Header menu link for other important links
X
Flexible ultra-sensitive and resistive NO2 gas sensor based on nanostructured Zn(X)Fe(1- x)2O4
S. Goutham, K.K. Sadasivuni, , K.V. Rao
Published in Royal Society of Chemistry
2018
Volume: 8
   
Issue: 6
Pages: 3243 - 3249
Abstract
Low concentration gas detection, rapid response time and low working temperature are anticipated for a varied range of toxic gas detection applications. Conversely, the existing gas sensors suffer mostly from a high working temperature along with a slow response at low concentrations of analytes. Here, we report an ultrasensitive flexible nanostructured Zn(x)Fe(1-x)2O4 (x = 0.1, 0.5 and 0.9) based chemiresistive sensor for nitrogen dioxide (NO2) detection. We evince that the prepared flexible sensor Zn(0.5)Fe(0.5)2O4 has detection potential as low as 5 ppm at a working temperature of 90 °C in a short phase. Further, the Zn(0.5)Fe(0.5)2O4 sensor exhibits excellent selectivity, stability and repeatability. The optimized sensor sensing characteristics can be helpful in tremendous development of foldable mobile devices for environmental monitoring, protection and control. © 2018 The Royal Society of Chemistry.
About the journal
JournalData powered by TypesetRSC Advances
PublisherData powered by TypesetRoyal Society of Chemistry
ISSN20462069