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Abstract

Frèchet distance is an important geometric measure that captures the distance between two curves

or more generally point sets. In this paper, we consider a natural variant of Fréchet distance

problem with multiple choice, provide an approximation algorithm and address its parameterized

and kernelization complexity. A multiple choice problem consists of a set of color classes Q =

{Q1, Q2, . . . , Qn}, where each class Qi consists of a pair of points Qi = {qi, q̄i}. We call a subset

A ⊂ {qi, q̄i : 1 ≤ i ≤ n} conflict free if A contains at most one point from each color class. The

standard objective in multiple choice problem is to select a conflict free subset that optimizes a

given function.

Given a line segment ℓ and set Q of a pair of points in R
2, our objective is to find a conflict

free subset that minimizes the Fréchet distance between ℓ and the point set, where the minimum

is taken over all possible conflict free subsets. We first show that this problem is NP-hard, and

provide a 3-approximation algorithm. Then we develop a simple randomized FPT algorithm which

is later derandomized using universal family of sets. We believe that this technique can be of

independent interest, and can be used to solve other parameterized multiple choice problems. The

randomized algorithm runs in O(2kn log2 n) time, and the derandomized deterministic algorithm

runs in O(2kkO(log k)n log2 n) time, where k, the parameter, is the number of elements in the

conflict free subset solution. Finally we present a simple branching algorithm for the problem

running in O(2kn2 log n) time. We also show that the problem is unlikely to have a polynomial

sized kernel under standard complexity theoretic assumption.
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1 Introduction

The Fréchet distance measures similarity between two curves by considering an ordering of

the points along the two curves. An intuitive definition of the Fréchet distance is to imagine
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that a dog and its handler are walking on their respective curves. Both can control their

speed but can only go forward. The Fréchet distance of these two curves is the minimum

length of any leash necessary for the handler and the dog to move from the starting points

of the two curves to their respective endpoints [6].

Eiter and Mannila [14] introduced discrete Fréchet distance. Intuitively, the discrete

Fréchet distance replaces the dog and its owner by a pair of frogs that can only reside

on any of the n and m specific pebbles on the curves A and B respectively. These frogs

hop from a pebble to the next without backtracking. Formally let A = {a1, a2, . . . an} and

B = {b1, b2, . . . bm} be a sequence of points. For any r ∈ R we define the graph Gr with

vertices A × B and there exists an edge between (ai, bj) and (ai+1, bj) if d(ai+1, bj) < r

and there exists an edge between (ai, bj) and (ai, bj+1) if d(ai, bj+1) < r. Discrete Fréchet

distance between A and B is the infimum value of r such that in Gr there is a path between

(a1, b1) and (an, bm).

In this paper we introduce a semi-discrete Fréchet distance which is, given a continuous

curve S and a set of points P , the minimum length of a leash that simultaneously allows

the owner to walk on S continuously and the frog to have discrete jumps from one point to

another in P without backtracking. Hence the leash is allowed to switch discretely when

frog jumps from one point to another. We assume that S is a line segment. Our main point

of consideration is the multiple choice problem in this setting. Here instead of a set of points

P , we are given a set of pair of points Q in R
2 such that at most one point is selected from

each pair so that the length of leash needed is minimized.

These problems are motivated by 2D curve fitting and object construction from noisy

data which can further be used in computer vision for data comparison and biomolecules

structure comparison. Here the “resemblance” corresponds to minimizing the semi-discrete

Fréchet distance. For example, given a noisy data with/without multiple choice constraints,

we may construct a curve/object resembling the standard curve/object and may find the

resemblance parameter (specified by semi-discrete Fréchet distance).

Related Work. Fréchet distance problem has been extensively studied in the literature. Alt

et al. [3] presented an algorithm to compute the Fréchet distance between two polygonal

curves of n and m vertices in time O(nm log2(nm)). The discrete Fréchet distance can be

computed in O(mn) time by a straightforward dynamic programming algorithm. Agarwal

et al. [1] presented a sub-quadratic algorithm for computing the discrete Fréchet distance

between two sequences of points in the plane.

The following problem has been recently addressed by Shahbaz [19]. Given a point set S

and a polygonal curve P in R
d(d > 2), find a polygonal curve Q, with its vertices chosen

from S, such that the Fréchet distance between P and Q is minimum with the relaxation

that not all points in S need to be chosen, and a point in S can appear more than once as a

vertex in Q. They show that a curve minimizing the Fréchet distance can be computed in

O(nk2 log(nk)) time where n and k represent the sizes of P and S respectively. In a recent

paper [9] Consuegra and Narasimhan introduce the concept of Avatar problems that deal with

situations where each entity has multiple copies or “avatars” and the solutions are constrained

to use exactly one of the avatars. Further study of the problems of same flavor can be found

in [5, 4]. An Avatar problem consists of a set of color classes Q = {Q1, Q2, . . . , Qn}, where

each color class Qi consists of a pair of points Qi = {qi, q̄i} (in general k ≥ 2 points can be

in each class). We call a subset A ⊂ {qi, q̄i : 1 ≤ i ≤ n} conflict free if A contains at most

one point from each color class.
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Problems we address. We formally define the problems considered in this paper starting

with the Semi-discrete Fréchet Distance problem.

Semi-discrete Fréchet Distance

Input: A set of points P = {p1, p2, . . . , pn} and a line segment ℓ in R
2.

Question: Find a sequence of points λ∗ = {q1, q2 . . . qk} where qi ∈ P , which minimizes

Fréchet distance with ℓ where the minimum is taken over all the sequence of points in P .

We denote the minimum distance by dF (P, ℓ).

Next we consider the following problems involving choices.

Conflict-free Fréchet Distance

Input: A set Q of pairs of points, and a line segment ℓ in R
2.

Question: Find a conflict free subset of points P ∗ ⊂
n
⋃

i=1

Qi which minimizes dF (P ∗, ℓ)

The natural decision version of this problem is as follows.

Conflict-free Fréchet Distance (Decision Version)

Input: A set Q of pairs of points, a line segment ℓ in R
2, and d ∈ R.

Question: Is there a conflict free set of points P ∗ ⊂
n
⋃

i=1

Qi such that dF (P ∗, ℓ) ≤ d.

The natural parameterized version of the problem is

Parameterized Conflict-free Fréchet Distance Parameter: k

Input: A set Q of pairs of points, a line segment ℓ in R
2, d ∈ R, and k ∈ N ∪ {0}.

Question: Is there a conflict free subset of points P ∗ of cardinality at most k such that

dF (P ∗, ℓ) ≤ d.

We also consider parameterized version of “minimum maxGap” introduced in [9]. Here given

a set of points x1, . . . , xn on a line, maxGap is the largest gap between consecutive points in

the sorted order. The problem is as follows.

Parameterized Minimum maxGap Parameter: k

Input: A set Q of pairs of points on a line L, two points ps and pe on L, d ∈ R, and

k ∈ N ∪ {0}.

Question: Is there a conflict free subset of points P ∗ of cardinality at most k between ps

and pe such that the minimum maxGap of P ∗ ∪ {ps, pe} is at most d.

Our Results and the organization of the paper. In Section 2 we prove that Conflict-

free Fréchet Distance (Decision Version) is NP-Complete. In Section 3 we show that

Semi-discrete Fréchet Distance is solvable in O(n log n) time. In Section 4 we provide

a constant factor approximation algorithm for Conflict-free Fréchet Distance. In

Section 5 we consider the parameterized complexity of the problem, i.e, Parameterized

Conflict-free Fréchet Distance. In parameterized complexity, algorithm runtimes are

measured in terms of input length and a parameter, which is expected to be small. More

precisely, a parameterized problem is fixed-parameter tractable (FPT) if an instance (I, k)

can be solved in time f(k) · |I|O(1) for some function f . Another major research field in

parameterized complexity is kernelization. A parameterized problem is said to admit a

polynomial kernel if any instance (I, k) can be reduced to an equivalent instance (I ′, k′), in

polynomial time, with |I ′| and k′ bounded by a polynomial in k. There is also a lower bound

framework for kernelization which allows us to rule out the existence of polynomial kernels

FSTTCS 2016
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for some problems under standard complexity-theoretic assumptions [8, 11, 15] . For more

details about parameterized complexity we refer to monographs [12, 10].

We begin with a simple randomized FPT algorithm and provide a method to derandomize

the algorithm using universal sets. In Section 5.2 we give another FPT algorithm using

branching. Finally in Section 5.3 we show that the problem is unlikely to have a polynomial

sized kernel using OR-composition.

2 Hardness of Conflict-free Fréchet distance Problem

In this section we show that Conflict-free Fréchet Distance (Decision Version)

is NP-complete by giving a reduction from Rainbow covering problem mentioned in [4].

Suppose we are given a set P = {P1, P2, . . . , Pn} where each Pi contains a pair of intervals

{Ii, Ii} such that each interval is a finite continuous subset of the x-axis. A set of intervals

Q ⊆
⋃n

i=1 Pi is a rainbow, if it contains at most one interval from each interval pair. An

interval is said to cover a point if the point lies inside the interval. The formal definition of

Rainbow covering problem is as follows.

Rainbow Covering

Input: A set of pairs of intervals P and a set of points S = {s1, s2, . . . , sn} on x-axis.

Question: Does there exist a rainbow Q such that each point in S is covered by at least

one interval in Q.

Rainbow Covering is known to be NP-complete [4]. We introduce an intermediate problem

called Rainbow Line Cover and show it NP-complete using a reduction from Rainbow

Covering. Then we give a reduction from Rainbow Line Cover to Conflict-free

Fréchet Distance (Decision Version).

Rainbow Line Cover

Input: Set P ′ = {P ′
1, P ′

2, . . . , P ′
m} where each P ′

i contains a pair of left open intervals

{Ii, Ii} and a line segment on x-axis, ℓin = [x1, x2].

Question: Is there a rainbow Qin such that it covers line segment ℓin.

◮ Lemma 1. Rainbow Line Cover is NP-hard.

Proof. The proof is by a polynomial time reduction from Rainbow Covering. Let (P, S)

be an instance of Rainbow Covering. Without loss of generality, let s1, s2, . . . , sn be the

arrangement of points from S in increasing order on x-axis according to their x-coordinates

and each interval from P covers at least one point in S. We will create an instance (P ′, ℓin)

of Rainbow Line Cover as follows. Each interval in P will be extended and the pairing in

the new set P ′ is same as the old one. Now for each interval Ij = [aj , bj ] covering s1, i.e,

the first point in S, consider the interval formed via extending it by a small distance δ ∈ R

on left such that it is open at the extended point. Denote it as Iin
j = (aj − δ, bj ]. For each

remaining intervals Ii = [ai, bi], consider the point s in S such that s is strictly to the left of

ai and is closest to it. Extend Ii to the left such that it is open ended at that point to make

Iin
i . For example, if s = (c, 0) then Iin

i = (c, bi]. Now suppose s1 = (a1, 0) and sn = (an, 0),

then ℓin is the line segment on x-axis is [a1, an].

◮ Claim 2. There exists a rainbow from P of size d, covering S, if and only if there exists a

rainbow from P ′ of size d covering ℓin.

Proof. Let Q be a rainbow from P covering S. Let Qin be the set of intervals constructed

from Q in the reduction. We claim that Qin is a rainbow covering ℓin. Since Q is a rainbow,
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Figure 1 Reduction from Rainbow line cover problem.

Qin is also also a rainbow. Since all all the points in S is covered by Q and each interval

of Q is extended left by non-zero distance, S is covered by Qin. Let q /∈ S be a point in

ℓin. Let s be the point in S to the right of q and closest to q. By construction any interval

covering s, also covers q. Hence Qin covers ℓin.

Similarly if there is rainbow Qin covering ℓin then there exists a rainbow Q such that it

covers S. Here Q will be the set of intervals that were used to construct intervals in Qin.

Since Qin is a rainbow, Q is also a rainbow. Since Qin covers S ⊆ ℓin and the intervals in

Qin are obtained by extending openly to nearest left point from S, Q covers S. ◭

This completes the proof. ◭

◮ Theorem 3. Conflict-free Fréchet Distance (Decision Version) is NP-complete.

Proof. Given a sequence of at most n points as witness, we can check in polynomial time

whether the the points in the sequence is conflict free and Fréchet distance is at most d, thus

the problem is in NP.

To prove NP-hardness we give a polynomial time reduction from Rainbow Line Cover.

Let (P ′, ℓ) be an instance of Rainbow Line Cover, where |P ′| = n. From P ′ we create a

set of pairs of points Q. For each pair Pi ∈ P ′ we create a pair of points Qi ∈ Q. To do this,

for each interval I = (a, b] ∈ Pi (similarly I) we create a point p (similarly p) as follows. If

a < x1, then prune the interval such that a = x1. Similarly if b > x2 then make b = x2. Let

the length of an interval Ii = (ai, bi] be bi −ai and len be the largest length among the length

of all the intervals in P ′. Define d = len + 1. Now for each interval I = (a, b] ∈
⋃

P ∈P′ P , we

create a point p. Consider two disks D(a) and D(b) of radius d centred at (a, 0) and (b, 0)

respectively. Let p be the intersection point above x-axis between D(a) and D(b).

The set Q is the set of pairs of points created as above, one for each P ∈ P ′. The pair

(Q, ℓ) is the output of the reduction. Clearly, the reduction takes polynomial time.

◮ Claim 4. There is a rainbow covering for (P ′, ℓ) if and only if the conflict free Fréchet

distance between Q and ℓ is at most d.

Proof. Consider a rainbow covering R for (P ′, ℓ). Now consider the set S constructed from

intervals in rainbow R. Since R is a rainbow, S is conflict free. Also as the intervals were

covering ℓ, each point on ℓ has a point in S which is at maximum distance of d. Hence the

Fréchet distance between Q and ℓ is at most d.

For the reverse direction, assume the Fréchet distance between Q and ℓ is d. That is,

there exists a sequence T = (p1, p2, . . . , pk) of conflict free points from Q, which should be

traversed in order to attain Fréchet distance d. Here pi is point in Q for all 1 ≤ i ≤ k.

Assume ℓ = [x1, x2] and yi = [ai, ai+1] be the interval on ℓ nearest to point pi for all points

pi ∈ T . We have a1 = x1 and ak+1 = x2. Also for all points z ∈ yi, d(z, pi) ≤ d where

1 ≤ i ≤ k. Thus by construction, corresponding to each yi, we have an interval Ii ∈ P ′ such

FSTTCS 2016



32:6 Fréchet Distance Between a Line and Avatar Point Set

that yi ⊆ Ii. Let the set of such intervals be R. Since T is conflict free, R is a rainbow.

Also as Fréchet distance is d, ℓ =
⋃k

i=1 yi. Hence R also covers ℓ. Therefore R is a rainbow

covering of ℓ. ◭

This completes the proof of the theorem. ◭

3 Polynomial Algorithm for Semi-discrete Fréchet distance problem

In this section we first prove that Semi-discrete Fréchet Distance problem can be

solved in O(n log n) time. Without loss of generality, assume that the line segment ℓ coincides

with the X-axis and has end points (x1,0) and (x2,0). Take any point pi ∈ P where

pi = (ai, bi) and let x be a variable depicting the position of a point on line segment ℓ with

x1 ≤ x ≤ x2. Then the function fi(x) representing the distance between the point pi and x

is fpi
(x) =

√

(x − ai)2 + bi
2.

For each point pi ∈ P we can find out the function fi(x), where each such function

represents one sided hyperbola lying above the X-axis and in interval between x1 and x2.

Let the lower envelop of such functions defined in the domain [x1, x2] be Γ(P ). Let d∗ be

the maximum perpendicular distance between Γ(P ) and ℓ. Then we can see that

◮ Observation 5. d∗ is the minimum Fréchet distance between ℓ and P .

Note that two hyperbolas will intersect at at most one point. To see this, note that

solving the two equations fpi
(x) =

√

(x − ai)2 + bi
2 and fpj

(x) =
√

(x − aj)2 + bj
2 gives

only one solution. Thus each hyperbola can appear in the lower envelop at most once.

Before proceeding further let us have a look at Davenport–Schinzel sequence. Daven-

port–Schinzel sequences were introduced by H. Davenport and A. Schinzel in the 1960s.

◮ Definition 6. For two positive integers n and s, a finite sequence U =< u1, u2, u3, . . . , um >

is said to be a Davenport–Schinzel sequence of order s (denoted as DS(n, s)-sequence) if it

satisfies the following properties:

1. 1 ≤ ui ≤ n for each i ≤ m.

2. ui 6= ui+1for each i < m.

3. If x and y are two distinct values in the sequence U , then U does not contain a subsequence

. . . x . . . y . . . x . . . y . . . consisting of s + 2 values alternating between x and y.

◮ Theorem 7 ([17, 7, 2]). The lower envelope of a set F of n continuous, totally defined,

univariate functions, each pair of whose graphs intersects in at most s points, can be

constructed in an appropriate model of computation, in O(λs(n) log n) time where λs(n)

is the Davenport–Schinzel sequence of order s including n distinct values.

Since λ1(n) = n, by substituting s = 1 in Theorem 7, we get,

◮ Theorem 8. Semi-discrete Fréchet Distance problem can be solved in O(n log n)

time.

4 Approximation algorithm for Conflict-free Fréchet distance problem

In this section we present an approximation algorithm for Conflict-free Fréchet Dis-

tance. Let us first define some terminology. As before, assume that the line segment ℓ

coincides with the X-axis and has end points (x1,0) and (x2,0). For any point set A, denote

Semi-discrete Fréchet distance between A and line-segment ℓ by dF (A, ℓ). Also let Γ(A) be
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p2 p3
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ℓ

{p1, p2}

{p3, p2}

{p1, p3}

{p1, p1}

{p2, p2}

{p3, p3}

Figure 2 Creating the bipartite graph from the lower envelope.

the lower envelope of the functions fpi
(x) =

√

(x − a)2 + b2 for all pi = (a, b) ∈ A where

x1 ≤ x ≤ x2. Now let us start our discussion with the following observation about the

Semi-discrete Fréchet distance.

◮ Observation 9. For any set of points A and B where A ⊆ B, dF (A, ℓ) ≥ dF (B, ℓ).

Proof. Let C ⊆ A be the set of points that achieves dF (A, ℓ) = d. Since A ⊆ B, we have

that C ⊂ B and hence dF (B, ℓ) ≤ d. ◭

Let (Q = {Q1, Q2 . . . Qn}, ℓ) be the input instance of Conflict-free Fréchet Dis-

tance, where Qi = {qi, qi}. Let Q =
n
⋃

i=1

Qi. By Theorem 7 we can find dF (Q, ℓ) in O(n log n)

time. Among all conflict free subsets of Q, assume P opt is a subset that minimizes the

Semi-discrete Fréchet distance and let dopt = dF (P opt, ℓ). If Γ(Q) contains at most one of

fqi
or fqi

for each Qi = {qi, qi} , then dopt = dF (Q, ℓ). As P opt ⊆ Q, from Observation 9 we

have following lemma.

◮ Lemma 10. dopt ≥ dF (Q, ℓ).

Suppose the set of points for which the corresponding fqi
(x) are in Γ(Q) be P

′

. Observe

that if P
′

does not contain points from the same pair, then dF (P
′

, ℓ) is the conflict free

Semi-discrete Fréchet distance and we have dopt = dF (Q, ℓ) = dF (P
′

, ℓ). If not, then our

objective is to choose a conflict free subset P
′′

of P
′

such that dF (P
′′

, ℓ) ≤ 3dF (P
′

, ℓ). First,

for all the points qi ∈ P
′

such that qi /∈ P
′

, we include qi in P
′′

. For the rest of the points,

let Ppair = {p1, p2, . . . p2k} be the sorted order of points along x-axis where each pi = qj or

qj for some j. Now from Ppair , we create bags B1, B2, . . . , Bk where Bi = {p2i−1, p2i}. We

construct a bipartite graph G = (U, V, E) where U = {B1, B2, . . . , Bk} and V is set of all k

pairs Qi = {qi, qi} such that both qi and qi are in Ppair. We add an edge eij = (Bi, Qj), if

Bi ∩ Qj 6= ∅. For an example, see Figure 2.

Now we have the following lemma.

◮ Lemma 11. G = (U, V, E) contains a perfect matching M .

Proof. Each vertex in U and V has degree at least 1 and at most 2. Also if vertex Bi in U

has degree one, then the vertex Qj to which it is connected in V also has degree one (as it

implies that both Bi = Qj = {qi, qi}). Thus every subset W of U has a set of neighbours

NG(W ) such that |W | ≤ |NG(W )| (here the neighbours of W is the set of vertices in V to

which vertices in W are connected). Hence by Hall’s marriage theorem [16], G has a perfect

matching M . ◭

Let M be a perfect matching in G. Now for each edge (Bi, Qj) selected in matching

M , if |Bi ∩ Qj | = 1 then include |Bi ∩ Qj | in P
′′

, else if |Bi ∩ Qj | = 2 then we include one

arbitrary point of Bi ∩ Qj in P
′′

. Observe that from each pair of points in Ppair, only one

point is selected. Thus P
′′

is conflict free. Now we have following lemma.

FSTTCS 2016
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◮ Lemma 12. dF (P
′′

, ℓ) ≤ 3dF (Q, ℓ).

Proof. Since dF (Q, ℓ) = dF (P
′

, ℓ), it is enough to show that dF (P
′′

, ℓ) ≤ 3dF (P
′

, ℓ). Let π

be the sorted order of points in P
′

along x-axis. We first prove the follwing claim.

◮ Claim 13. For any point s ∈ P
′

, at least one among s, its predecessor in π and its

successor in π, is in P ′′.

Proof. We claim that (i) no three consecutive points from π can be in P ′ \ P ′′. For any three

consecutive points q1, q2, q3, either one of them does not belong to Ppair and thus belongs to

P ′′ or one among {q1, q2} and {q2, q3} belongs to Ppair. From the construction of P ′′, we

include one among q1, q2, q3, in P ′′. Now we claim that (ii) at least one among the first two

points in π is in P ′′. Let s1 and s2 be the first two points in π. If {s1, s2} 6⊆ Ppair, then

P ′′ ∩ {s1, s2} 6= ∅. Otherwise B1 = {s1, s2} and by the construction of P ′′, we have that

P ′′ ∩ {s1, s2} 6= ∅. Similarly we can prove that (iii) at least one among the last two points in

π is in P ′′.

The claim follows from the statements (i),(ii) and (iii). ◭

Let d = dF (P
′

, ℓ). Now we prove that dF (P
′′

, ℓ) ≤ 3d. Towards that it is enough to

prove that for any point on ℓ, there is a point in P
′′

, which is at a distance at most 3d. For

any two points x, y, we use d(x, y) to denote the distance between x and y. Let z be a point

in ℓ. Since d = dF (P
′

, ℓ), there is a point s in P
′

such that d(z, s) ≤ d. Now we show that

there is a point s′ ∈ P ′′ such that d(z, s′) ≤ 3d. If s ∈ P ′′, then we set s′ = s. Otherwise, by

Claim 13, either its successor or its predecessor in π belongs to P ′′. Let s′ be a point in P ′′

which is either successor of s or predecessor of s. Since the d = dF (P
′

, ℓ), there is a point

t on ℓ such that d(t, s) ≤ d and d(t, s′) ≤ d. Now we have that d(z, s) ≤ d, d(s, t) ≤ d and

d(t, s′) ≤ d. Hence by triangular inequality, we get d(z, s′) ≤ 3d. This completes the proof of

the lemma. ◭

◮ Theorem 14. There is a 3-approximation algorithm for Conflict-free Fréchet Dis-

tance.

5 Fixed Parameter Tractable Algorithms

Here we give two FPT algorithms for Parameterized Conflict-free Fréchet distance Problem.

The first algorithm is based on randomization and the second is based on branching.

5.1 Randomized algorithm

We give a randomized FPT algorithm which succeeds with a constant success probability.

It uses the following problem for which there is a simple greedy algorithm running in time

O(n log n); the algorithm is very similar to that of the Interval Point Cover [13].

Interval Line Cover

Input: A line segment ℓ and a set Q of n intervals on ℓ.

Question: Find a minimum cardinality subset Q′ ⊆ Q such that the intervals in Q′ cover

all the points in the line segment ℓ.

◮ Theorem 15. There is a randomized algorithm for Parameterized Conflict-free

Fréchet Distance running in time O(2kn log n) which outputs No for all No-instances

and outputs Yes for all Yes-instances with constant probability.
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Proof. Let |Q| = n. The algorithm work as follows. It creates a set S of n points through

the following random process. For each {qi, qi} ∈ Q, it uniformly at random picks one point

from {qi, qi} and adds to the set S. Then for each point p ∈ S, the algorithm then computes

an interval on ℓ as follows. Draw a circle Cp of radius d with p as the centre. The interval

[ap, bp] on ℓ is the interval on ℓ covered by the circle Cp. Now run the O(n log n) algorithm for

Interval Line Cover on instance (ℓ, {[ap, bp] | p ∈ S}). for the problem If this algorithm

returns a solution of size at most k, then our algorithm outputs Yes.

Now we show that if the input instance is an Yes instance, then our algorithm outputs

Yes with probability 1
2k . Let P ∗ be a conflict free subset of points of cardinality k such that

dF (P ∗, ℓ) ≤ d. Notice that for each pi ∈ P ∗, there is point pi /∈ P ∗ such that {pi, pi} ∈ Q

and with probability 1/2 we have added pi to S. This implies that Pr(S = P ∗) = 1
2k . Since

each point on ℓ is at a distance at most d to some point P ∗, when S = P ∗, the algorithm

of Interval Line Cover outputs Yes Since Pr(S = P ∗) = 1
2k our algorithm output Yes

with probability at least 1
2k . Suppose input is a No-instance. Then for each conflict free

point set P ∗ of size at most k, dF (P ∗, ℓ) > d. Also note that the set S we constructed is a

conflict free set. Since dF (P ∗, ℓ) > d, we need more than k intervals from {[ap, bp] | p ∈ S}

to cover ℓ. This implies that the algorithm of Interval Line Cover will return a set of

size more than k, and so our algorithm will output No.

We can boost the success probability to a constant by running our algorithm 2k times.

For an Yes instance the algorithm will fail in all 2k run is at most (1 − 1
2k )2k

≤ 1
e
. Since we

are running the algorithm of Interval Line Cover 2k time, the running time mentioned

in the theorem follows. ◭

Derandomization

Here, we define matching universal sets. Then we give a derandomization of algorithm for

the problem. First we define some notations. For n ∈ N, let [n] = {1, . . . , n}. For a set U ,
(

U
k

)

denotes the family of subsets of U , where each subset is of size exactly k.

Matching universal sets for a family of disjoint pairs. Here we define a restricted version

of universal sets (defined below) which we call matching universal sets and it is defined for

a family of disjoint pairs. We give an efficient construction of these objects by reducing to

universal sets. We use it to derandomize our algorithm given in the section. We believe

that these objects will add to the list of tools used to derandomize algorithms and will be of

independent interest.

◮ Definition 16 ((n, k)-universal sets [18]). Let U be a set of size n. A family of subsets F of

A is called (n, k)-universal sets for U , if for any A, B ⊆ U such that A ∩ B = ∅, |A ∪ B| = k,

there is a set F ∈ F such that A ⊆ F and F ∩ B = ∅

◮ Lemma 17 ([18]). There is a deterministic algorithm which constructs an (n, k)-universal

family of sets of cardinality 2kkO(log k) log n in time 2kkO(log k)n log n.

◮ Definition 18. Let U = {ai, bi | i ∈ [n]} be a 2n sized set and S = {{ai, bi} | i ∈ [n]} be

a family of pairwise disjoint subsets of U . A family of subsets F of U is called an (n, k)-

matching universal family for S, if for each I ∈
(

[n]
k

)

, and S ∈
(

U
k

)

such that |S ∩ {aj , bj}| = 1

for all j ∈ I, we have a set F ∈ F such that S ⊆ F and F ∩ ({aj , bj | j ∈ I} \ S) = ∅.

Now we use Lemma 17, to get an efficient construction of (n, k)-matching universal sets.
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◮ Theorem 19. Given a 2n sized set U = {ai, bi | i ∈ [n]} and a family S = {{ai, bi} | i ∈ [n]}

of pairwise disjoint subsets of U , there is a deterministic algorithm which constructs an

(n, k)-matching universal family of cardinality 2kkO(log k) log n in time 2kkO(log k)n log n.

Proof. Let U ′ = {e1, . . . , en} be a set of size n, where each ei represents the set {ai, bi}. Now

our algorithm first constructs an (n, k)-universal family F ′ for the set U ′ using Lemma 17.

Now the algorithm constructs an (n, k)-matching universal sets F for S from the family F ′

as follows. For each set F ′ ∈ F ′, it creates a set F ⊆ U of size n and adds to F : for each

ei ∈ U ′, if ei ∈ F ′, then it adds ai to F , otherwise it adds bi to F .

Notice that |F| = |F ′|, and hence the cardinality of (n, k)-matching universal family

mentioned in the theorem follows. Since the algorithm mentioned in Lemma 17 takes time

2kkO(log k)n log n and construction of F from F ′ takes time O(n), the running time of our

algorithm is 2kkO(log k)n log n.

Now we show that F is indeed an (n, k)-matching universal family for S. Consider a set

I ∈
(

[n]
k

)

and S ∈
(

U
k

)

such that |S ∩ {aj , bj}| = 1 for all j ∈ I. Let A′ = S ∩ {aj | j ∈ I},

B′ = {aj | j ∈ I} \ A′ and C = {bj | aj ∈ B′}. Notice that S = A′ ∪ C, A′ ∩ B′ = ∅ and

since |I| = k, we have that |A′ ∪ B′| = k. Let A = {ej | aj ∈ A′} and B = {ej | aj ∈ B′}.

Since A′ ∩ B′ = ∅ and |A′ ∪ B′| = k we have that A ∩ B = ∅ and |A ∪ B| = k. By the

definition of (n, k)-universal family, we know that there is a set F ′ ∈ F ′ such that A ⊆ F ′

and F ′ ∩ B = ∅. Now consider the set F created corresponding to F ′. Since for each ej ∈ A,

ej ∈ F ′, we have that aj ∈ F . Since for each ej′ ∈ B, ej′ /∈ F ′, we have that bj′ ∈ F . This

implies that A′ ⊆ F and C ⊆ F , and hence A ∪ C = S ⊆ F . Since |F ∩ {ai, bj}| = 1 for all

i ∈ [n] and S ⊆ F , we have that F ∩ ({aj , bj | j ∈ I} \ S) = ∅. This completes the proof of

the lemma. ◭

Instead of creating the set S by the random process, we can use (n, k)-matching universal

family F for Q to get a deterministic algorithm. That is for each S ∈ F , run the algorithm for

Interval Line Cover on the input created using ℓ and S as above, and output Yes, if at

least once the algorithm for Interval Line Cover returns a solution of size at most k. The

correctness of the algorithm follows from the definition of (n, k)-matching universal family. By

Theorem 19, the running time to construct F is 2kkO(log k)n log n and |F| = 2kkO(log k) log n.

Hence our deterministic algorithm will run in time 2kkO(log k)n log2 n. This gives us the

following theorem.

◮ Theorem 20. There is a deterministic algorithm for Parameterized Conflict-free

Fréchet Distance running in time O(2kkO(log k)n log2 n).

Note: This technique is especially interesting because the same technique can be used to

provide FPT algorithms for similar class of problems. Consider a generalized multiple choice

problem P(Q, c) where we are given a set Q with n color classes where each color class

contains c objects. The objective is to select minimum number of objects taken at most one

from each color class to satisfy certain conditions. If there exists a polynomial time algorithm

for P(Q, 1) then the same technique gives a randomized ck algorithm.

5.2 Branching algorithm

For this algorithm, we will consider the more general problem which is the parameterized

version of Rainbow Covering.
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Parameterized Rainbow Covering Parameter: k

Input: A set of n pairs of intervals P and a set of points S on X-axis, and k ∈ N ∪ {0}.

Question: Is there a rainbow Q of cardinality at most k such that each point in S is

covered by at least one interval in Q.

We now give an algorithm based on branching for this problem. The algorithm can be

modified to solve Parameterized Conflict-free Fréchet Distance.

Let S = {s1, s2, . . . , sn}. Without loss of generality, assume that s1, s2, . . . , sn are sorted

in ascending order of their x-coordinates. Now for each interval Ii ∈ Pi where Pi ∈ P,

assume that the interval is starting not before s1 and ending not beyond sn. If not, trim

such intervals such that they satisfy above criteria. Also initialize an integer variable k′ = k.

In the first step, consider the intervals covering s1. Let the sorted order of these intervals

according to their length in descending order be Ic1
= (I1, I2, . . . , Iq) (here the length of

interval I = [a, b] is calculated as b − a where we have b > a). Let si ∈ S be the first point

right to I1. If q = 1, then choose I1 in solution, delete I1,Ī1 ,s1, I2, . . . , Iq and all points

covered by I1. Else if q > 1 then we have the following lemma.

◮ Lemma 21. There exists an optimal solution that contains I1 or Ī1.

Proof. Suppose the lemma is false. Then we have some other Ij covering s1. But Ij ⊆ I1 and

also Ī1 is not in solution. So we can choose I1 and delete Ij in our new optimal solution. ◭

Thus we can either choose I1 in optimal solution or may choose Ī1 in it. If I1 is chosen then

delete I1, Ī1, s1, I2, . . . , Iq and all points covered by I1. If I1 is not chosen then put Ī1 in

solution, and delete I1,Ī1, all intervals Ii such that Ii ⊆ Ī1 and all points covered by Ī1. At

the end of the first step, put k′ = k′ − 1. For the second step, start with si if I1 is chosen in

the previous step. Else consider s1 again with branching on I2. Repeat the same procedure

till either all points are covered or k′ = 0. Now if atleast one branch of these O(2k) choices

covers all the points then accept else reject. The time complexity of this algorithm will be

O(2kn2 log n). Hence we have following theorem.

◮ Theorem 22. There is branching algorithm for Parameterized Rainbow Covering

running in time O(2kn2 log n). Similarly, there is a branching algorithm for Parameterized

Conflict-free Fréchet Distance with runtime O(2kn2 log n).

We observe that the branching algorithm can be used to obtain FPT algorithm for the

Parameterized Minimum maxGap. Outline of algorithm is as follows. Start from the

first point ps. Take the farthest point from ps having distance less than d. Let the point

chosen be pi. Then we claim that there exists an optimal solution which contains either pi

or p̄i. So branch on pi.

5.3 Kernel Lower bound

In this subsection we show that Parametrized Rainbow Covering does not admit a

polynomial kernel unless co-NP ⊆ NP/poly. Towards that we first explain one of the tools to

prove such a lower bound– called composition.

◮ Definition 23 (Composition [8]). A composition algorithm (also called OR-composition

algorithm) for a parameterized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a

sequence ((x1, k), ..., (xt, k)), with (xi, k) ∈ Σ∗ × N for each 1 ≤ i ≤ t, uses time polynomial

in
∑t

i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some

1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is compositional (or

OR-compositional) if there is a composition algorithm for it.
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It is unlikely that an NP-complete problem has both a composition algorithm and a

polynomial kernel as suggested by the following theorem.

◮ Theorem 24 ([8, 15]). Let Π be a compositional parameterized problem whose unparamet-

erized version Π̃ is NP-complete. Then, if Π has a polynomial kernel then co-NP ⊆ NP/poly.

Towards getting a composition for Parametrized Rainbow Covering, we first show

how we can compose two instances and then we use this to get a composition algorithm.

Next we have the following lemma.

◮ Lemma 25. There is a polynomial time algorithm which takes two instances ((P1, S1), k)

and ((P2, S2), k) of Parametrized Rainbow Covering as input and outputs an instance

((P, S), k + 1) such that ((P, S), k + 1) is an Yes-instance of Parametrized Rainbow

Covering if and only if at least one among ((P1, S1), k) and ((P2, S2), k) is a Yes-instance

of Parametrized Rainbow Covering.

Proof. Let S1 = {s1, . . . , sn}, and S2 = {s′
1, . . . , s′

n}. Without loss of generality assume that

s1 < s2 < . . . < sn and s′
1 < s′

2 < . . . < s′
n. Without loss of generality we can assume that for

any interval J which is part of any pair in P1 and for any interval J ′ which is part of any pair

in P2, J is contained in [s1, sn] and J ′ is contained in [s′
1, s′

n]. Now we create a set of points

S′ = {sn + 1 + s′
i | i ∈ [n]}, and a pair of intervals (I, I) = ([s1, sn], [sn + 1 + s′

1, sn + 1 + s′
n]).

Now we shift each interval of the instance ((P2, S2), k) by sn + 1. For any interval J = [a, b]

and c ∈ R we use c + J to denote the interval [c + a, c + b]. Let S = S1 ∪ S′ and

P = P1 ∪ {(sn + 1 + J, sn + 1 + J) | (J, J) ∈ P2} ∪ {(I, I)}. Our algorithm will output

((P, S), k + 1).

Now we need to show the correctness of the algorithm. Suppose ((P, S), k + 1) is a

Yes-instance of Parametrized Rainbow Covering and let I be a solution of size k + 1.

We know that at most one of I and I belong to I. Hence, if I /∈ I, then I \ {I} covers all

the points in S1. From the construction of P, we have that all the intervals which intersects

[s1, sn] are from {J, J | (J, J) ∈ P1}. This implies that I ∩ {J, J | (J, J) ∈ P1} covers all the

points in S1 and I ∩{J, J | (J, J) ∈ P1} is a set of conflict free intervals from P1. This implies

that ((P1, S1), k) is a Yes-instance of Parametrized Rainbow Covering. When I /∈ I,

by similar arguments we can show that ((P2, S2), k) is a Yes-instance of Parametrized

Rainbow Covering.

Suppose one among ((P1, S1), k) and ((P2, S2), k) is a Yes-instance of Parametrized

Rainbow Covering. Assume ((P1, S1), k) is a Yes-instance and let I be a solution of size

k for it. Then I ∪ {I} is a set of conflict free intervals and these intervals cover all the points

in S. The case when ((P2, S2), k) is a Yes-instance can be proved by similar arguments. ◭

◮ Lemma 26. Parametrized Rainbow Covering is compositional.

Proof. Let ((P1, S1), k), . . . , (Pt, St), k) be the input of the composition algorithm. If t > 2k,

then the composition algorithm solves each instance separately using Theorem 22 and outputs

a trivial Yes instance if at least one of the given instances is a Yes instance and outputs a

trivial No instance otherwise. In this case the running time of the algorithm is bounded by

t2nO(1) and hence it is a polynomial time algorithm.

So now we can assume that t ≤ 2k. Without loss of generality assume that t = 2ℓ, where

ℓ ≤ k. If t is not a power of 2, we can add dummy No instances to make the total number

of instances a power of 2. Now we design a recursive algorithm to get a desired output. The

pseudocode is mentioned in Algorithm 1.

By induction on ℓ we show that the parameter in the output instance is k + ℓ. The base

case is when ℓ = 1, and the statement is true by Lemma 25. Now consider the induction
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Algorithm 1: Composition algorithm with inputs ((P1, S1), k), . . . , ((P2ℓ , S2ℓ), k)

1 if ℓ = 1 then

2 Run the algorithm mentioned in Lemma 25 and return the result

3 ((P ′
1, S′

1), k′) := Algorithm 1( ((P1, S1), k), . . . , ((P2ℓ−1 , S2ℓ−1), k) )

4 ((P ′
2, S′

2), k′) := Algorithm 1( (P2ℓ−1 , S2ℓ−1), k), . . . , ((P2ℓ , S2ℓ), k) )

5 Run algorithm mentioned in Lemma 25 on ((P ′
1, S′

1), k′) and ((P ′
1, S′

1), k′), and return

the result

step. For the two instances created by recursively calling Algorithm 1 on 2ℓ−1 instances, the

parameters are k + ℓ − 1 each, by induction hypothesis. Hence, in Step 5, by Lemma 25, the

parameter in the output instance is k + ℓ. This implies that the parameter in the output

instance is k + ℓ ≤ 2k.

Again by induction on ℓ, we can show that the output instance of Algorithm 1 is a Yes

instance if and only if at least one of the input instances is a Yes instance. For the base case

when ℓ = 1, the statement is true by Lemma 25. Now consider the induction step. Suppose

that there is a Yes instance in the input. Then by induction hypothesis, at least one the

instances created in Step 3 or Step 4 is a Yes instance. Then, by Lemma 25, in Step 5,

Algorithm 1 will output a Yes instance. Now suppose Algorithm 1 output a Yes instance.

Then, by Lemma 25, one of the instances created in Step 3 or Step 4 is a Yes instance.

Hence, by induction hypothesis, at least one of the input instances is a Yes instance. ◭

By Theorem 24 and Lemma 26, we get the following theorem.

◮ Theorem 27. Parametrized Rainbow Covering does not admit a polynomial kernel

unless co-NP ⊆ NP/poly.
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