sNt

(2) · · · γsNt
(Nt)


 ,

where sn(ℓ) is the ℓth component of the vector sn. Since

an ∈ Z[i]Nt \{0} and sn = Uan,
∏m

ℓ=1 |s(ℓ)| > 0, and hence

all the components of sn are non-zero. Since U is an algebraic

rotation, and elements of Z[i] are algebraic, from Lemma 2, all

the components of sn are algebraic numbers. It follows that all

the entries of X are non-zero, all the off-diagonal entries are

algebraic, and all the diagonal entries are products of eα with

some algebraic number. Now, the determinant of X = [xi,j ]
is det(X) =

∑
σ∈SNt

sgn(σ)x1,σ(1)x2,σ(2) · · ·xNt,σ(Nt) =

=
∑

σ∈SNt

γ
∑Nt

n=1 1(n=σ(n))
sgn(σ)s1(σ(1))s2(σ(2)) · · · sNt

(σ(Nt)),

(4)

where SNt
is the set of all permutations on {1, . . . , Nt},

sgn(σ) is equal to 1 or −1 if σ can be decomposed into

even or odd number of transpositions respectively, and 1(·)
is the indicator function. From (4) and Lemma 2, det(X) =
c0 + c1e

α + c2e
2α + · · · cNt

eNtα, where c0, c1, . . . , cNt
are

algebraic. There is exactly one term in (4), corresponding

to the identity permutation, that contributes to γNt . Hence,

cNt
= s1(1)s2(2) · · · sNt

(Nt) 6= 0. Since 0, α, 2α, . . . , Ntα

are all distinct and algebraic, and c0, . . . , cNt
are algebraic

and not all equal to zero, from Theorem 3, we have that

det(X) 6= 0. Thus every X ∈ ∆S is of full-rank and

r(∆S) = Nt, and from Theorem 2, S achieves full-diversity.

C. New Finite Feedback Schemes for T > 1

1) Some notations: The structure of the component codes

of the new FFSs for T > 1 is similar to the threaded space-

time architecture proposed in [24], [25]. Towards describing

the new scheme, we first introduce some notations that capture

this structure. For any T > 1 denote addition modulo T by

⊕T , i.e., for any two integers a and b, a⊕T b = (a+b) mod T .

For a set of T vectors s1, . . . , sT ∈ CT×1, we define a T ×T
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matrix T (s1, . . . , sT ) = [ti,j ] whose entries are populated by

the components of s1, . . . , sT as follows. The entries of T =
[ti,j ] are partitioned into T threads, one corresponding to each

of the vectors s1, . . . , sT . The first thread of T originates at

t1,1 and occupies the main diagonal {ti,i|i = 1, . . . , T }. These

entries are populated by the components of the first vector s1.

The second thread originates at t1,2 and occupies the entries

that are one place to the right of the first thread in T in cyclic

sense. Thus the elements t1,2, t2,3, . . . , tT−1,T , tT,1 form the

second thread, and these are populated by the components of

the second vector s2. In general, the ℓth thread originates at

t1,ℓ and consists of those entries of T that are one place to the

right of the entries of (ℓ− 1)th thread in cyclic sense. These

entries of T are occupied by the components of the vector

sℓ = [sℓ(1) sℓ(2) . . . sℓ(T )]
T . Hence, for 1 ≤ ℓ, i ≤ T we

have

t
i,1+
(
(i−1)⊕T (ℓ−1)

) = sℓ(i).

Example 6: For T = 3, we have

T (s1, s2, s3) = [ti,j ] =



s1(1) s2(1) s3(1)
s3(2) s1(2) s2(2)
s2(3) s3(3) s1(3)


 ,

where the entries occupied by the components of s1 on

the main diagonal form the first thread, the components

of s2 that occupy entries one place to the right of s1
form the second thread, and the components of s3 that

occupy entries two places to the right of s1 form the third

thread.

Example 7: The matrix T (s1, . . . , s4), for s1, . . . , s4 ∈
C4×1 is 



s1(1) s2(1) s3(1) s4(1)
s4(2) s1(2) s2(2) s3(2)
s3(3) s4(3) s1(3) s2(3)
s2(4) s3(4) s4(4) s1(4)


 .

For any s = [s(1) s(2) · · · s(T )]T and 1 ≤ m ≤ n ≤ T we

denote the length n−m+1 vector [s(m) s(m+1) · · · s(n)]T
by s(m : n). If T1, . . . , TN are T×T complex matrices, define

π
([

T1 T2 · · · TN−1 TN

])

=
[

TN T1 T2 · · · TN−1

]

,

which is a cyclic shift of the T × T blocks one place to the

right. For any C ⊂ CT×NT , let

π(C) =
{

π
([

T1 T2 · · · TN

])

∣

∣

∣

[

T1 T2 · · · TN

]

∈ C
}

.

We now give the construction of new FFSs for T > 1.

2) New FFSs for T > 1: We first give an example of a

new FFS for the particular case of Nt = 4 antennas with

N = T = 2. This will help the reader understand the general

construction procedure that immediately follows the example.

Example 8: Let A ⊂ Z[i] be any QAM constellation,

a1, a2 ∈ A4 be vectors of information symbols, and sℓ = Uaℓ,

ℓ = 1, 2, where

U =







−0.3664 −0.7677 0.4231 0.3121
−0.2264 −0.4745 −0.6846 −0.5050
−0.4745 0.2264 −0.5050 0.6846
−0.7677 0.3664 0.3121 −0.4231






(5)

is a full-diversity algebraic rotation [23]. Let β1 = i
√
2, β2 =

i
√
3 and γ1 = eβ1 , γ2 = eβ2 . Note that in Example 4 we

showed that {β1, β2} = {i
√
2, i

√
3} is linearly independent

over Q. The two component STBCs of the proposed FFS are

given in (6) and (7) at the top of the next page. Each codeword

of C1 is of the form [T1 T2], where

T1 = T (γ1s1(1 : 2), γ2s2(1 : 2)) and

T2 = T (s1(3 : 4), s2(3 : 4)) .

The ‘threaded’ matrix T1 (respectively T2) is obtained from

the first two entries (last two entries) of s1, s2. Further,

the two threads of T1 are scaled by γ1 and γ2 respec-

tively. Each codeword of C2 is of the form [T2 T1] =
π([T1 T2]).

The construction for arbitrary T and N and Nt = NT is as

follows. Let U be an Nt×Nt full-diversity algebraic rotation,

A ⊂ Z[i] be a QAM constellation, a1, . . . , aT ∈ ANt be

vectors whose components take values independently from A,

and sℓ = Uaℓ for ℓ = 1, . . . , T . Further, let β1, . . . , βT be

algebraic numbers that are linearly independent over Q and

γℓ = eβℓ for ℓ = 1, . . . , T . The scalars β1, . . . , βT can be

obtained using Theorem 4 as explained in Section III-A. Now

for each ℓ = 1, . . . , T , partition the Nt-length vector sℓ into

N vectors s
(1)
ℓ , s

(2)
ℓ , . . . , s

(N)
ℓ of length T each such that

sℓ =




s
(1)
ℓ

s
(2)
ℓ
...

s
(N)
ℓ



,

i.e., s
(1)
ℓ = sℓ(1 : T ), s

(2)
ℓ = sℓ(T + 1 : 2T ), . . . , s

(N)
ℓ =

sℓ(Nt−T+1 : Nt). We now construct N matrices T1, . . . , TN ,

where Tn is the threaded T ×T matrix obtained from the nth

partitions of s1, . . . , sT as follows:

T1 = T
(
γ1s

(1)
1 , γ2s

(1)
2 , . . . , γT s

(1)
T

)
, and

Tn = T
(
s
(n)
1 , s

(n)
2 , . . . , s

(n)
T

)
, for n = 2, . . . , N.

Finally, the N codebooks are

C1 =
{[
T1 T2 · · · TN

] ∣∣ a1, . . . , aT ∈ ANt

}
, and

(8)

Cn = π(Cn−1), n = 2, . . . , N. (9)

Example 9: The proposed construction procedure for T =
2, N = 3 and Nt = 6 yields C1, C2 and C3
as given in (10), (11) and (12) at the top of the

next page, where U is a 6 × 6 full-diversity algebraic

rotation.

If β1, . . . , βT are purely imaginary, |γ1| = · · · = |γT | = 1
and for each of the component codes Cn, the average power

per each of the transmit antennas is same.
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C1 =

{[
γ1s1(1) γ2s2(1) s1(3) s2(3)
γ2s2(2) γ1s1(2) s2(4) s1(4)

] ∣∣∣∣∣ s1 = Ua1, s2 = Ua2, a1, a2 ∈ A4

}
and (6)

C2 =

{[
s1(3) s2(3) γ1s1(1) γ2s2(1)
s2(4) s1(4) γ2s2(2) γ1s1(2)

] ∣∣∣∣∣ s1 = Ua1, s2 = Ua2, a1, a2 ∈ A4

}
. (7)

C1 =

{[
γ1s1(1) γ2s2(1) s1(3) s2(3) s1(5) s2(5)
γ2s2(2) γ1s1(2) s2(4) s1(4) s2(6) s1(6)

] ∣∣∣∣∣s1 = Ua1, s2 = Ua2, a1, a2 ∈ A6

}
, (10)

C2 =

{[
s1(5) s2(5) γ1s1(1) γ2s2(1) s1(3) s2(3)
s2(6) s1(6) γ2s2(2) γ1s1(2) s2(4) s1(4)

] ∣∣∣∣∣s1 = Ua1, s2 = Ua2, a1, a2 ∈ A6

}
, (11)

C3 =

{[
s1(3) s2(3) s1(5) s2(5)) γ1s1(1) γ2s2(1)
s2(4) s1(4) s2(6) s1(6) γ2s2(2) γ1s1(2)

] ∣∣∣∣∣s1 = Ua1, s2 = Ua2, a1, a2 ∈ A6

}
, (12)

Theorem 5: If U is a full-diversity algebraic rotation and

β1, . . . , βT are algebraic numbers that are linearly independent

over Q, the FFS S = (fd, C1, . . . , CN) achieves full-diversity,

where C1, . . . , CN are given by (8) and (9)

Proof: See Appendix C for proof.

Since the proposed FFSs encode K = NtT independent

complex symbols they have R = K
T

= Nt, i.e., full-rate.

For all the new FFSs (both T = 1 and T > 1), each of the

component STBCs is linear, i.e., for each of the STBC Cn,

every entry of the codeword matrix is some linear combination

of the QAM symbols {aℓ(i)|ℓ = 1, . . . , T, i = 1, . . . , Nt}.

Thus, for a given component code Cn there exist a set of

matrices {Aℓ,i|ℓ = 1, . . . , T, i = 1, . . . , Nt} ⊂ CT×Nt called

linear dispersion or weight matrices [26] such that

Cn =

{
T∑

ℓ=1

Nt∑

i=1

aℓ(i)Aℓ,i

∣∣∣ aℓ(i) ∈ A
}
.

Hence one can use the sphere-decoder [27] to obtain the ML

estimate given by (1) [28]. Implementing fd, given by (2), re-

quires one to find minX∈∆Cn
||XH||2F for each n = 1, . . . , N .

Again, since Cn is linear,

∆Cn =

{
T∑

ℓ=1

Nt∑

i=1

aℓ(i)Aℓ,i

∣∣∣ aℓ(i) ∈ ∆̄A
}

\ {0},

where ∆̄A = {a1 − a2|a1, a2 ∈ A} ⊂ Z[i]. Hence, finding

minX∈∆Cn
||XH||2F is equivalent to finding the squared norm

of the shortest non-zero vector contained in a subset of a

lattice. This can be implemented with a minor modification

to the sphere-decoding algorithm [29].

IV. SIMULATION RESULTS

In this section we present simulation results comparing the

bit error rate (BER) performance of the new schemes of this

paper with the schemes already available in the literature

under ML decoding of codewords. In all the simulations, the

new FFSs have the best performance while utilizing the least

amount of feedback and transmission duration. All the codes

discussed in this section use square QAM constellations and

Gray encoding to map information bits into QAM symbols.
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Fig. 1. FFSs for 2× 2 MIMO with N = 2.

A. Schemes for 2× 2 MIMO

In this subsection we compare FFSs for Nt = Nr = 2
with N = 2-ary feedback. We compare the new FFS of

Section II-C1 that was obtained from the Golden code with

Grassmannian Beamforming [6] (see Example 1), and the

scheme from Heath, Jr. & Paulraj [11]. All three schemes

achieve full-diversity, and while the new scheme and Grass-

mannian Beamforming have T = 1 (FT-optimal), the scheme

from [11] uses T = 2. The new scheme has rate 2 (full-rate),

Grassmannian Beamforming has rate 1 and the FFS of [11]

uses two codes of different rates: the Alamouti code [14]

(rate 1) and spatial multiplexing (rate 2). For bitrate to be

constant across the three schemes, if the new FFS uses an

M -ary QAM constellation, both Grassmannian Beamforming

and the Alamouti code for the scheme in [11] use M2-ary
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Fig. 2. FFSs for 3× 3 MIMO with 6 bpcu.

QAM, while spatial multiplexing uses M -ary QAM. Fig. 1

shows the performance of these three schemes for 4, 8 and 16
bpcu. While the new FFS does not fare well for 4 bpcu, its

relative performance improves as the bitrate increases, and for

16 bpcu it has the lowest BER among the three schemes.

B. Schemes for 3× 3 MIMO

We now compare the new FFS of Example 5 (T = 1 and

rate 3) which uses N = 3, with Grassmannian Beamform-

ing [6] (T = 1 and rate 1) for N = 3 and 16, and the scheme

from Wu & Calderbank [12] (T = N = 3 and rate 1) for the

transmission rate of 6 bpcu. The new code uses 4-QAM, while

the other two schemes use 64-QAM. The new scheme and the

Grassmannian Beamforming that uses N = 3 are FT-optimal.

Fig. 2 shows the BER performance of the four schemes. We

see that the new FFS has the least BER, outperforming even

the Grassmannian Beamforming scheme that uses a higher

amount of feedback of N = 16 .

C. Schemes for 4× 4 MIMO with N ≥ Nt

We consider the new FFS for N = 4, T = 1 constructed

using the procedure in Section III-B using γ = e
i
(

1+
√

5
2

)

and

the 4× 4 full-diversity algebraic rotation (5). The new FFS is

compared with five other schemes for the bitrate of 8 bpcu:

(i) the N = 4, T = 1 scheme of Love & Heath, Jr. [2] that

chooses according the feedback function f = fd a precoding

matrix from a set of 4 × 2 matrices to transmit a two-

stream spatial multiplexing input over Nt = 4 antennas,

(ii) Grassmannian Beamforming [6] (T = 1) with N = 64-ary

feedback, (iii) Grassmannian Beamforming [6] with N = 4,

(iv) the N = 4, T = 2 scheme of Love & Heath, Jr. [8] that

chooses, based on the feedback index, a precoding matrix from

a given set of 4×2 matrices to transmit an Alamouti code over
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Fig. 3. FFSs for 4× 4 MIMO with 8 bpcu and N ≥ 4.
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Fig. 4. FFSs for 4× 4 MIMO with 8 bpcu and N < 4.

Nt = 4 antennas after precoding, and (v) the N = T = 4 FFS

of Wu & Calderbank [12] for 4 transmit antennas. The new

scheme has rate R = 4 and uses 4-QAM constellation. The

FFS of [2] has rate R = 2 and uses 16-QAM constellation.

The remaining four schemes have rate R = 1 and use 256-

QAM. The comparison of BER is shown in Fig. 3, and it is

seen that the new FFS has the best performance.

D. Schemes for 4× 4 MIMO with N < Nt

The new scheme considered is the N = T = 2 FFS from

Example 8. This is compared with: (i) the N = 3, T = 2
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Fig. 5. FFSs for 6× 6 MIMO with 12 bpcu.

scheme of Ekbatani & Jafarkhani [9], (ii) the N = T = 2
scheme of Love & Heath, Jr. [8], and (iii) the N = T = 2
scheme of Akhtar & Gesbert [10]. The new scheme has R = 4
and uses 4-QAM, while the other three schemes have R = 1
and use 256-QAM constellation leading to a bitrate of 8 bpcu.

Fig. 4 shows the BER performance of these four schemes.

E. Schemes for 6× 6 MIMO

We compare the new N = 6 FFS obtained from the

construction procedure of Section III-B using γ = e
i
(

1+
√

5
2

)

and the 6 × 6 full-diversity algebraic rotation labeled ‘mixed

2x3’ in [23]. This is compared with the rate 3 FFS of [8] that

uses f = fd and N = 16-ary feedback. The new FFS uses 4-

QAM while the scheme from [8] uses 16-QAM, both leading

to 12 bpcu. Fig. 5 shows the BER performance of these two

schemes, and we see that while using less amount of feedback

the new scheme outperforms the scheme from [8].

V. CONCLUSION

In this paper we have given a universal necessary condition

for any FFS to achieve full-diversity in a Rayleigh block

fading channel with finite noise-free delay-free feedback.

Based on this criterion we have introduced the notion of FT-

optimal schemes that use minimum feedback for the given

transmission duration and minimum transmission duration for

the given feedback to achieve full-diversity. We have also

given a sufficient condition for full-diversity for those schemes

in which the receiver chooses the component STBC whose

minimum Euclidean distance is maximum. Based on this

criterion and using tools from algebraic number theory, we

have constructed full-rate full-diversity FT-optimal FFSs for

all triples (N, T,Nt) with Nt = NT . These are the first full-

rate full-diversity FFSs reported in the literature for T < Nt.

Through simulation results we showed that the proposed FFSs

have the best performance among the schemes available in the

literature. Following are some of the questions that are yet to

be addressed.

• Though the necessary condition presented in Section II-B

for full-diversity is universal, the sufficient condition of

Section II-C applies to only those FFSs that use f = fd.

Is there a universal necessary and sufficient criterion for

full-diversity?

• Finding fd(H) at the receiver is equivalent to solving the

closest lattice point problem for N different lattices, and

hence this operation is of high complexity. Are there

feedback functions that can be implemented with low

complexity and still lead to full-diversity? Can one design

the component STBCs in such a way that fd itself can be

implemented with low complexity?

APPENDIX A

PROOF OF THEOREM 1

Let X ∈ ∆S be of rank r(∆S). There exist

Xa(n),Xb(n) ∈ Cn, n = 1, . . . , N , such that

X =




Xa(1)−Xb(1)
Xa(2)−Xb(2)

...

Xa(N)−Xb(N)


 .

Let the codebook size |C1| = · · · = |CN | = M . For a fixed

channel realization H, if the feedback index f(H) = n, then

the probability of codeword error of the ML decoder when

Xa(n) is transmitted is lower bounded by the pairwise error

probability PEP(Xa(n) → Xb(n)|H) between the codewords

Xa(n),Xb(n). Hence we have Pe(H)

≥ P(Xa(n) is transmitted|H)PEP(Xa(n) → Xb(n)|H)

=
1

M
Q

(√
E

2N0
|| (Xa(n)−Xb(n))H||F

)
,

where Q(·) is the Gaussian tail function. Since

|| (Xa(n)−Xb(n))H||F ≤ ||XH||F and Q is a

monotonically decreasing function, we have

Pe(H) ≥ 1

M
Q

(√
E

2N0
||XH||F

)
. (13)

From [30], for any β > 1 and 0 < α <

√
2e
π

√
β−1
β

, we have

Q(x) ≥ α
2 exp(−

βx2

2 ). Using α = 1
2 and β = 2 to lower

bound the right hand side of (13), we get

Pe(H) ≥ 1

4M
exp

(
− E

2N0
||XH||2F

)
. (14)

Now, ||XH||2F = tr(HHXHXH). Let XHX = UDUH

be the eigen decomposition of XHX, where U ∈ CNt×Nt

is unitary and D is the diagonal matrix consisting of the

eigenvalues of XHX. Let λ1, λ2, . . . , λr(∆S) be the non-zero

eigenvalues of XHX and H̃ = UHH, then ||XH||2F =
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tr(H̃HDH̃) =
∑Nr

j=1

∑
r(∆S)
i=1 λi|h̃i,j |2, where H̃ = [h̃i,j ].

Since H̃ and H are identically distributed, the variables |h̃i,j |2
are independent and identically distributed exponential random

variables with unit mean. Averaging (14) with respect to H

we get Pe =

E (Pe(H)) ≥ 1

4M
E



exp



− E

2N0

Nr∑

j=1

r(∆S)∑

i=1

λi|h̃i,j |2








=
1

4M

Nr∏

j=1

r(∆S)∏

i=1

E

(
exp

(
− E

2N0
λi|h̃i,j |2

))

=
1

4M

Nr∏

j=1

r(∆S)∏

i=1

(
1 +

λiE

2N0

)−1

.

The last equality is due to the fact that for an exponentially

distributed random variable x with unit mean, and for any

s > 0, E(exp(−sx)) = (1+ s)−1. For large values of E
N0

, we

have

Pe &
1

4M

(
E

2N0

)−r(∆S)Nr
r(∆S)∏

i=1

λNr

i .

Hence the probability of error decays at the most as fast as(
E
N0

)−r(∆S)Nr

. This completes the proof.

APPENDIX B

PROOF OF THEOREM 2

Let |C1| = · · · = |CN | = M , and let the codewords of

each codebook Cn be indexed by the message index m ∈
{1, . . . ,M}, i.e., let Cn = {Xm(n)|m ∈ {1, . . . ,M}}. In

order to prove the theorem, we derive an upper bound on the

pairwise error probability PEP(m1 → m2) between any two

distinct message indices m1,m2 ∈ {1, . . . ,M}. For a given

channel realization H, let fd(H) = n∗, then

PEP(m1 → m2|H)

= Q

(√
E

2N0
|| (Xm1(n

∗)−Xm2(n
∗))H||F

)
.

Using the Chernoff bound [30] Q(x) ≤ 1
2exp(−x2

2 ), we get

PEP(m1 → m2|H)

≤ 1

2
exp

(
− E

4N0
|| (Xm1(n

∗)−Xm2(n
∗))H||2F

)
.

(15)

For each n = 1, . . . , N , let Xmin(n) =
argminX∈∆Cn

||XH||2F , and

Xmin =




Xmin(1)
Xmin(2)

...

Xmin(N)


 .

Note that ||XminH||2F ≥ λNt
(XH

minXmin)||H||2F , where

λNt
(XH

minXmin) is the smallest singular value of

XH
minXmin. Let λ∗ = minX∈∆S λNt

(XHX). Since all

the matrices in ∆S have rank Nt, we have λ∗ > 0, and

||XminH||2F ≥ λNt
(XH

minXmin)||H||2F ≥ λ∗||H||2F . (16)

Since n∗ = argmaxn∈{1,...,N} ||Xmin(n)H||2F , we have

||Xmin(n
∗)H||2F ≥ 1

N

N∑

n=1

||Xmin(n)H||2F =
1

N
||XminH||2F .

(17)

From (16) and (17) we have

|| (Xm1(n
∗)−Xm2(n

∗))H||2F ≥ ||Xmin(n
∗)H||2F

≥ 1

N
||XminH||2F

≥ λ∗

N
||H||2F .

Thus, we can upper bound the left hand side of (15) as

PEP(m1 → m2|H) ≤ 1

2
exp

(
− Eλ∗

4NN0
||H||2F

)

=
1

2

Nt∏

i=1

Nr∏

j=1

exp

(
− Eλ∗

4NN0
|hi,j |2

)
,

(18)

where H = [hi,j ], and the variables |hi,j |2 are independent

random variables that are exponentially distributed with unit

mean. Averaging (18) with respect to H, we obtain

PEP(m1 → m2) ≤
1

2

Nt∏

i=1

Nr∏

j=1

E

(
exp

(
− Eλ∗

4NN0
|hi,j |2

))

=
1

2

(
1 +

Eλ∗

4NN0

)−NtNr

For large values of E
N0

we have

PEP(m1 → m2) .
1

2

(
Eλ∗

4NN0

)−NtNr

.

This completes the proof.

APPENDIX C

PROOF OF THEOREM 5

Let X = [XT
1 XT

2 · · · XT
N ]T ∈ ∆S. Since the codes

C1, . . . , CN are linear, for each n ∈ {1, . . . , N} there exist

vectors a1, . . . , aT ∈ Z[i]Nt , not all zero, such that

Xn = π(n−1) ([T1 T2 · · · TN ]) , where

T1 = T (γ1s
(1)
1 , . . . , γT s

(1)
T ) and Tm = T (s

(m)
1 , . . . , s

(m)
T )

for m > 1. All the entries of Tm, m > 1, are algebraic,

and each entry of T1 is either 0 or a product γℓα for

some ℓ ∈ {1, . . . , T } and some algebraic number α. Hence

the determinant of X is a polynomial f(x1, . . . , xT ) with

algebraic coefficients and degree at the most Nt with respect to

each xℓ, evaluated at the point (x1, . . . , xT ) = (γ1, . . . , γT ).
Let ZNt+1 = {0, 1, . . . , Nt}, and for any p ∈ ZT

Nt+1 let

γp denote the product γ
p(1)
1 γ

p(2)
2 · · · γp(T )

T . Then det(X) =∑
p∈Z

T

Nt+1
cpγ

p, where the scalars cp are algebraic. In order
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to use Theorem 3 we need to show that all the γp’s are distinct

and at least one of the cp is non-zero. Suppose p1,p2 ∈ ZT
Nt+1

are distinct. We have

γp1 = e
∑

T

ℓ=1 βℓp1(ℓ) and γp2 = e
∑

T

ℓ=1 βℓp2(ℓ).

Since p1,p2 ∈ QT×1 are distinct, and {β1, . . . , βT } is linearly

independent over Q we have
∑T

ℓ=1 βℓp1(ℓ) 6=
∑T

ℓ=1 βℓp2(ℓ).
Thus γp1 and γp2 are distinct for all pairs of distinct p1,p2.

Now, using Theorems 2 and 3, it is enough to show that cp 6= 0
for some p ∈ ZT

Nt+1.

Partition the matrix X into T ×T matrices X(i,j) such that

X =




X(1,1) X(1,2) · · · X(1,N)

X(2,1) X(2,2) · · · X(2,N)

...
. . .

...

X(N,1) X(N,2) · · · X(N,N)


 .

For i 6= j, every entry of X(i,j) is algebraic. Since U

is a full-diversity rotation, for every i ∈ {1, . . . , N} and

ℓ ∈ {1, . . . , T }, either all the entries of the ℓth thread of

X(i,i) are zero or every entry of the ℓth thread is non-zero. In

the latter case each such entry is a product of γℓ with some

algebraic number. From among X(1,1),X(2,2), . . . ,X(N,N), let

m1 be the number of matrices whose first thread is non-zero.

Let m2 be the number of matrices whose first thread is zero

and second thread is non-zero. And in general, let mℓ be the

number of matrices whose first ℓ− 1 threads are zero and the

ℓth thread is non-zero. Since for each X(i,i) at least one of

the T threads is non-zero, we have m1 + · · ·+mT = N , and

m1T +m2T + · · ·+mTT = Nt. To complete the proof, we

will now show that for p∗ = [m1T m2T · · · mTT ]
T , we

have cp∗ 6= 0.

Writing X = [xs,t], we have
∑

p∈Z
T

Nt+1

cpγ
p = det(X)

=
∑

σ∈SNt

sgn(σ)x1,σ(1)x2,σ(2) · · ·xNt,σ(Nt),

(19)

where SNt
is the set of all permutations on {1, . . . , Nt}. Each

term in summation in (19) is of the form αγp, where α is

algebraic and p ∈ ZT
Nt+1. Let σ ∈ SNt

be any permutation

associated with p∗ that contributes a non-zero term to (19),

i.e., sgn(σ)x1,σ(1)x2,σ(2) · · ·xNt,σ(Nt) =

αγp∗

= αγm1T
1 γm2T

2 · · · γmTT
T .

Since every m1T + · · · + mTT = Nt, for every s ∈
{1, . . . , Nt}, xs,σ(s) is a product of an algebraic number and

one of the γℓ’s, i.e., each xs,σ(s) is an entry of one the matrices

X(1,1), . . . ,X(N,N). Hence, there exist N permutations: σ1

on {1, . . . , T }, σ2 on {T + 1, . . . , 2T }, . . . , and σN on

{Nt − T + 1, . . . , Nt} such that

αγm1T
1 γm2T

2 · · · γmTT
T = sgn(σ)x1,σ(1)x2,σ(2) · · ·xNt,σ(Nt)

=

N∏

n=1

nT∏

i=(n−1)T+1

xi,σn(i). (20)

For ℓ = 1, . . . , T , let Iℓ ⊆ {1, . . . , N} be set of the indices

of those matrices in X(1,1), . . . ,X(N,N) whose first (ℓ − 1)
threads are zero, and the ℓth thread is non-zero. Since the

degree of γ1 in (20) is m1T and since there are only m1T non-

zero entries in X that contain terms of type ζγ1, ζ algebraic,

and all of them are contained in the diagonal blocks indexed

by elements in I1, it follows that for every n ∈ I1, σn is

the identity map on {(n− 1)T + 1, . . . , nT }. There are only

m2T non-zero entries in X, outside the blocks indexed by

elements of I1, of the type ζγ2, ζ algebraic, and these are

contained in the block matrices whose indices belong to I2.

Since the degree of γ2 is m2T in (20), for every n ∈ I2,

σn(i) = (n−1)T +1+((i− (n− 1)T − 1)⊕T 1). Extending

this argument, for any ℓ > 1, there are only mℓT non-zero

entries in X that are of the form ζγℓ, outside of the blocks

X(i,i), i ∈ I1 ∪ · · · ∪ Iℓ−1, and these are contained in the

matrices X(i,i), i ∈ Iℓ. Since the degree of γℓ in (20) is mℓT ,

for every n ∈ Iℓ we have

σn(i) = (n− 1)T + 1 + ((i− (n− 1)T − 1)⊕T (ℓ− 1)) ,

for i ∈ {(n − 1)T + 1, . . . , nT }. Thus, there exists a unique

σ ∈ SNt
that contributes a non-zero term of type αγp∗

, α

algebraic, to the sum (19). Hence cp∗ 6= 0, and this completes

the proof.
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