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1 Introduction

After the Higgs discovery at the LHC, the standard model (SM) of particle physics seems

to be complete. However, it does not explain many current issues in particle physics which

are supported by experiments. In particular, the oscillation experiments [1–4] confirm that

the neutrinos are massive and they mix with each other. Contrary to this finding, neutrinos

are massless within the framework of SM. Another outstanding problem in particle physics

as of today is the nature of dark matter (DM), whose relic abundance is precisely measured

by the WMAP [5] and PLANCK [6] satellite experiments to be 0.094 ≤ ΩDMh
2 ≤ 0.130. In

fact, the existence of DM is strongly supported by the galactic rotation curve, gravitational

lensing and large scale structure of the Universe [8] as well. However, the SM of particle

physics fails to provide a candidate of DM. In this work our aim is to go beyond the SM

of particle physics to explore scenarios which can accommodate a candidate of DM as well

as non-zero neutrino masses and mixings.

Flavor symmetries are often used to explore many unsolved issues within and beyond

the SM of particle physics. For example, a global U(1) flavor symmetry was proposed a

long ago to explain the quark mass hierarchy and Cabibbo mixing angle [9]. Subsequently

many flavor symmetric frameworks have been adopted to explain neutrino masses and

mixings in the lepton sector. In particular, a tri-bimaximal (TBM) lepton mixing generated

from a discrete flavor symmetry such as A4 attracts a lot of attention [10, 11] due to its

simplicity and predictive nature. However the main drawback of these analyses was that it

predicts vanishing reactor mixing angle θ13 which is against the recent robust observation

of θ13 ≈ 9◦ [12–14] by DOUBLE CHOOZ [15], Daya Bay [16], RENO [17] and T2K [18]

experiments. Hence, a modification of the TBM structure of lepton mixing is required.
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In this work we consider the existence of a dark sector [19] consisting of vector-like

fermions which are charged under an additional U(1) flavor symmetry. Specifically, we

consider a vector-like SM singlet fermion (χ0) and a SU(2)L doublet fermion (ψ) which

are odd under the remnant Z2 symmetry generated from the broken U(1). The neutral

components mix to give rise a fermionic DM (ψ1). Note that in the simplest case, a singlet

fermion (χ0) can generate a Higgs portal interaction by dimension five operator suppressed

by the new physics scale as (χ0χ0H†H)/Λ. However, as we argue, that the new physics

scale (Λ) involved in the theory has to generate the required neutrino mass as well and thus

making it very high. As a result, the annihilation rate of DM becomes too small which

in turn make the relic density over abundant. On the other hand, a vector-like fermion

doublet (ψ) suffers from a large annihilation cross-section to SM through Z mediation

and is never enough to produce the required density. It is only through the mixing of

these two that can produce correct relic density as we demonstrate here. We also assume

the existence of a TBM neutrino mixing pattern (in a basis where charged leptons are

diagonal) based on A4 symmetry. The interaction between the dark and the lepton sector

of the SM is mediated by flavon fields charged under the U(1) and/or A4. These flavons

also take part in producing additional interactions involving lepton and Higgs doublets.

The U(1) symmetry, once allowed to be broken by the vacuum expectation value (vev) of

a flavon, generates a non-zero sin θ13 after the electroweak symmetry breaking (and when

A4 breaks too). We show that the non-zero value of sin θ13 is proportional to the strength

of Higgs portal coupling of DM giving rise to the correct relic density. In other words, the

precise value of sin θ13 and DM relic density can fix the charge of dark matter under U(1)

flavor symmetry. Indeed it is true for the Dirac CP violating phase δ = 0 as shown in our

previous work [20]. However, we have found here that the non-zero values of δ plays an

important role for the determination of DM charge under U(1) flavor symmetry. Although

the current allowed range of δ (0◦ − 360◦) can significantly increase the uncertainty in the

determination of DM flavor charge (compared to δ = 0 scenario), a future measurement

of δ would be important in fixing the charge. In [20], we have assumed a prevailing TBM

pattern and here in this work we provide an explicit construction of that too. We also

show that the effective Higgs portal coupling of the vector-like leptonic DM can be tested

at future direct search experiments, such as Xenon1T [21] and at the Large Hadron Collider

(LHC) [19, 22, 23].

The draft is arranged as follows. In section 2 we discuss the relevant model for corre-

lating non-zero sin θ13 to Higgs portal coupling of DM which gives correct relic density. In

section 3 and 4, we obtain the constraints on model parameters from neutrino masses and

mixing and relic abundance of dark matter respectively. In section 5, we obtain the corre-

lation between the non-zero sin θ13 and Higgs portal coupling of dark matter and conclude

in section 6.

2 Structure of the model

In this section, we describe the field content and symmetries involved. We consider an

effective field theory approach for realizing the neutrino masses and mixing while trying
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Field eR µR τR ℓ H ψ χo φS φT ξ η φ

SU(2)L 1 1 1 2 2 2 1 1 1 1 1 1

A4 1 1′′ 1′ 3 1 1 1 3 3 1 1′ 1

Z3 ω ω ω ω 1 1 1 ω 1 ω ω 1

Z2 -1 -1 -1 1 1 -1 -1 1 -1 1 1 1

U(1) 0 0 0 0 0 q1 q2 0 0 0 −x x

Table 1. Fields content and transformation properties under the symmetries imposed on the model.

Here nx = q1 − q2 (justified from eq. (2.8)), n will be determined later.

to connect it with the DM sector as well. The set-up includes the interaction between

these two sectors which has the potential to generate adequate θ13, and hence a deviation

of TBM mixing happens, to match with the experimental observation while satisfying the

constraints from relic density and direct search of DM.

2.1 Neutrino sector

The basic set-up relies on the A4 symmetric construction of the Lagrangian associated

with neutrino mass term [10, 11]. Based on the construction by Altarelli-Feruglio (AF)

model [11] (for generating TBM mixing), we have extended the flavon sector and symmetry

of the model. The SM doublet leptons (ℓ) transform as triplet under the A4 symmetry

while the singlet charged leptons: eR, µR and τR transform as 1, 1
′′

and 1
′

respectively

under A4. The flavon fields and their charges (along with the SM fields) are described

in table 1. The flavons φS , φT and ξ break the A4 flavor symmetry by acquiring vevs in

suitable directions. Note that here φS and φT transform as A4 triplets but the flavon ξ

and the SM Higgs doublet (H) transform as a singlet under A4. So the contribution to the

effective neutrino mass matrix coming through the higher dimensional operator respecting

the symmetries considered can be written as

− Lν0 = (ℓHℓH)(y1ξ − y2φS)/Λ
2 , (2.1)

where Λ is the cut off scale of the theory and y1, y2 represents respective coupling constant.

The scalar fields break the flavor symmetry when acquire vevs along1 〈φS〉 = (vS , 0, 0),

〈φT 〉 = vT (1, 1, 1), 〈ξ〉 = vξ and 〈H〉 = v. As a result we obtain the light neutrino mass

matrix as

(mν)0 =



a− 2b/3 b/3 b/3

b/3 −2b/3 a+ b/3

b/3 a+ b/3 −2b/3


 , (2.2)

where a = y1(v
2/Λ)ǫ and b = y2(v

2/Λ)ǫ, with ǫ = vξ/Λ = vS/Λ is considered without

loss of generality as any prefactor (due to the mismatch of vevs) can be absorbed in the

1The chosen vev alignments of φS and φT can be obtained by minimizing the potential involving them

along a similar line followed in [11, 24–26].
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definition of y2. The above mass matrix can be diagonalized by the TBMmixing matrix [27]

UTB =




√
2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2


 . (2.3)

The relevant contribution to charged leptons (considering charges from table 1) can be

obtained via

Ll =
ye
Λ
(ℓ̄φT )HeR +

yµ
Λ
(ℓ̄φT )

′HµR +
yτ
Λ
(ℓ̄φT )

′′HτR , (2.4)

which yields the diagonal mass matrix:

Ml =



yev

vT
Λ 0 0

0 yµv
vT
Λ 0

0 0 yτv
vT
Λ


 . (2.5)

Note that this is the leading order contribution (and is proportional to 1/Λ) in the charged

lepton mass matrix. Due to the symmetry of the model as described in table 1 (including the

U(1) symmetry to be discussed later) there will be no term proportional to 1/Λ2. Therefore

no contribution to the lepton mixing matrix originated from the charged lepton sector up

to 1/Λ2 is present. Here it is worthy to mention that the dimension-5 operator ℓHℓH/Λ

is forbidden due to the Z3 symmetry specified in table 1. This additional symmetry also

forbids the dimension-6 operator ℓHℓH(φT+φ
†
T )/Λ

2. The U(1) flavor symmetry considered

here does not allow terms involving φ, η (such as: ℓHℓH(φ+ η)/Λ2) as discussed (where φ

and η are charged under U(1) but the SM particles are not). Therefore, eq. (2.1) is the only

relevant term up to 1/Λ2 order contributing to the neutrino mass matrix (mν)0 ensuring

its TBM structure as in eq. (2.2). Note that these kind of structure of the neutrino mass

matrix of (mν)0 can also be obtained in a A4 based set-up either in a type-I, II or inverse

seesaw framework [28–31].

The immediate consequence of TBM mixing as given in eq. (2.3) is that it implies

sin2 θ12 = 1/3 , sin2 θ23 = 1/2 and sin θ13 = 0. Now to explain the current experimental

observation on θ13 we consider an operator of order 1/Λ3:

− δLν = y3
(ℓHℓH)φη

Λ3
, (2.6)

where we have introduced two other SM singlet flavon fields φ and η which carry equal and

opposite charges under the U(1) symmetry but transform as 1 and 1
′

under A4 respectively.

The U(1) charge assignment to these two flavons also ensures that φ and η do not take

part in (mν)0. Thus, after flavor and electroweak symmetry breaking this term contributes

to the light neutrino mass matrix as follows:

δmν =




0 0 d

0 d 0

d 0 0


 , (2.7)
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where d = y3(v
2/Λ)ǫ2 with ǫ = 〈φ〉/Λ ≡ 〈η〉/Λ. This typical flavor structure of the

additional contribution in the neutrino mass matrix follows from the involvement of η field,

which transforms as 1′ under A4 [28, 32]. This δmν can indeed generate the θ13 6= 0 in the

same line as in [28, 30, 31]. Note that the choice of Z2 symmetry presented in table 1 also

forbids the contributions to neutrino mass matrix proportional to 1/Λ3 (involving terms

like ℓHℓHφSφT , ℓHℓHξφT , ℓHℓHφSφ
†
T and ℓHℓHξφ†T ) and thus ensuring eq. (2.7) is the

only contribution responsible for breaking the TBM mixing.

2.2 Dark sector and its interaction with neutrino sector

The dark sector associated with the present construction consists of a vector-like SU(2)L
doublet ψT = (ψ0, ψ−) and a neutral singlet fermion χ0 [19], which are odd under the Z2

symmetry as has already been mentioned in table 1. These fermions are charged under an

additional U(1) flavor symmetry, but neutral under the existing symmetry in the neutrino

sector (say the non-Abelian A4 and additional discrete symmetries required). Note that all

the SM fields and the additional flavons in the neutrino sector except φ are neutral under

this additional U(1) symmetry. Since ψ and χ0 are vector-like fermions, they can have

bare masses, Mψ and Mχ, which are not protected by the SM symmetry. The effective

Lagrangian, invariant under the symmetries considered, describing the interaction between

the dark and the SM sector is then given by:

Lint =

(
φ

Λ

)n
ψH̃χ0, (2.8)

where n is not fixed at this stage. The above term is allowed provided the U(1) charge of

φn is compensated by ψ and χ0 i.e. nx = q1−q2. We will fix it later from phenomenological

point of view.

When φ acquires a vev, the U(1) symmetry breaks down and an effective Yukawa

interaction is generated between the SM and the DM sectors. After electroweak symmetry

is broken, the DM emerges as an admixture of the neutral component of the vector-like

fermions ψ, i.e. ψ0, and χ0. The Lagrangian describing the DM sector and the interaction

as a whole reads as

− LYuk ⊃Mψψψ +Mχχ0χ0 +
[
Y ψH̃χ0 + h.c.

]
, (2.9)

where the effective Yukawa connecting the dark sector to the SM Higgs reads as Y = ǫn =(
〈φ〉
Λ

)n
. We have already argued in introduction about our construction of dark matter

sector. The idea of introducing vector-like fermions in the dark sector is also motivated

by the fact that we expect a replication of the SM Yukawa type interaction to be present

in the dark sector as well. Here the φ field plays the role of the messenger field similar

to the one considered in [33]. See also [34–44] for some earlier efforts to relate A4 flavor

symmetry to DM. Note that the vev of the φ field is also instrumental in producing the

term d to the neutrino mass matrix along with the vev of η. Since the d-term is responsible

for generation of nonzero θ13 (will be discussed in the next section) a connection between

non-zero sin θ13 and DM interaction becomes correlated in our set-up.
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A discussion about other possible terms allowed by the symmetries considered would be

pertinent here. Terms like ψψH†H/Λ and χ0χ0H†H/Λ are actually allowed in the present

set-up. However it turns out that their role is less significant compared to the other terms

present. The reason is the following: firstly they could contribute to bare mass terms of ψ

and χ0 fields. However these contribution being proportional to v2/Λ are insignificant as

compared to Mψ and Mχ. Similar conclusion holds for the Yukawa term as well. Secondly,

they could take part in the DM annihilation. However as we will see, there also they do

not have significant contribution because of the Λ suppression.

3 Phenomenology of the neutrino sector

Combining eqs. (2.2) and (2.7), we get the light neutrino mass matrix as mν = (mν)0+δmν .

We have already seen that (mν)0 can be diagonalized by UTB alone. Hence including δmν ,

rotation by UTB results into the following structure of neutrino mass matrix:

m′
ν = UTTBmνUTB, (3.1)

=



a− b− d/2 0

√
3d/2

0 a+ d 0√
3d/2 0 −a− b+ d/2


 . (3.2)

So an additional rotation (by the U1 matrix given below) is required to diagonalize mν ,

(UTBU1)
Tmν(UTBU1) = diag(m1e

iγ1 ,m2e
iγ2 ,m3e

iγ3) (3.3)

where

U1 =




cos θν 0 sin θνe
−iϕ

0 1 0

− sin θνe
iϕ 0 cos θν


 . (3.4)

Here mi=1,2,3 are the real and positive eigenvalues and γi=1,2,3 are the phases associated to

these mass eigenvalues. We can therefore extract the neutrino mixing matrix Uν as,

Uν = UTBU1Um =




√
2
3 cos θν

1√
3

√
2
3e

−iϕ sin θν

− cos θν√
6

+ eiϕ sin θν√
2

1√
3
− cos θν√

2
− e−iϕ sin θν√

6

− cos θν√
6

− eiϕ sin θν√
2

1√
3

cos θν√
2

− e−iϕ sin θν√
6


Um , (3.5)

where Um = diag(1, eiα21/2, eiα31/2) is the Majorana phase matrix with α21 = (γ1−γ2) and
α31 = (γ1 − γ3), one common phase being irrelevant. The angle θν and phase ϕ associated

in U1 can now be linked with the parameters: a, b, d involved in mν through eq. (3.2).

Note that the parameters: a, b and d are all in general complex quantities. We define

the phases associated with a, b, d as φa, φb and φd respectively. Also for simplifying the

analysis, we consider |y1| = |y3| = y and |y2| = k. With these, θν and ϕ can be expressed

in terms of the parameters involved in the effective light neutrino mass matrix m′
ν as:

tan 2θν =

√
3ǫ cosφdb

(ǫ cosφdb − 2 cosφab) cosϕ
, (3.6)

tanϕ =
y

k

sin(φdb − φab)

cosφdb
, (3.7)
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where φab = φa−φb and φdb = φd−φb. Then comparing the standard UPMNS parametriza-

tion and neutrino mixing matrix Uν(= UTBMU1Um) we obtain

sin θ13 =

√
2

3
|sin θν | , δ = arg[(U1)13]. (3.8)

From eq. (3.6) and (3.7) it is clear that, sin θν may take positive or negative value depending

on the choices of ǫ and y/k. For sin θν > 0, we find δ = ϕ using δ = arg[(U1)13]. On the

other hand for sin θν < 0; δ and ϕ are related by δ = ϕ± π. Therefore in both these cases

we obtain tanϕ = tan δ and hence eq. (3.7) leads to

tan δ =
y

k

sin(φdb − φab)

cosφdb
. (3.9)

The other two mixing angles follow the standard correlation with θ13 in A4 models [24, 45].

Using eq. (3.3), the complex light neutrino mass eigenvalues are evaluated as

mc
1,3 =

[
−b±

√
a2 − ad+ d2

]
, (3.10)

mc
2 = (a+ d). (3.11)

Correspondingly the real and positive mass eigenvalues of light neutrinos are determined as

m1 = α
y

k

[(
P − k

y

)2

+Q2

]1/2
, (3.12)

m2 = α
y

k

[
1 + ǫ2 + 2ǫ cos(φab − φdb)

]1/2
, (3.13)

m3 = α
y

k

[(
P +

k

y

)2

+Q2

]1/2
, (3.14)

where

α =
k

Λ
v2ǫ, P =

[
1

2

(
A+

√
A2 +B2

)]1/2
andQ =

[
1

2

(
−A+

√
A2 +B2

)]1/2
, (3.15)

with

A = (cos 2φab + ǫ2 cos 2φdb − ǫ cos(φab + φdb)), (3.16)

B = (sin 2φab + ǫ2 sin 2φdb − ǫ sin(φab + φdb)). (3.17)

Also, phases (γi) associated with each mass eigenvalues can be expressed as

γ1 = φb + tan−1

(
Q

P − k
y

)
, (3.18)

γ2 = φb + tan−1

(
sinφab + ǫ sinφdb
cosφab + ǫ cosφdb

)
, (3.19)

γ3 = π + φb + tan−1

(
Q

P + k
y

)
. (3.20)
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Figure 1. Plot of sin θ13 against ǫ. 3σ range [14] of sin θ13 (indicated by the horizontal lines) fixes

ǫ in the range: 0.328-0.4125 (indicated by vertical lines).

Using the above expressions of absolute neutrino masses, we define the ratio of solar

to atmospheric mass-squared differences as r,

r =
∆m2

⊙
|∆m2

atm|
, (3.21)

with ∆m2
⊙ ≡ ∆m2

21 = m2
2 −m2

1 and |∆m2
atm| ≡ |∆m2

31| = |m3
3 −m2

1| . Then it turns out

that both r and θ13 depends on ǫ, y/k and the relative phases: φab, φdb. The Dirac CP

phase δ is also a function of these parameters only. As values of r and θ13 are precisely

known from neutrino oscillation data, it would be interesting to constrain the parameter

space of ǫ, y/k and the relative phases which can be useful in predicting δ. However analysis

with all these four parameters is difficult to perform. So, below we categorize few cases

depending on some specific choices of relative phases. In doing the analysis, following [14],

the best fit values of ∆m2
⊙ = 7.6 × 10−5 eV2 and |∆m2

atm| = 2.48 × 10−3 eV2 are used for

our analysis. r and sin θ13 are taken as 0.03 and 0.1530 (best fit value [14]) respectively.

3.1 Case A: φab = φdb = 0

Here we make the simplest choice for the phases, φab = φdb = 0. Then the eq. (3.6) becomes

function of ǫ alone [28] as:

tan 2θν =

√
3ǫ

ǫ− 2
. (3.22)

Hence sin θ13 depends only on ǫ where following eq. (3.9), the Dirac CP phase is zero or

π. The ǫ dependence of sin θ13 is represented in figure 1. The horizontal patch in figure 1

denotes the allowed 3σ range of sin θ13 (≡ 0.1330-0.1715) [14] which is in turn restrict the

range of ǫ parameter (between 0.328 and 0.4125) denoted by the vertical patch in the same

figure. Note that the interaction strength of DM with the SM particles depends on ǫn ≡ Y .

Therefore we find that the size of sin θ13 is intimately related with the Higgs portal coupling

of DM. This is the most significant observation of this paper. With the above mentioned

range of ǫ, obtained from figure 1, the two other mixing angles θ12 and θ23 are found to be

within the 3σ range.
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Figure 2. Contour plot of r = 0.03 in y/k− ǫ plane. The vertical lines represent the allowed range

for ǫ (0.328-0.4125) corresponding to 3σ range of sin θ13 which restricts the ratio y/k between 0.471

to 0.455 indicated by horizontal lines.

Expressions for the real and positive mass eigenvalues are obtained from eq. (3.12)–

(3.14) and can be written as

m1 = α
y

k

∣∣∣
√
1− ǫ+ ǫ2 − k/y

∣∣∣ , (3.23)

m2 = α
y

k
[1 + ǫ] , (3.24)

m3 = α
y

k

[√
1− ǫ+ ǫ2 + k/y

]
. (3.25)

With the above mass eigenvalues, one can write the ratio of solar to atmospheric mass-

squared differences as defined in eq. (3.21) as:

r =
3ǫ yk − k

y + 2
√
1− ǫ+ ǫ2

4
√
1− ǫ+ ǫ2

. (3.26)

From figure 1, we have fixed ǫ range corresponding to 3σ range of sin θ13. Now, to satisfy

r = 0.03 [14], we vary the ratio of the coupling constants, y/k, against ǫ using eq. (3.21)

and (3.23)–(3.25). The result is presented in figure 2. The vertical patch there represents

allowed region for ǫ fixed from figure 1 which determines the range of y/k to be within

0.471-0.455. After obtaining ǫ and the ratio y/k, we can now find the factor k/Λ (within α)

in order to satisfy the solar mass-squared difference ∆m2
⊙ = m2

2−m2
1 = 7.6×10−5 eV2 [14].

Using eq. (3.23) and (3.24) we find this factor to be

k

Λ
=

1

v2ǫ yk

√√√√√
∆m2

⊙[
3ǫ−

(
k
y

)2
+ 2ky

√
1 + ǫ2 − ǫ

] . (3.27)

Considering the 3σ variation of sin θ13, it falls within 1.97 × 10−15GeV−1 to 1.60 ×
10−15GeV−1 with v = 246GeV. Once we know about all parameters involved like

ǫ, y/k, k/Λ with the specific choice of the phases (in this case φab = φdb = 0), it is straight-

forward to determine absolute neutrino masses and effective neutrino mass parameter in-

volved in neutrinoless double beta decay using

|mee| =
∣∣∣m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13e

iα21 +m2
3s

2
13e

i(α31−2δ)
∣∣∣ (3.28)
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Figure 3. Left: individual absolute neutrino masses (m1- blue dotted line, m2- orange dashed

line, m3- magenta dot-dashed line) and their sum (continuous red line) against ǫ (0.328-0.4125)

corresponding to 3σ range of sin θ13. Right: effective neutrino mass parameter (continuous blues

line) against ǫ (0.328-0.4125) corresponding to 3σ range of sin θ13.

Parameters/Observable Allowed Range

ǫ 0.328-0.4125

k/Λ (GeV−1) 1.97× 10−15 - 1.60× 10−15

Σmi (eV) 0.102 - 0.106

|mee| (eV) 0.00764-0.00848

Table 2. Range of ǫ, k/Λ,Σmi, |mee| for 3σ range of sin θ13 with φab = φdb = 0.

as shown in figure 3. We also have listed the summary of the predictions of these quantities

in table 2.

3.2 Case B: φdb = 0

Now we consider the case: φdb = 0. Then the relations for θν and δ take the form

tan 2θν =

√
3ǫ

(ǫ− 2 cosφab) cosϕ
, (3.29)

tan δ = −y
k
sinφab . (3.30)

So from eqs. (3.8), (3.29)–(3.30) and since tan δ = tanϕ, it is clear that unlike the Case A,

here sin θ13 depends not only on ǫ and y/k but also on the phase present in the theory, i.e.

φab. Therefore there would exist a one to one correspondence between ǫ and y/k in order

to produce a specific value of sin θ13 once a particular choice of δ has been made.

Now, with φdb = 0, absolute neutrino masses given in eq. (3.12)–(3.14) are reduced to

m1 = α
y

k

[(
P1 −

k

y

)2

+Q2
1

]1/2
, (3.31)

m2 = α
y

k

[
1 + ǫ2 + 2ǫ cosφab

]1/2
, (3.32)

m3 = α
y

k

[(
P1 +

k

y

)2

+Q2
1

]1/2
, (3.33)
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Figure 4. Contour plots for both sin θ13 = 0.1530 (shown in red continuous, dashed and dotted

lines) and r = 0.03 (shown in blue continuous, dashed and dotted lines) for δ = 20◦, δ = 40◦ and

δ = 60◦ respectively in ǫ-y/k plane. Black dots on each intersection represents solution for ǫ and

y/k corresponding to each δ for φdb = 0.

with

P1 =

[
1

2

(
A1 +

√
A2

1 +B2
1

)]1/2
, Q1 =

[
1

2

(
−A1 +

√
A2

1 +B2
1

)]1/2
, (3.34)

A1 =
(
ǫ2 + cos 2φab − ǫ cosφab

)
andB1 = (sin 2φab − ǫ sinφab) . (3.35)

The ratio of solar to atmospheric neutrino mass-squared differences takes the form

r =
1

4P1
k
y

[
(1 + ǫ2 + 2ǫ cosφab)−

(
P1 −

k

y

)2

−Q2
1

]
. (3.36)

Clearly, one finds that ǫ and y/k are the only parameters involved in both sin θ13 and r

once δ values are taken as input. Therefore, those values of ǫ and y/k are allowed which

simultaneously satisfy data obtained for sin θ13 and r from neutrino oscillation experiments.

Here we have considered the best fit values from [14] and drawn contour plots for sin θ13 =

0.1530 and r = 0.03. Intersection of these contours then represents solutions for ǫ and y/k.

Note that δ = 0 case corresponds to the results obtained in Case A.

In figure 4, we have plotted typical contours obtained for sin θ13 = 0.1530 (red lines)

and r = 0.03 (blue lines) for δ = 20◦, δ = 40◦ and δ = 60◦ respectively in ǫ-y/k plane. The

intersecting points are denoted by black dots and represent the solution points for ǫ and

y/k. In table 3 we have listed estimations for ǫ and y/k for different δ values. Just like the

previous case, after obtaining ǫ and y/k, we can find the factor k/Λ using the fact that it has

to produce correct solar mass-squared difference ∆m2
⊙ = m2

2−m2
1 = 7.6×10−5 eV2 [14]. For

this, we employ eq. (3.31) and (3.32). All these findings are mentioned in table 3 including

sum of the absolute masses (Σmi) of all three light neutrinos and effective neutrino mass

parameter involved in neutrinoless double beta decay (|mee|) for different considerations of
leptonic CP phase δ. In this analysis we observe that, for various values of δ between 0◦ to

360◦ there are certain points where same set of solutions for ǫ and y/k are repeated (e.g.
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δ ǫ y/k k/Λ (10−15GeV−1) Σmi (eV) |mee| (eV)
0◦ 0.372 0.463 1.756 0.1042 0.0222

10◦ 0.343 0.496 1.910 0.1068 0.0236

20◦ 0.279 0.592 2.361 0.1143 0.0274

30◦ 0.209 0.745 3.140 0.1267 0.0331

40◦ 0.147 0.966 4.405 0.1454 0.0409

50◦ 0.096 1.288 6.610 0.1743 0.0516

60◦ 0.056 1.803 11.10 0.2230 0.0682

61◦ 0.053 1.873 11.80 0.2298 0.0704

70◦ 0.026 2.798 23.22 0.3210 0.1002

80◦ 0.007 5.743 85.42 0.6173 0.1952

Table 3. Estimated values of various parameters and observables satisfying neutrino oscillation

data for different values of δ with φdb = 0.

solutions with δ is repeated for |π− δ|). We should also employ the upper bound of sum of

all three light neutrino masses (Σmi < 0.23 eV) coming from cosmological observation by

Planck [6]. Once this is included, we note that some of the δ values need to be discarded

as the corresponding sum of the masses exceeds 0.23 eV as seen from table 3. We therefore

conclude that the allowed values for δ are: between 0◦−61◦ (and also 119◦−180◦, 180◦−241◦

and 299◦ − 360◦).

3.3 Case C: φab = 0

When φab = 0, relations for θν and δ take the form

tan 2θν =

√
3ǫ cosφdb

(ǫ cosφdb − 2) cosϕ
, (3.37)

tan δ =
y

k
tanφab. (3.38)

Here also sin θ13 depends on ǫ, y/k and the phase involved φdb. The real and positive mass

eigenvalues can be written as

m1 = α
y

k

[(
P2 −

k

y

)2

+Q2
2

]1/2
, (3.39)

m2 = α
y

k

[
1 + ǫ2 + 2ǫ cosφdb

]1/2
, (3.40)

m3 = α
y

k

[(
P2 +

k

y

)2

+Q2
2

]1/2
, (3.41)

with

P2 =

[
1

2

(
A2 +

√
A2

2 +B2
2

)]1/2
, Q2 =

[
1

2

(
−A2 +

√
A2

2 +B2
2

)]1/2
, (3.42)
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Figure 5. Contour plots for both sin θ13 = 0.1530 (shown in red continuous, dashed and dotted

lines) and r = 0.03 (shown in blue continuous, dashed and dotted lines) for δ = 20◦, δ = 40◦ and

δ = 60◦ respectively in ǫ-y/k plane. Black dots on each intersection represents solution for ǫ and

y/k corresponding to each δ for φab = 0.

where

A2 =
(
1 + ǫ2 cos 2φdb − ǫ cosφdb

)
andB2 =

(
ǫ2 sin 2φdb − ǫ sinφdb

)
. (3.43)

The ratio of solar to atmospheric neutrino mass-squared differences takes the form

r =
y/k

4P2

[
(1 + ǫ2 + 2ǫ cosφdb)− (P2 − k/y)2 −Q2

2

]
. (3.44)

We then scan the parameter space for ǫ and y/k for various choices of δ so as to have

r = 0.03 and sin θ13 = 0.153. In figure 5, we provide contour plots for sin θ13 = 0.1530

(red lines) and r = 0.03 (blue lines) for δ = 20◦, δ = 40◦ and δ = 60◦. The intersection

between sin θ13 and r contours indicate the simultaneous satisfaction of them. Hence the

intersections are indicated by black dots with which a pair of ǫ, y/k are attached. Similar

to the previous two cases, here we estimate the k/Λ for each such pair of ǫ, y/k with a

specific δ. This in turn provide an estimate of Σmi and effective mass parameter |mee|
depending on the choice of δ. We provide these outcomes in table 4.

3.4 Case D: φab = φdb = β

With φab = φdb = β, the mixing angle θν turns out to be function of ǫ only and is given by

tan 2θν =

√
3ǫ

ǫ− 2
, (3.45)

while tan δ becomes zero. Note that the expressions for the mixing angle θν and δ are

identical to the ones obtained in Case A. Therefore we use the constraint on ǫ obtained

from figure 1 in order to satisfy 3σ allowed range of sin θ13. However the expressions for

real and positive mass eigenvalues involve the common phase β and can be written as
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δ ǫ y/k k/Λ (10−15GeV−1) Σmi (eV) |mee| (eV)
0◦ 0.372 0.463 1.756 0.1042 0.0222

10◦ 0.393 0.464 1.670 0.1048 0.0225

20◦ 0.448 0.468 1.480 0.1065 0.0233

30◦ 0.520 0.475 1.300 0.1093 0.0245

40◦ 0.595 0.485 1.167 0.1128 0.0260

50◦ 0.666 0.497 1.065 0.1162 0.0273

60◦ 0.728 0.509 0.981 0.1182 0.0280

70◦ 0.782 0.519 0.901 0.1179 0.0275

80◦ 0.827 0.526 0.826 0.1152 0.0259

Table 4. Estimated values of various parameters and observables satisfying neutrino oscillation

data for different values of δ with φab = 0.

(following eqs. (3.12)–(3.14))

m1 = α
y

k

[(√
1− ǫ+ ǫ2 cosβ − k

y

)2

+
(√

1− ǫ+ ǫ2 sinβ
)2
]1/2

, (3.46)

m2 = α
y

k
[1 + ǫ] , (3.47)

m3 = α
y

k

[(√
1− ǫ+ ǫ2 cosβ +

k

y

)2

+
(√

1− ǫ+ ǫ2 sinβ
)2
]1/2

. (3.48)

Then following our approach for finding the range of parameters which would satisfy the

oscillation parameters obtained from experimental data, we define the ratio of solar to

atmospheric mass-squared differences as defined in eq. (3.21) as

r =
3ǫ yk − k

y + 2 cosβ
√
1− ǫ+ ǫ2

4| cosβ|
√
1− ǫ+ ǫ2

. (3.49)

From figure 1 we fix ǫ = 0.372 which would produce the best fit value of sin θ13. Then,

using the ratio of solar to atmospheric mass squared difference as given in eq. (3.49), we

can constrain y/k and cosβ. Here we plot r = 0.03 contour in the y/k-cosβ plane as

shown in figure 6. For −1 ≤ cosβ ≤ 1. We observe that y/k falls within the range:

0.463 ≤ y/k ≤ 2.091. Thus figure 6 establishes a correlation between y/k and cosβ. Now

to find absolute neutrino masses we need to obtain k/Λ first. We can find k/Λ from the

best fit value for solar mass squared difference, m2
2 −m2

1 = 7.6× 10−5 eV2, and is given by

(
k

Λ

)2

=
∆m2

⊙
4r(v2ǫ)2y/k| cosβ|

√
1 + ǫ2 − ǫ

. (3.50)

We have used eq. (3.46)–(3.48) to obtain the above equation. Once ǫ is fixed at 0.372 and

following figure 6 we know y/k and corresponding cos β (to have r = 0.03), we can use
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Figure 6. Contour plot for r = 0.03 in the y/k − cosβ plane for φdb = φab = β. The disallowed

range of y/k, cosβ is indicated by the dotted portion.

Figure 7. Absolute neutrino masses vs y/k (blue dotted, magenta large-dashed, orange dashed and

red continuous lines represent m1, m2, m3 and
∑
mi respectively). The left panel is for cos β > 0

and right panel is for cos β < 0.

eq. (3.50) to have an estimate for k/Λ. Now by knowing k/Λ, we have plotted absolute

masses for light neutrinos in figure 7 by using eq. (3.46)–(3.48). Here the left (right) panel

is for cos β > 0(< 0) and indicates normal (inverted) hierarchy for light neutrino masses.

In figure 7, absolute neutrino masses m1,m2,m3 and
∑
mi are denoted by blue dotted,

magenta large-dashed, orange dashed and red continuous lines respectively. Note that here

we have plotted sum of the three absolute light neutrino masses consistent with the recent

observation made by PLANCK, i.e.
∑
mi ≤ 0.23 eV [6]. If we impose this constraint on

the sum of absolute masses of the three light neutrinos, then the allowed region for y/k gets

further constrained. The dotted portion in figure 6 represents this excluded part. Therefore

the allowed region for y/k then turns out to be 0.463 6 y/k 6 0.802 for cosβ > 0 (normal

hierarchy) and 1.159 6 y/k 6 2.091 for cosβ < 0 (inverted hierarchy). Finally in this

case, the prediction for |mee| found to be within 0.022 eV < |mee| < 0.039 eV for normal

hierarchy and 0.016 eV < |mee| < 0.035 eV for inverted hierarchy.

4 Phenomenology of DM sector

The dark sector consists of two vector-like fermions: a fermion doublet ψ and a singlet

χ. The corresponding Lagrangian respecting the U(1) and other discrete symmetries is

– 15 –



J
H
E
P
0
5
(
2
0
1
7
)
0
6
8

provided in eq. (2.9). At this stage we can remind ourselves about the minimality of the

construction in terms of choice of constituents of the dark sector. Note that a vector-like

singlet fermion alone can not have a coupling with the SM sector at the renormalizable level

and thereby its relic density is expected to be over abundant (originated from interaction

suppressed by the new physics scale Λ). On the contrary, a vector-like fermion doublet

alone can have significant annihilation cross section from its gauge interaction with the

SM sector and thereby we would expect the corresponding dark matter relic density to be

under-abundant unless the DM mass is exorbitantly high. Hence we can naturally ask the

question whether involvement of a singlet and a doublet vector-like fermions can lead to the

dark matter relic density at an acceptable level. It then crucially depends on the mixing

term between the singlet and the doublet fermions, i.e. on mD = Y v. We expect a rich

phenomenology out of it particularly because the coupling Y depends on the parameter ǫ

through Y = ǫn where ǫ plays an important role in the neutrino physics as evident from

our discussion in the previous section. We aim to restrict n phenomenologically.

The electroweak phase transition along with the U(1) breaking give rise to the following

mass matrix in the basis (χ0, ψ0)

M =



Mχ mD

mD Mψ


 . (4.1)

We obtain mass eigenstates ψ1 and ψ2 with masses M1 and M2 respectively after diago-

nalization of the above matrix as

ψ1 = cos θdχ
0 + sin θdψ

0,

ψ2 = cos θdψ
0 − sin θdχ

0 , (4.2)

where tan 2θd = 2mD/(Mψ −Mχ). We will work in the regime where mD ≪ Mψ,Mχ.

This choice would be argued soon. However this is not unnatural as the dark matter is

expected to interact weakly. In this limit, the mass eigenvalues are found to be

M1 ≈Mχ −
m2
D

Mψ −Mχ
,

M2 ≈Mψ +
m2
D

Mψ −Mχ
. (4.3)

In this small mixing limit, we can writeMψ−Mχ ≃M2−M1 = ∆M . Therefore the mixing

angle θd can be approximately represented by

sin 2θd ≃
2Y v

∆M
. (4.4)

Then as evident from eqs. (4.2), ψ1 is dominantly the singlet having a small admixture with

the doublet. We assume it to be the lightest between the two (i.e. M1 < M2) and forms

the DM component of the universe. In the physical spectrum, we also have a charged

fermion ψ+(ψ−) with mass M+(M−) = M1 sin
2 θd + M2 cos

2 θd. In the limit θd → 0,
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Figure 8. Dominant Annihilation processes to Higgs and Gauge boson final states.
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Figure 9. Dominant Co-Annihilations ψ1ψ̄2 to Higgs and Gauge boson final states.

M± = M2 = Mψ. In this section, we will discuss the relic density of dark matter as

a function of Y . Although Y represents Yukawa coupling of the DM with SM Higgs, in

presence of a singlet and doublet fermions, Y is also a function of the mixing angle sin θd as

well as the mass splitting (∆M as in eq. (4.4)) which crucially controls DM phenomenology

as we demonstrate in the following discussion.

Note that ψ0 being the gauge doublet, it carries the gauge interactions and hence,

the physical mass eigenstates including the DM have the following interaction with Z,W

bosons as:

g√
2
ψ0γ

µW+
µ ψ

−+h.c.→ g sinθd√
2

ψ1γ
µW+

µ ψ
−+

g cosθd√
2

ψ2γ
µW+

µ ψ
−+h.c. , (4.5)

g

2cosθw
ψ0γ

µZµψ0→
g

2cosθw

(
sin2 θdψ1γ

µZµψ1+sinθd cosθd(ψ1γ
µZµψ2+ψ2γ

µZµψ1)

+cos2 θdψ2γ
µZµψ2

)
. (4.6)

The relic density of the dark matter (ψ1) is mainly dictated by annihilations through

(i) ψ1ψ1 → W+W−, ZZ through SU(2)L gauge coupling and (ii) ψ1ψ1 → hh through

Yukawa coupling introduced in eq. (2.8). The relevant processes are indicated in figure 8.

The other possible channels are mainly co-annihilation of ψ1 with ψ2 (see figure 9), ψ1

with ψ± (see figure 10) and annihilations of ψ± (see figure 11) which would dominantly

contribute to relic density in a large region of parameter space [19, 46–50] as can be seen
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Figure 11. Dominant Co-Annihilation processes of ψ+ψ− → SM particles where f represents

SM fermions.

once we proceed further. At this stage we can argue on our choice of making θd small,

or in other words why the mixing with doublet is necessary to be small for the model to

provide a DM with viable relic density. This is because the larger is the doublet content

in DM ψ1, the annihilation goes up significantly in particular through ψ1ψ1 → W+W−

through Z and hence yielding a very small relic density. So in the small mixing limit, ψ2 is

dominantly a doublet having a mixture of minor singlet component. This implies that ψ2

mass is required to be larger than 45GeV in order not to be in conflict with the invisible

Z-boson decay width.

The relic density of the ψ1 DM with mass M1 can be given by [46, 47]

Ωψ1
h2 =

1.09× 109 GeV−1

g
1/2
⋆ MPL

1

J(xf )
, (4.7)

where J(xf ) is given by

J(xf ) =

∫ ∞

xf

〈σ|v|〉eff
x2

dx . (4.8)

Here 〈σ|v|〉eff is the thermal average of dark matter annihilation cross sections including
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Figure 12. Relic density vs DM mass M1 (in GeV) for different choices of sin θd = {0.1, 0.2, 0.3}
with ∆M = 50GeV [left] (corresponding to Y = {0.02, 0.04, 0.058} with blue, green, orange re-

spectively) and ∆M = 400GeV [right] (corresponding to Y = {0.16, 0.32, 0.46} with Blue, Green,

Orange respectively). Horizontal lines define the correct relic density.

contributions from co-annihilations as follows:2

〈σ|v|〉eff =
g21
g2eff

σ(ψ1ψ1) + 2
g1g2
g2eff

σ(ψ1ψ2)(1 + ∆)3/2exp(−x∆)

+ 2
g1g3
g2eff

σ(ψ1ψ
−)(1 + ∆)3/2exp(−x∆)

+ 2
g2g3
g2eff

σ(ψ2ψ
−)(1 + ∆)3exp(−2x∆) +

g2g2
g2eff

σ(ψ2ψ2)(1 + ∆)3exp(−2x∆)

+
g3g3
g2eff

σ(ψ+ψ−)(1 + ∆)3exp(−2x∆) . (4.9)

In the above equation g1,g2 and g3 are the spin degrees of freedom for ψ1, ψ2 and ψ−

respectively. Since these are spin half particles, all g’s are 2. The freeze-out of ψ1 is

parameterised by xf = M1

Tf
, where Tf is the freeze out temperature. ∆ depicts the mass

splitting ratio as ∆ = M2−M1

M1
= ∆M

M1
, where M2 stands for the mass of both ψ2 and ψ±.

The effective degrees of freedom geff in eq. (4.9) is given by

geff = g1 + g2(1 + ∆)3/2exp(−x∆) + g3(1 + ∆)3/2exp(−x∆) . (4.10)

As it turns out from the above discussion, the dark-sector phenomenology in our set-

up is mainly dictated by three parameters sin θd,M1 and ∆M . However we will keep

on changing sin θd and/or ∆M dependence with Y wherever required using eq. (4.4). In

the following we use the code MicrOmegas [51] to find the allowed region of correct relic

abundance for our DM candidate ψ1 satisfying PLANCK constraints [6, 7],

0.1175 ≤ ΩDMh
2 ≤ 0.1219 . (4.11)

In figure 12 we plot relic density versus DM mass M1 for different choices of sin θd =

0.1, 0.2 and 0.3 (represented by blue, green and orange dotted lines respectively) while

2IfM2 is very close toM1 then ψ2 decay to ψ1 should contribute to relic density. However the parameter

space scan that we have performed with ∆M &GeV, excludes such possibility.
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Figure 13. Left: Ωh2 versus Dark matter mass M1 (in GeV) for sin θd = 0.1 with different choices

of ∆M = {10, 40, 100, 400}GeV described by { blue, green, orange, purple respectively}. Right:

same as left panel but with different sin θd = 0.0001. Horizontal lines indicate correct relic density.

keeping the mass difference ∆M fixed at 50GeV in the left panel and at ∆M = 400GeV

in the right panel. The choice of various sin θd can be translated into different values of Y

as well, through eq. (4.4) since ∆M is kept fixed. Then it is equivalent to say that the blue,

green and orange dotted lines in the left panel (∆M = 50GeV) represent Y= 0.02, 0.04,

0.058 respectively. In a similar way, the blue, green and orange dotted lines in the right

panel (∆M = 400GeV) represent Y = 0.16, 0.32, 0.46 respectively. We infer that as the

mixing increases or in other words Y increases (∆M is fixed), the doublet component starts

to dominate (see eq. (4.4)) and hence give larger cross-section which leads to a smaller DM

abundance for a particular M1. The second important point to note is the presence of

Z resonance at M1 = MZ/2 ∼ 45GeV and a Higgs resonance at M1 = MH/2 ∼ 63GeV

where relic density drops sharply due to increase in annihilation cross-section. We can

also see that with larger ∆M , i.e. with larger Y (as sin θd is fixed) in the right hand side,

the Higgs resonance is more prominent for obvious reasons. Relic density for these chosen

parameters are satisfied across the Z resonance window and H resonance window (more

prominent for larger ∆M on the right panel). For small ∆M = 50GeV (left panel of

figure 12), relic density drops beyond DM mass of 300GeV. This is due to co-annihilation

channels start contributing ψ2ψ1 → SM or ψ+ψ1 → SM and we find that the relic density

is satisfied for DM mass ∼ 400GeV. This is however not seen in the right panel where

we have larger ∆M . This is because with the large mass gap, co-annihilation doesn’t

contribute significantly due to Boltzmann suppression for DM masses upto TeV. That is

why with larger ∆M (right panel of figure 12), there is no point for DM mass beyond

100GeV associated with smaller sin θd values like 0.1, 0.2, where relic density constraint

is satisfied. With larger sin θd = 0.3 one can satisfy relic density without the aid of co-

annihilation for M1 ∼ 500GeV. We also note a small drop in relic density on the right

panel in particular, when WW and ZZ channels open up for annihilation.

In order to show the effect of co-annihilations more closely, we draw figure 13, where

one can see the ∆M dependency on relic density for a specific choice of mixing angle.

In the left panel we choose sin θd = 0.1 and that in the right panel for sin θd = 0.0001.

The slices with constant ∆M is shown for ∆M = {10, 40, 100, 400} GeV in blue, green,
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orange, purple lines respectively. We note here, that with larger ∆M , annihilation cross-

section increases due to enhancement in Yukawa coupling (Y ∝ ∆M as sin θd is fixed).

However, co-annihilation decreases due to increase in ∆M as σ ∝ e−∆M/M1 specifically

for a particular DM mass. Hence the larger is ∆M the smaller is co-annihilation and

the larger is the relic density. This is clearly visible in both the panels of figure 13. In

particular, when sin θd is small, the effect of co-annihilation is pronounced as contribution

from annihilation cross section is less dominant. This is the case shown in the right panel

of figure 13. Hence the bigger is ∆M , the larger is the required DM mass to satisfy relic

density for a given mixing angle sin θd. This is evident from the plot with ∆M = 400GeV.

For extremely small mixing angle, say sin θd = 0.0001 (shown on the right panel of

figure 13), the annihilation of ψ̄1ψ1, ψ̄1ψ2 → SM particles are highly suppressed. As a

result the dominant contribution to relic density arises from ψ2ψ
±, ψ+ψ− → SM particles.

This is an interesting consequence of our model. In this case we get a lower limit of the

singlet-doublet mixing angle by assuming that the ψ2, ψ
± particles decay to ψ1 before the

latter freezes out from the thermal bath [19]. If the mass splitting between ψ− and ψ1

is larger than W±-boson mass, then ψ− decay preferably occurs through the two body

process: ψ− → ψ1 +W−. However, if the mass splitting between ψ− and ψ1 is less than

W± boson mass, then ψ− decays through three body process, say ψ− → ψ1ℓ
−νℓ. For the

latter case, we get a stronger lower bound on the mixing angle than for two body decay.

For the above mentioned channel, the three body decay width of ψ− is given by [19]:

Γ =
G2
F sin

2θd
24π3

M5
2 I (4.12)

where GF is the Fermi coupling constant and I is given as:

I =
1

4
λ1/2(1, a2, b2)F1(a, b) + 6F2(a, b) ln

(
2a

1 + a2 − b2 − λ1/2(1, a2, b2)

)
. (4.13)

In the above Equation F1(a, b) and F2(a, b) are two polynomials of a = M1/M2 and b =

mℓ/M2, where mℓ is the charged lepton mass. Up to O(b2), these two polynomials are

given by

F1(a, b) =
(
a6 − 2a5 − 7a4(1 + b2) + 10a3(b2 − 2) + a2(12b2 − 7) + (3b2 − 1)

)

F2(a, b) =
(
a5 + a4 + a3(1− 2b2)

)
. (4.14)

In eq. (4.13), λ1/2 =
√
1 + a4 + b4 − 2a2 − 2b2 − 2a2b2 defines the phase space. In the limit

b = mℓ/M2 → 1− a = ∆M/M2, λ
1/2 goes to zero and hence I → 0. The life time of ψ− is

then given by τ ≡ Γ−1. Now to compare the life time of ψ− with DM freeze out epoch, we

assume that the freeze out temperature of DM is Tf = M1/20. Since the DM freezes out

during radiation dominated era, the corresponding time of DM freeze-out is given by:

tf = 0.301g
−1/2
⋆

mpl

T 2
f

, (4.15)

where g⋆ is the effective massless degrees of freedom at a temperature Tf and mpl is the

Planck mass. Demanding that ψ− should decay before the DM freezes out (i.e. τ . t)
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Figure 14. Left: Y versus M1 (in GeV) for correct relic density (eq. (4.11). sin θd = 0.1, 0.2, 0.15

(blue, green and orange respectively) has been chosen, while ∆M vary arbitrarily. Right: same

plot in M1 −∆M plane.

we get

sin θd & 1.1789× 10−5

(
1.375× 10−5

I

)1/2(
200GeV

M2

)5/2 ( g⋆
106.75

)1/4( M1

180GeV

)
.

(4.16)

Notice that the lower bound on the mixing angle depends on the mass of ψ− and ψ1.

In figure 14 (left), we plot Y versus M1 to produce correct relic density with sin θd =

{0.1, 0.15, 0.2} (blue, orange, green respectively). In order to be consistent with eq. (4.4),

∆M has to be adjusted accordingly. It points out a relatively wide DM mass range satisfy

the relic density constraint. Main features that emerge out of this figure are as follows: (i)

Firstly, there exist a lower DM mass region where Z and H resonances occur. Relic density

is easily satisfied in this region for all possible moderate choices of sin θd, independent of

Y or ∆M as is seen on the left hand side vertical lines (in both the plots). For large sin θd
this is more prominent as both Z and H mediation is enhanced with larger mixing. (ii)

The other point is to note that there are two regions for each sin θd value which satisfy

relic density; one at the below, where Y (on the left) and ∆M (on the right panel) increase

with larger DM mass to satisfy relic density. This region is dominantly contributed from

co-annihilations as the small Y is not enough to produce annihilations required for relic

density. While there is a second region with larger Y (on left) and larger ∆M (on right),

more insensitive to DM mass, where relic density is satisfied by appropriate annihilation

cross-section, not aided by co-annihilations. Both of these regions (annihilation and co-

annihilation domination) meet at some large DM mass ∼ 5000GeV, more clearly visible

from the right panel plot. Points above the ‘correct annihilation lines’ (for specific sin θd)

provide more than required annihilation and hence those are under abundant regions.

Similarly just below those, the annihilation will not be enough to produce correct density

and hence are over abundant regions. Points below the correct co-annihilation regions

produce more co-annihilations than required and hence depict under abundant regions.

The other possible correlation in this model for correct relic density can be drawn

between DM mass (M1) and the mixing angle (sin θd) for fixed ∆M . This is shown in

figure 15 both in M1 − Y plane (on the left) or in M1 − sin θd plane (on the right). For
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Figure 15. Left: Y versus M1 (in GeV) for correct relic density (within the range given by

eq. (4.11)) with fixed ∆M at 100, 500GeV, while sin θd is allowed to vary. Right: same plot in

M1 − sin θd plane. In both panels, blue dots are the allowed points for small sin θd to satisfy the

Y, ∆M abundance via eq. (4.4).

illustration, we choose two widely different values of mass difference: ∆M = 100GeV and

∆M = 500GeV. This is clearly understood that with larger ∆M , a larger Y is favored for

a specific DM mass in order to satisfy the correct relic abundance. With ∆M = 100GeV

we also note that Y drops substantially around M1 ∼ 500GeV. This is because around

this value, co-annihilation process starts contributing and hence it requires a further drop

in Y (in terms of mixing angle θd) to obtain right relic density which is clearly visible in

the right side of figure 15 as well. Here we would like to draw the attention that the right

relic density line has a split when co-annihilation starts dominating. This is due to the

fact that there are two different co-annihilations that occur here with ψ2 and ψ±. There

exist a slight mass difference between these particles and the DM mass is adjusted to either

of them to effectively co-annihilate and produce right relic density. For ∆M = 500GeV,

this phenomena of co-annihilation occurs at a very large DM mass and can’t be seen from

the plot. Resonance drops both in Y − M1 and sin θd − M1 plots can be observed for

M1 ∼ MH/2 and M1 ∼ MZ/2. We also note that beyond sin θd ≥ 0.2 as shown by the

red points in figure 15 break small θd limit as has been assumed in eq. (4.4) and hence

discarded within this approximation.

Non-observation of DMs in direct search experiments tend to put a stringent bound on

WIMP DM parameter space. Direct search interactions for ψ1 has two different channels,

through Z and H mediation as shown in figure 16, where the one through Z mediation

dominates over H mediated interaction because of SU(2) gauge coupling. The cross-section

per nucleon for Z mediation is given by [52, 53]

σZSI =
1

πA2
µ2r |M|2 (4.17)

where µr = M1mn/(M1 + mn) ≈ mn is the reduced mass, mn is the mass of nucleon

(proton or neutron), A is the mass number of the target nucleus and M is the amplitude

for Z-mediated DM-nucleon cross-section

M =
√
2GF [Z(fp/fn) + (A− Z)]fn sin

2 θd , (4.18)
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ψ1 ψ1 ψ1 ψ1

Z H

Figure 16. Feynman diagrams for DM to interact with Nucleon.

fp and fn are the interaction strengths of DM with proton and neutron respectively and

Z is the atomic number of the target nucleus. Using fn ≃ 1/3 [54–57], we obtain direct

search cross-section per nucleon to be

σZSI ≃ 3.75× 10−39cm2 sin4 θd . (4.19)

Higgs mediated cross-section depends on can be written as

σhSI =
1

πA2
µ2r [Zfp + (A− Z)fn]

2 (4.20)

where the effective interaction strengths of DM with proton and neutron are given by:

fp,n =
∑

q=u,d,s

f
(p.n)
Tq αq

m(p,n)

mq
+

2

27
f
(p,n)
TG

∑

q=c,t,b

αq
mp.n

mq
(4.21)

with

αq =
Y sin 2θd
M2
h

(mq

v

)
. (4.22)

We compute the direct search cross-section with both diagrams using MicrOmegas [51].

It turns out that the most stringent constraint on the model and hence on the portal

coupling Y (. sin 2θd∆M/(2v)) comes from the direct search of DM from updated LUX

data [58] as demonstrated in figure 17. We show the correct region of direct search allowed

parameter space in two ways: in upper panel we choose a specific ∆M and vary sin θd to

evaluate spin independent direct search cross-section and show the constraints in terms of

Y . On the upper right panel, we also show the relic density allowed points through blue

dots for this particular choice of ∆M . In the bottom panel of figure 17, instead of choosing a

specific ∆M , we vary it arbitrarily upto 1.1TeV and point out the direct search constraints

in terms of mixing angle sin θd. On the right bottom panel, we also show the relic density

allowed points through blue dots. Restricting direct search cross-section to experimental

limit actually puts a stringent bound on mixing angle sin θd to tame Z-mediated diagram in
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Figure 17. Spin independent direct search cross-section as a function of DM mass. Upper Left

Panel: different Y ranges are indicated Y : {0.001 − 0.03} (green), Y : {0.03 − 0.05} (blue) and

Y : {0.05 − 0.08} (purple). ∆M = 100GeV is used for the scan. Upper Right Panel: same as

left, additional blue dots represent points which satisfy relic density constraint. Lower left panel:

allowed ranges of sin θd ≤ 0.06, 0.08 (light green and lilac regions respectively) are shown. Here ∆M

varies arbitrarily upto 1.1TeV. Lower right panel is same as the lower left panel having blue dots

representative of points which satisfy relic density constraint. The resonance region is separately

indicated in orange. Constraints from Xenon100, Lux 2013, 2015, 2016 data and predictions of

Xenon1T are presented.

particular. We see that the bound from LUX, constraints the coupling: Y ∼ 0.03 for DM

masses & 600GeV (green regions in the upper panel of figure 17). The Yukawa coupling

needs to be even smaller for small DM mass for example, M1 ≃ 200GeV. The resonance

region is exempted from this constraint for obvious reasons. The annihilation cross-section

is enhanced due to s-channel contribution and to tame it to right relic density, one needs

much smaller values of mixing angle, which sharply drops the direct search cross-section.

Though large couplings are allowed by correct relic density, they are highly disfavored by

the direct DM search at terrestrial experiments. From the top right figure, we also see

that correct relic density points for a specific ∆M lies in the vicinity of a specific DM mass

∼ 700GeV where co-annihilation plays the crucial role for correct relic density and that

doesn’t contribute to direct search cross-section at all, so that the blue points yield very

small direct search cross-sections. This can easily be extended for other choices of ∆M ,

where there exist a specific DM mass at which co-annihilation plays a crucial role to yield

right relic density, which doesn’t contribute to direct search and thus can have very small
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direct search cross-section as is seen from the right bottom figure. Note also that direct

search constraints are less dependent on ∆M as to the mixing angle, which plays otherwise

a crucial role in the relic abundance of DM. In bottom panel, we show the parameter

space satisfied by relic density constraint for sin θd ≤ 0.08, 0.06 (lilac and green regions

respectively) to direct search constraints. The direct search tightly constraints the mixing

angle to sin θd ≤ 0.08, allowing DM masses as heavy as 900GeV. Tighter constraint in

mixing angle, for example, sin θd ≤ 0.06, allows smaller DM mass ≥ 500GeV as can be

seen from the cross-over of LUX constraint with relic density allowed parameter space.

In summary, the dark sector phenomenology with the inclusion of vector-like fermions

provides a simple extension to SM, with a rich phenomenology with a large region of allowed

parameter space from relic density constraints. Direct search on the other hand constrains

the mixing to a small value ≤ 0.08, allowing co-annihilation to play a dominant part to keep

the model alive. We will focus on the correlations to non-zero θ13 and DM in the following

section with the results obtained from above analysis. Note that the U(1) symmetry being

global, its spontaneous breaking would lead to potentially dangerous Goldstone boson (G

= Imφ). The problem however can be evaded by gauging the symmetry. Additionally if we

assume the corresponding gauge boson to be sufficiently heavy, its existence will not modify

our results of the dark matter phenomenology. Another way out is to provide tiny mass

to the Goldstone by introducing an explicit symmetry breaking term in the Lagrangian.

In this case however the most significant coupling of the Goldstone with Higgs appears

through λ12φ
†φH†H coupling. Hence it contributes (considering mG ≪ mh/2) to the

invisible decay of the SM Higgs boson [60], Γh→G G ∼ 1
32π [m

3
h/〈φ〉] sin2 α, where α signifies

the mixing between the states (H,φ) and the physical Higgs fields (h,H ′) resulting (H ′

is the heavy Higgs) from non-zero λ12. In the limit of λ12 to zero, α vanishes. Using

the present limit on the branching ratio of Higgs invisible decay [61, 62] , the coupling

λ12 (involved in the definition of mixing angle α) is expected to be small (≪ 1). If we

assume a very small value of λ12, ∼ 10−8 or even smaller, then it can be shown that the

Goldstone can never be in thermal equilibrium [63] and hence they can not contribute to

the primordial abundance through freeze out mechanism3 and we may basically ignore its

presence for our purpose.

We can now put together all the constraints for a specific choice of sin θd = 0.06 into

the plane of M1 −M2 to show the allowed parameter space of the model. This is what we

have done in figure 18 following

Inv Z decay : M1 <
Mz

2
∼ 45 GeV → sin θd . 0.00125

Inv H decay : M1 <
Mh

2
∼ 63 GeV → sin θd . 0.1

Relic Density : M2 . M1 + 100 GeV for sin θd . 0.1

Direct Search : M1 ≥ 500 GeV for sin θd ∼ 0.06

Collider Bound : M2 ≃ M± ≥ 101 GeV for sin θd ∼ 0.06.

3In this case, the other option could be [64] the freeze-in mechanism [65]. It requires a detailed study

and is at present beyond the scope of current analysis.
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Figure 18. Summary of all constraints in M1 − M2 parameter space from relic density with

sin θd = 0.06 (green dots), direct search (Yellow region is forbidden by updated LUX with sin θd ∼
0.06), invisible Z-decay (blue region is forbidden) and collider (LHC) search limit (orange region is

disallowed with an over estimation for sin θd = 0.1).

We choose sin θd = 0.06 as a reference value as it satisfies all of the constraints discussed

here. We see that a sizable part of the DM parameter space is allowed shown by the green

dotted points, excepting for the direct search bound shown by yellow band, a blue band

disfavored by the Invisible Z decay and orange band disfavored by direct collider search

data [59]. One should also note here that if we choose a smaller sin θd to illustrate the

case, a larger DM mass region is allowed by direct search constraint. Green dotted points

show relic density allowed regions of the model in M1 −M2 plane. We note here that for

sin θd < 0.1, only co-annihilation can provide with right relic density, hence is independent

of the choices sin θd ∼ 0.1 or ∼ 0.06 as has been chosen in figure 18.

5 Correlation between dark and neutrino sectors

As stated before, our description of the DM sector is composed of a vector like SU(2)L
doublet and a neutral singlet fermions which interact with the SM sector via eq. (2.8). We

have seen in the previous section the importance of the effective coupling Y in determining

the mixing between the singlet and doublet components of DM (see eq. (4.4)). This mixing

in turn plays the crucial role in realizing the correct relic density as well as involved in

the direct search cross section (see eqs. (4.7) and (4.17), (4.20)). Note that this effective

coupling Y is generated from the vev of the flavon φ through Y = ǫn, where the n is the

unknown U(1) charge assigned to φ. However this vev alone does not appear separately

in our dark matter analysis. On the other hand, we have noted earlier the involvement of

ǫ parameter in the neutrino phenomenology, in particular in producing θ13 in the correct

ballpark. So we observe that the allowed value of nonzero θ13 and the Higgs portal coupling
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of a vector like dark matter can indeed be obtainable from a U(1) flavor extension of the

SM. In this section we aim to fix the charge n from combining the results of neutrino as

well as the dark matter analyses. This complementarity between the neutrino and the DM

sector will be clear as we proceed below in summarizing constraints on ǫ and Y obtained

from neutrino and DM analyses respectively.

Section 3 was devoted to neutrino phenomenology, where we have discussed four dif-

ferent cases. In case A, we find that the parameter ǫ is clearly determined to be within

the range 0.328 − 0.413 in order to keep sin θ13 in agreement with experimental data (see

figure 1). In cases B and C however, this correlation between ǫ and θ13 is not that trans-

parent as it depends also on the CP phase δ. Combining all the phenomenological con-

straints (e.g. on
∑

imνi), we have provided the range of ǫ in table 3 and 4 for cases B

and C respectively. The range of ǫ corresponding to case D is similar to case A. On the

other hand, the information on Y is embedded in the relic density and direct detection

cross section.

In the left upper panel of figure 17, we plot the direct search cross-section against

dark matter mass M1 for a fixed choice of ∆M = 100GeV. In this plot, we indicate

regions allowed by direct search experimental limits. Since each point in the region allowed

by direct search correspond to a specific relic density, once we incorporate both the relic

density and direct search limit by LUX 2016, we find the allowed region is narrowed down

as shown in the right upper panel of figure 17 (indicated by blue patch).

Similarly the left lower panel (left and right) of figure 17 shows the allowed (by both

relic density and LUX 2016) region of parameter space where variation of M2 is restricted

up to 1.1TeV with sin θd ≤ 0.2. We find that an uper limit on sin θd is prevailing from

this plot. Combining relic density constraint and direct search limits, we find the allowed

region indicated by blue dots in the right lower panel of figure 17. In order to obtain limits

on Y while ∆M and sin θd are varied, we have provided a scatter plot of Y versus M1

in figure 19. In producing this plot, we have varied M2 (up to 1.1TeV), 10−7 < sin θd <

0.2. Here red dots correspond to those points which are disallowed by LUX 2016 even

if these satisfy the relic density constraint. The blue patch indicates the region allowed

by both the relic density and LUX 2016 data having ∆M > mW . For ∆M < mW , we

use a lower limit on sin θd obtained from eq. (4.16). Hence the points in magenta satisfy

the above sin θd constraint and represent the allowed region by relic density and direct

search limits. From this plot we can clearly see the upper limit of Y is almost 0.03 while

the lower limit of it can be very small, ∼ 10−7. Note that the Y region limited by the

choice of upper value of M2 = 1.1TeV is consistent with our earlier plot in figure 14 with

fixed sin θd values. For elaboration purpose, we provide the figure in the right panel of

figure 19, which is the same plot as figure 14 except that it is now plotted in terms of

M2 vs. M1. The narrow patch for a fixed sin θd becomes wider as we varied sin θd as

well. The horizontal dashed line indicates our consideration of keeping the variation of M2

within 1.1TeV.

We summarize here these constraints on ǫ and Y = ǫn to determine the unknown

flavor charge n of the dark matter in our scenario. It is shown in figure 20. Colored

patch in each plot corresponds to the allowed range of ǫ obtained in section 3 for Cases
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Figure 19. Left Panel: Y vsM1 scatter plot for correct relic density (eq. (4.11). Here sin θd (10−6-

0.2) and ∆M (1-1100GeV) varies simultaneously. The top red points are disallowed by Lux 2016

direct search constraint. Both magenta and blue dots simultaneously satisfies relic density and Lux

2016 direct search constraints. The magenta dots additionally satisfies the condition ∆M < MW .

Right Panel: M1 versus M2 (in GeV) for correct relic density. sin θd = 0.1, 0.2, 0.15 (blue, green

and orange respectively) has been chosen, while ∆M varies. The left panel is consistent with this

plot upto M2 = 1.1TeV as marked by the horizontal dashed line in this plot.
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Figure 20. n vs ǫ to generate different values of Y = ǫn for (a) φdb = φab = 0 (left), (b) φdb = 0

(middle) and (c) φab = 0 (right).

A(D), B and C. In the left-most panel of figure 20, we have shown the allowed values

of n where the CP-violating phases are taken to be zero corresponding to Case A. As

the direct search of DM restricts the Y values to be Y . 0.03, we get n & 2. Different

contour lines with different Y values are shown in the figure. A similar conclusion holds

for the other case (Case D) with φdb = φab = β . On the other hand, if φab 6= φdb then a

larger range of n values are expected to be allowed. In particular, by setting φdb = 0 and

φab 6= 0 (as shown in middle panel of figure 20) we see that lower limit on n starts from

1. On the other hand, if φab = 0 and φdb 6= 0 (as shown in the right panel of figure 20)

then n can take values starting from 3. Thus we conclude that the non-zero values of

phases introduce more uncertainty in specifying n. The future measurements of Dirac CP

phase δ and a more stringent constraints from Direct search experiments would reduce this

uncertainty in n.
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6 Conclusions

In this paper we have explored a U(1) flavor extension of the SM in order to establish a

possible correlation between the SM sector (more specifically neutrino sector) and the DM

one, in particular between the reactor lepton mixing angle sin θ13 and the interaction of

dark matter with SM Higgs. To start with, we have considered a tri-bimaximal mixing

pattern (i.e. with θ13 = 0) for the lepton mixing matrix originated from a typical flavor

structure of the neutrino mass matrix guided by the non-Abelian flavor symmetry, where

the charged lepton mass matrix is found to be diagonal. In its simplest version, we achieve

the TBM structure of the neutrino mass matrix by assuming an A4 ×Z3 symmetry where

the effective dimension six operators involving A4 flavons contributes to Majorana masses

for light neutrinos. The symmetry forbids the usual dimension five operator. On the other

hand, the dark sector consists of two vector-like fermions, one is a SU(2)L doublet and

the other one is a SM gauge singlet. In addition we assume the existence of a U(1) flavor

symmetry under which the DM fields as well as two flavons, φ and η, are charged. It

is interesting to note that with the vector-like fermions present in the dark sector, there

exists a replica of SM Yukawa interaction in the dark sector which involves flavon φ. The

U(1) symmetry of the model was broken at a high scale by the vev of that flavon field φ

to a remnant Z2 under which the dark sector particles are odd. As a result the lightest

odd particles becomes a viable candidate of dark matter. Moreover, a higher dimensional

operator involving φ and η constitutes a correction to the TBM pattern of the neutrino

mass matrix which leads to a non-zero value of sin θ13. The involvement of φ ensures

that B − L breaking vev is also involved in this correction term. As a result we are able

to show that the non-zero value of sin θ13 is proportional to the Higgs portal coupling,

Y = (φ/Λ)n ≡ ǫn, of the dark matter which gives rise to correct relic density measured by

WMAP and PLANCK and consistent with direct DM search bound from LUX. Finally it is

interesting to note that Y , on one hand is related to the mixing in the neutrino sector, while

it also crucially controlled by the mixing involved in the dark sector. We also find that the

current allowed values of sin θ13 indicates the U(1) charge of DM & 1 which can be probed

at the future direct DM search experiments such as Xenon-1T. The next to lightest stable

particle (NLSP) is a charged fermion which can be searched at the LHC [22, 23]. In the

limit of small sin θd, the NLSP can give rise to a displaced vertex at LHC, a rather unique

signature of the model discussed in ref. [19]. We argue that this is a minimal extension to

SM to accommodate DM and non-zero sin θ13 by using a flavor symmetric approach.
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