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First-principles calculation of intrinsic defect chemistry and

self-doping in PbTe
Anuj Goyal1,2, Prashun Gorai1,2, Eric S. Toberer1,2 and Vladan Stevanović1,2

Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps
due to strong spin–orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping
computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the
results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry
and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional
theory, (b) include spin–orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The
hybrid HSE functional with spin–orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach
that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured
charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of
individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging
narrow band gap materials.
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INTRODUCTION

The dopability of semiconductor materials plays a decisive role in
device performance. Dopability refers to the carrier concentration
limits achievable in a semiconductor material. These limits are set
by the compensating intrinsic (or native) defects and the solubility
of extrinsic dopants. The computational prediction of dopability
has a multi-decade history in microelectronic and optoelectronic
materials (e.g. III–V compounds,1 transparent conducting oxi-
des2,3). Successful computational prediction of dopability has
been enabled by the accurate description of native defect
chemistry, their formation energies and the absolute position of
band edges in these materials.4,5

In thermoelectric materials, computationally guided search for
new materials continues to be a strong research focus.6–11 In order
to realize the full potential of these materials and to guide the
search, accurate predictions of dopability is crucial.12,13 However,
atomic level understanding of native defects in many thermo-
electric materials is very challenging due to the presence of heavy
elements with strong spin–orbit coupling (SOC). Spin–orbit
coupling shifts the band edge positions and significantly reduces
the magnitude of the band gap. Describing defect chemistry and
dopability in narrow band gap systems such as PbTe is
challenging, because small uncertainties in the defect formation
energies as well as in the position of the band edges can have
strong implication towards predictions of the intrinsic defect
conductivity type (n or p), and defect and carrier concentrations.
Figure 1 shows a sketch of the formation energy of donor and
acceptor defects for a model system with a narrow band gap of
0.2 eV. Error of about 0.3–0.4 eV in the band edge positions (gray
boxes) leads to qualitatively distinct conclusions concerning the
dopability. In case (a), the system is hard to extrinsically dope p-

type due to compensation from native donor defects (‘killer’
donors). In contrast, predicting case (b) would indicate a highly
extrinsically p or n-type dopable system, and case (c) suggests a
system with ‘killer’ native acceptors that limits n-type doping.
Consistent with the challenge presented in Fig. 1, the literature

in thermoelectric materials often shows qualitatively different
results.14–18 Here, we consider PbTe a well studied material with
strong spin–orbit coupling, to demonstrate the challenges posed
in first-principles based density functional theory (DFT) calcula-
tions aimed at bulk properties,19–25 and intrinsic defects.14,15,26–28

The DFT calculations employing the local density approximation
(LDA)29 or the generalized gradient approximation (GGA)30 for
exchange correlation provide only a qualitative description of the
electronic structure of PbTe. For example, the calculated band gap
of PbTe with LDA and GGA is ~0.8 eV,22,23 compared to the
experimental value of 0.19 eV at 4.2 K.31 On the other hand,
inclusion of SOC reduces the band gap to nearly zero (−0.01–0.09
eV).22,23 Issues with the PbTe electronic structure have been
addressed22,24 by using SOC on higher accuracy methods that go
beyond the semilocal approximations, such as hybrid func-
tionals,32 or the GW approach.33

However, in the context of defect calculations, point defects in
PbTe have only been modeled using GGA14,26 or GGA +
SOC.15,27,28 Bajaj et al.,14 calculated the formation energies of
native point defects using GGA, and estimated the equilibrium
position of the Fermi energy and the resulting concentrations of
free carriers by scaling the GGA band gap (0.82 eV) to match the
experimental value. Interestingly, the authors14 found good
agreement between their predicted and experimentally-
measured carrier concentrations even without taking SOC into
account in their defect calculations. In another study, Wang
et al.,15 performed defect calculations with GGA functional,
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including SOC effects and found PbTe to be intrinsically n-type
under both Te-poor and Te-rich conditions, and found p-type
behavior under intermediate Te-rich conditions. This is in contrast
to experimentally-observed p-type conductivity under Te-rich
conditions and n-type under Te-poor conditions.34–37

Given the contested accuracy of defect calculations in
compounds with strong spin–orbit coupling, this work focuses
on PbTe to establish best practices in defect and dopability
calculations. By using hybrid functionals (HSE stands for
HSE0638,39) along with spin–orbit coupling to perform defect
calculations and quasi-particle GW approach (at G0W0 level) to
describe the valence and conduction band edges, we obtain (1) a
quantitatively accurate description of the defect chemistry and
associated free carrier concentrations in PbTe, and (2) bipolar
doping behavior, in agreement with experiments. We also show
that all other levels of theory (GGA, GGA + SOC, GGA + SOC + GW,
HSE, HSE + SOC) qualitatively fail to describe the experimentally
observed self-doping behavior in PbTe. We find that the primary
difference between different levels of theory is in the position of
the valence and conduction band edges relative to each other and
relative to vacuum. Our findings highlight (1) the importance of
accurate band edge energies in predicting dopability for systems
with strong SOC and (2) that quantitatively accurate dopability
predictions are achievable in such challenging material systems.

RESULTS AND DISCUSSION

Defect calculations

A realistic description of point defects and intrinsic and extrinsic
doping behavior in semiconductors require the knowledge of
point defect formation energies, and their resulting concentra-
tions. In this work we employ the standard supercell approach to
calculate formation energies of native point defects in PbTe using
the following equation:

ΔHD;q EF; μð Þ ¼ ED;q � EH
� �

þP

i

niμi þ qEF þ Ecorr;
(1)

where ΔHD,q represents the formation energy of a defect D in
charge state q; ED,q and EH are the total energies of the supercells
with and without the defect, respectively; {μi} are the chemical
potentials of different atomic species describing exchange of
particles with the respective reservoirs; EF is the Fermi energy,
which in semiconductors ranges between the valence band
maximum (VBM) and conduction band minimum (CBM); and Ecorr
is the correction term that accounts for the finite-size corrections

within the supercell approach.40 Next, we describe how each of
these terms are computed.

Total energies. As already noted, we use two different exchange-
correlation functionals when computing supercell total energies
(ED,q and EH). The Perdew Burke Ernzerhof (PBE) exchange
correlation functional30 is used within GGA. For hybrid calcula-
tions, the functional proposed by Heyd et al.,38,39 (HSE06) is used
with the exchange mixing of α = 0.25. Spin–orbit coupling (SOC) is
included in the total energy calculations with both functionals. For
defect calculations, we start by building the 64-atom supercell of
the rocksalt PbTe using the lattice constant from the bulk
structure that is relaxed with respective functionals. Native point
defect structures are then generated and relaxed using the
computational workflow described in ref. 52.

Chemical potentials. Numerical values of the chemical potentials
(μi ¼ μ

0
i þ Δμi) depend on reference energies, μ0i , and enthalpy of

formation, ΔHf. The reference energies are obtained from the DFT
total energies of bulk Pb and Te metals using respective
functionals. Limits to the respective elemental chemical potentials
are determined by the thermodynamic stability condition, ΔμPb +
ΔμTe = ΔHf(PbTe), as there are no other competing phases. The
enthalpies of formation of PbTe, computed as the difference of
the compound total energy and the sum of total energies of Pb
and Te in their reference phases, are summarized in Table 1 from
each computational method and compared to experiment. Having
accurate ΔHf values helps establishing correct equilibrium
conditions of different phases, which in turn, allows calculating
the limits for the elemental chemical potentials. It is important to
note here that the errors in ΔHf of different computational
methods fall within the expected errors the first-principles
methods typically make.41 Somewhat surprising is the influence
of spin–orbit interactions, which bring ΔHf closer to experiments
for both GGA and HSE. It has been shown that the spin–orbit
contributions can be seen to a good approximation, as atomic
effects that should cancel when calculating total energy
differences.41 Apparently, this does not apply to PbTe and adding
spin–orbit interactions helps both in establishing better band
edge energies as well as more accurate enthalpies of formation.

Fermi energy. Formation energy of charged defects (q ≠ 0) is a
linear function of the Fermi energy as given in Eq. 1. Therefore, the
defect formation energies depend on the magnitude
of the band gap as well as the energies of individual band edges.
The computed PbTe band gap from GGA calculation is 0.79 eV,
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Fig. 1 Illustrates the effect of the position a, b, c of band edges
towards predicted extrinsic dopability for a material with a narrow
band gap

Table 1. Calculated lattice constant (a0), static dielectric constant (ε)
including electronic and ionic contribution, enthalpy of formation
(ΔHf), and, band gap (Eg) in PbTe, with functionals GGA-PBE and
HSE06, with and without spin–orbit coupling (SOC)

Bulk properties a0 (Å) ε ΔHf (eV) Eg (eV)

GGA 6.56 301.5 −0.81 0.791

GGA + SOC −0.69 0.027

GGA + SOC + GW 0.159

HSE 6.52 296.6 −0.92 1.13

HSE + SOC −0.78 0.296

HSE + SOC + G0W0 0.194

Expt. (4.2 K)a 6.42 0.19

Expt. (300 K)b 6.46 414.0 −0.71 0.31

Note that band gaps are further corrected based on band edge shifts
computed using quasi-particle GW calculations
a References 31,68
b References 42,68,69
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which reduces to a value of 0.02 eV with inclusion of SOC on top of
GGA, compared to the experimental value of 0.19 eV (T = 4.2 K) and
0.31 eV (T = 300 K). The computed band gap with HSE is 1.1 eV, and
with HSE + SOC calculation it is 0.29 eV, which is in much better
agreement with the experimental value at 300 K. Moreover, HSE +
SOC calculations also correctly reproduces the known unusual
order of the band gap 0.40 eV Eg(PbS) > 0.30 eV Eg(PbTe) > 0.27 eV
Eg(PbSe) within the lead chalcogenides series.42

As discussed previously,43 accurate calculation of band gap and
band edge energies require GW quasiparticle energy calcula-
tions.33 The band edge shifts from GW calculations are computed
relative to the respective underlying exchange-correlation func-
tional. The addition of GW band edge shifts on top of GGA + SOC
calculations, opens the band gap to 0.16 eV. For HSE + SOC
calculations only a single step G0W0 calculation is performed,
resulting in a band gap of 0.194 eV, which is in excellent
agreement with the experimental band gap of 0.19 eV at 4.2 K.
We do not apply the GW method to defect calculations, as it is
computationally too demanding. The GW band edge shits (ΔEVBM,
ΔECBM) are included in the defect calculations as part of the Ecorr
term through the so called band gap corrections.43,44 Once the
band edge shifts ΔEVBM and ΔECBM between GGA or HSE
calculations and GW are determined, the formation energies are
corrected by −zhΔEVBM (zeΔECBM) for all shallow acceptor (donor)
defects occupied by zh holes (ze electrons). This correction
accounts for the holes or electrons introduced in the defect
calculations occupying VBM or CBM energy levels that need to be
shifted to their GW values.44

To allow comparison across different levels of theory, we
reference the respective band edge energies relative to the
absolute zero, the vacuum level (Fig. 2). These calculations are
performed following the three-step approach45 for referencing
bulk electronic energies to the vacuum,46,47 involving band edge
shifts from GW calculations in combination with DFT calculations
of the potential steps normal to the (100) surface of rocksalt PbTe.
The computed absolute valence band maxima and conduction
band minima are shown in Fig. 2 together with the experimentally
measured value of electron affinity in PbTe of 4.6 ± 0.3 eV.48

Because of the relatively large experimental uncertainty it is
difficult to gauge which of the two methods GGA + SOC + GW or
HSE + SOC + G0W0 is better in reproducing the measured electron
affinity. Certainly, for GW calculations, the specific choice of
functional (GGA or HSE) and the level of self-consistency (single
step G0W0 or fully self-consistent GW) influences the band edge
position.49,50 Based on our results on native defects chemistry and
self-doping behavior in PbTe, we find HSE + SOC + G0W0 band

edge energies to be more appropriate than GGA + SOC + GW,
thus necessitating the need for more precise experimental
measurements.

Finite-size corrections. There are many approaches to compute
finite-size corrections in defect calculations.51 In this work we
follow the approach proposed by Lany and Zunger,40,44 as
implemented in our computational framework.52 The corrections
include (1) potential alignment, which restores the relative
position of the host VBM in the calculations of charged defect
(affecting the Fermi energy), (2) image-charge correction that
accounts for the spurious electrostatic interactions of the charged
defect with its periodic images, and (3) band filling correction that
takes into account the Moss-Burstein-type band filling effects to
shallow defects that appear due to high defect concentrations in a
typical finite-size supercell calculations.40 The magnitude of the
respective corrections is found to vary between 0.01 to 0.45 eV,
depending on the type and charge state of the defect. The
computed static dielectric constant (electronic + ionic) needed for
image-charge correction is given in Table 1 and is found to be
smaller compared to the experimental value, which is in part a
consequence of the larger band gaps obtained by the GGA and
HSE functionals.

Charge transition levels. Charge transition level or thermody-
namic transition level (q1/q2) is defined as the Fermi energy for
which the formation energies of two charge states q1 and q2 of a
defect are equal, and is given as

q1=q2ð Þ ¼ ΔHD;q1 � ΔHD;q2

q2 � q1

�

�

�

�

EF¼0
(2)

where ΔHD,q(EF = 0) is the formation energy of the defect D in the
charge state q when the Fermi energy is at the VBM (EF = 0). These
levels corresponds to Fermi energy where transition from one
defect charge state to another occurs, and are often used as the
basis for experimental detection of the defects.51 The defect
formation energies and charge transition levels resulting from the
described calculations are shown in Fig. 4 and Fig. 5.

Defect and charge carrier concentrations. The defect formation
energy allow calculation of the defect and carrier concentrations
in the dilute limit. In this section, we establish set of equations that
can be solved self-consistently3,53 to yield defect concentrations
CD,q, and the equilibrium position of the Fermi energy EF. Key to
extracting these quantities is the charge neutrality conditions,
which sets the position of the Fermi energy and therefore, the

Fig. 2 The computed band gaps and band edge energies using different levels of theory in DFT calculations employed in this work. Band
edge energies (VBM and CBM) are referenced to the vacuum level, and compared against the experimentally measured value of the band gap
and electron affinity (EA)
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corresponding defect and free carrier concentrations. The charge
neutrality condition is given as
X

D

qCD;q � nþ p ¼ 0; (3)

where q is the charge state, and n and p are the electron and hole
concentrations, respectively. The concentration of a defect is
obtained by

CD;q ¼ Nexp
�ΔHD;q

kBT

� �

; (4)

where N is the concentration of the corresponding lattice sites,
and kB is the Boltzmann constant. n and p are computed from the
density of states (DOS) and the Fermi-Dirac distribution function f
(ε) as

n ¼
Z 1

ECBM

DC εð Þf εð Þdε; (5a)

p ¼
Z EVBM

�1
DV εð Þ 1� f εð Þ½ �dε; (5b)

where DC(ε) and DV(ε) are the DOS at the bottom of the
conduction band and top of the valence band, respectively, and
using the single parabolic band approximation it is given as

DC εð Þ ¼ 8π
ffiffiffi

2
p

h3
m�3=2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � ECBM
p

; (6a)

DV εð Þ ¼ 8π
ffiffiffi

2
p

h3
m

�3=2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EVBM � E
p

; (6b)

m�
e andm�

h are the DOS effective masses for electrons and holes,
respectively. Their computed GGA (HSE) values are 0.17 (0.25) for
electrons, and 0.21 (0.37) for holes in the units of electron mass.
Computed band gap is direct at the L point (four-fold degenerate)
in the Brillouin zone as shown in the Fig. 3.
For intrinsic defects in PbTe and under non-degenerate doping

such that (ε−εF) is at least 2 or 3 times kBT, the Fermi-Dirac
distribution can be replaced with the Maxwell–Boltzmann
distribution function. The carrier concentration integrals in Eqs.
5a and 5b can then be analytically be approximated as

n � 2
2πm�

ekBT

h2

� 	3=2

exp
EF � ECBM

kBT

� �

; (7a)

p � 2
2πm�

hkBT

h2

� 	3=2

exp
EVBM � EF

kBT

� �

: (7b)

The Fermi energy EF is a variable and is determined self-
consistently by solving the charge neutrality condition in Eq. 3
under the convergence criteria of 1012 cm−3 for concentration for
charge balance.

Defects formation energies and charge transition levels

In this section, we compare the formation energies and transition
levels of native defects in PbTe that result from different levels of
theory. Formation energies of vacancy, interstitial and anti-site
defects in PbTe under Te-rich conditions are presented in Fig. 4.
Calculated with both HSE and GGA with and without spin–orbit
coupling, as well as with GW band edge shifts added on top of
spin–orbit calculations. We focus on Te-rich conditions (Fig. 4), as
they exhibits the largest disagreements between different levels
of theory.
The defect plots in the top panel of Fig. 4a and b, obtained

using only HSE and GGA functionals are very similar to each other.
Both levels of theory overestimate the band gap and, serendipi-
tously, correctly predict the p-type nature of PbTe under Te-rich
conditions. The Fermi energy is pinned near the intersection of
negatively charged Pb vacancy (q = 2−) and positively charged
TePb anti-site defect (q = 2+) at about 0.36 eV above the valence
band maximum. This will correctly imply p-type intrinsic
conductivity, but with relatively low concentration of free holes
(Eq. 7b), and more importantly, only a limited extrinsic dopability,
which is in disagreement with the experiments.35,54 Indeed, any
attempt to lower the EF below the crossing point using an external
acceptor will result in lowering the formation energy of donor
Teþ2

Pb , which will compensate extrinsic acceptor and prevent
production of free holes. In their GGA study, Bajaj et al.14 remedied
this problem by scaling the defect plots to the experimental band
gap of 0.2 eV. As a result, the pining of the Fermi level occurs
closer to the VBM (less than 0.1 eV), which, in turn, produces
higher hole concentrations. It is important to note that HSE and
GGA calculations also predict the correct n-type behavior under
Pb-rich conditions, but with low concentration of free electrons
(Eq. 7a) compared to experiments.
After including spin–orbit coupling, the band gap reduces

significantly and shifts of about 0.1–0.4 eV in the position of
charge transition levels occurs between Fig. 4a and c and Fig. 4b
and d. Across Fig. 4a–f the major difference is in the position of
the band edges and the band gap, and not so much (within 0.2
eV) in the charge transition levels for the majority of the defects. In
the HSE + SOC calculations (Fig. 4c), the EF pining occurs below the
crossing between V2�

Pb and Te2þPb and is marginally above the mid
gap, resulting in low concentration of electrons and a weak n-type
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Fig. 3 a Marked high symmetry points within the Brillouin zone of the rocksalt PbTe, b electronic band structure with band gap along the L
point and c density of states using DFT-PBE with SOC and band edge shifts from GW calculations
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behavior. However, in the GGA + SOC calculations (Fig. 4d), the
positively charged Teþ2

Pb donor is the dominating defect within the
band gap (only 0.02 eV), which pins the EF close to the conduction
band edge and results in a high concentration of free electrons
under Te-rich conditions.
Therefore, neither HSE nor GGA, with or without spin–orbit

coupling, is able to satisfactorily reproduce the experimentally-
observed self-doping behavior in PbTe. The resolution of this
apparent contradiction is in the observation that the defect
formation energies are very similar between different levels of
theory if the differences in band edge positions are ignored. To a
good approximation, the differences result from different
positions of the band edges. As already discussed in Ref. Peng

et al.43 one way of obtaining more accurate positions of valence
and conduction band edges is to employ GW calculation, and
correct the defect formation energies using the GW band edge
shifts, which we discuss next.
The main effect of the G0W0 on the HSE + SOC band structure of

PbTe is the shift of the valence band edge by approximately 0.1
eV. This brings the band gap in close agreement with the
experiments and affects the defect formation energies by
changing the range of allowed EF values. V2�

Pb and Te2þPb remain
the low energy defects under Te-rich conditions, but pinning of
the EF now occurs below the mid gap, leading to the p-type nature
of PbTe. However, addition of GW band edge shifts on top of GGA
+ SOC calculations in Te-rich conditions, incorrectly results in
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Fig. 4 Defect formation energy as a function of Fermi energy (referenced to the vacuum level) for native vacancies, anti-sites and interstitials
in PbTe under Te-rich conditions. Calculated with a HSE, b GGA, c HSE with spin–orbit coupling (SOC), d GGA + SOC, e HSE + SOC with band
edge shifts from single step G0W0, and f GGA + SOC with band edge shifts from self-consistent GW calculations. Band edges (VBM and CBM)
are aligned on the absolute scale with vacuum, and band gap is shown in the white region. Major differences in defect plots between different
levels of theory comes from differences in the band edge positions
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solely n-type behavior due to Te2þPb , which pin the EF close to the
conduction band.
Experimentally PbTe is well-known to be p-type due to Pb

vacancies under Te-rich conditions.34,37 However, in our results we
find that only HSE + SOC + G0W0 results correctly reproduce the
experiments, without any experimental inputs. The n-type intrinsic
behavior in GGA + SOC and GGA + SOC + GW is much more
prominent than HSE + SOC, due to singularly dominating donor
type Te2þPb defect resulting in the equilibrium Fermi level close to
the conduction band. Their failure to predict p-type intrinsic
dopability in PbTe under Te-rich conditions, originates mainly
from the lower position of the valence band energy, which favors
formation of positively charged donor defects.
Figure 5, shows defect plots for both Te-poor and Te-rich

conditions calculated using HSE + SOC + G0W0 and GGA + SOC +
GW. The differences are obvious. Due to lower absolute positions
of the band edges in GGA + SOC + GW the donor defects
dominate, regardless of the conditions, rendering the systems
always n-type behavior. As plots in Fig. 5 assume the most
extreme Te-poor and Te-rich conditions (equilibrium with pure Pb
and Te, respectively), the system will be n-type for any other set of
chemical potentials. The HSE + SOC + G0W0 results are qualitatively
different. Under Te-poor conditions the lowest energy defect is
donor V2þ

Te for any position of the Fermi energy, rendering the
system n-type. Under Te-rich conditions, as already discussed, the
equilibrium position of the Fermi energy is determined by the
charge neutrality between V2�

Pb and Te2þPb , and the system is
correctly predicted to be p-type.
The p-type and n-type intrinsic conductivity in PbTe has been

attributed to Pb and Te vacancies, respectively, via experi-
ments.34,55 Proposition of Pb interstitial as dominating defect
over Te vacancies under Te-poor conditions has been made by
Schenk et al.,37 and in an earlier work by Brebrick and Allgaier.56

However, Brebrick and Grubner34 later corrected their previous
conclusions56 by citing the presence of Cu impurities as donor in
Te-poor conditions and not Pb interstitials. In Te-poor conditions,
we find Pb2þ

i is 0.35 eV above V2þ
Te , leading to a concentration that

is two to three orders of magnitude lower than Te vacancies.
Extrinsic doping is outside the scope of this study, but based on

the HSE + SOC + G0W0 results (Fig. 5a), PbTe can be extrinsically
doped both n-type and p-type. This is because the energy of
native defects is relatively high at the band edges (>0.5 eV), which
gives adequate room for formation of extrinsic defects, without
having to form compensating defects. On the other hand, the

GGA + SOC + GW (Fig. 5b) incorrectly suggests that PbTe will be
difficult to ever dope p-type due to the formation of the
compensating V2þ

Te and Te2þPb defects, in Te-poor and Te-rich
conditions, respectively.35

Overall, the main differences in predicting self-doping based on
defect chemistry between different levels of theory comes from
variations of the band edge energies. Our results support similar
conclusions made for defect calculations57–59 comparing defect
formation energies and charge transitions levels between
standard GGA and hybird HSE functional calculations. We find
relatively small differences in atomic relaxations around the defect
structures between GGA and HSE, which likely affect the charge
transitions levels by about 0.2 eV within the two functionals.
Differences of this magnitude may not be notable for a large band
gap system but for a narrow band gap system these yield
qualitatively different results. However, as discussed by Lyon and
Van de Walle,59 even for large band gap system such as GaN (3.51
eV) differences in atomic relaxations within GGA and HSE can
undermine accurate description of optical transition levels.
At this point it is important to discuss the relation of HSE + SOC

+ G0W0 to the approach frequently used in defect calculations
with HSE functionals. The amount of exact exchange, i.e., the α

parameter, is often adjusted to match the experimental band gap,
and then the same α is used for subsequent defect calculations.51

This would, in principle, alleviate the need for G0W0 and the
associated band edge corrections. Indeed, our HSE + SOC calcula-
tions show that for α = 0.18, which gives the band gap of 0.2 eV
instead 0.3 eV with the default α = 0.25, the absolute band edges
come very close to those of HSE + SOC + G0W0 (see Fig. 2 in the
supporting information). Based on our previous discussion this
would imply that HSE(α = 0.18) + SOC could be an alternative
approach that would offer similarly accurate description of defects
in PbTe. While this is likely, one weakness is the need for
experimental band gap to tune the value of α. As our primary goal
is to construct an approach that is independent of experimental
data and applicable to systems not characterized well, we argue
that in those cases the choice should be HSE(α = 0.25) + SOC +
G0W0.

Free carrier concentration as a function of temperature

In this section, we show that calculations with G0W0 band edge
shifts on top of HSE + SOC provides quantitatively correct
estimates of the free carrier concentrations in PbTe, whereas

GGA+SOC+GW(b)(a) HSE+SOC+G0W0
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Fig. 5 Defect formation energy as a function of Fermi energy for vacancies, interstitials, and anti-sites defects in PbTe, calculated with a HSE
with SOC and band edge shifts from single step G0W0, b GGA with SOC and band edge shifts from GW calculations. Pb and Te interstitial
correspond to the tetrahedral interstitial site. HSE + SOC + G0W0 results correctly predict the intrinsic bi-polar conductivity in PbTe
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other levels of theory fail. Defect and carrier concentrations are
computed using the approach already described in Sec. 2.1. To
account for the effect of temperature on defect formation energy
(Eq. 1), the temperature dependence of band gap (Fig. 6a) as well
as band edge energies (Fig. 6b) are taken into account based on
the available experimental data.35,60 The experimental data in Fig.
6c and d is from Hall measurements34–37 done between 77–100 K
on quenched samples that are annealed at a much higher
temperature range, between 400 and 1100 K. Therefore carrier
concentrations from the charge neutrality condition (Eq. 3) are
computed at 100 K, using defect concentrations corresponding to
the annealing temperature of the experiment.
Optical experiment measurements31,42,60,61 have shown that the

band gap increases linearly with temperature (at constant
pressure) up to 400 K (Fig. 6a), and approaches a constant value
of 0.36 eV at higher temperature. The positive sign of the
temperature coefficient is interesting since most semiconductors
have a negative temperature coefficient. This unusual behavior of
the band gap with temperature is explained based on the
downward shift of the valence band edge at the L point in the
Brillouin zone31,60 to about 400 K with negative temperature
coefficient between 2 and 3 × 10−4 eV K−1 (Fig. 6b). The conduc-
tion band edge moves upward with increasing temperature but its
temperature dependence (1.6 × 10−4 eV K−1) is weaker compared
to the valence band edge. The temperature dependence of both
the conduction band and the valence band edge are adopted
from Ref. 35.

The free carrier concentrations computed with the HSE + SOC +
G0W0 calculations are not only quantitatively accurate, but also
predict the correct bipolar intrinsic conductivity in PbTe, i.e., p-
type behavior in Te-rich conditions and n-type behavior in Te-poor
conditions. The computed free carrier concentrations are within
half to an order magnitude of the experimental values34,36,37

depending on the temperature, as shown in Fig. 6c and d.
HSE + SOC calculations without the G0W0 band edge shifts,

predict the correct n-type conductivity under Te-poor conditions,
but fail to predict the p-type conductivity under Te-rich conditions
at low temperatures. We find that intrinsic conductivity changes
from n-type to p-type at temperatures above 700 K in HSE + SOC
calculations under Te-rich conditions. This crossover is due to
higher concentration of thermally activated holes compared to
that of electrons at high temperatures. The higher effective mass
of holes compared to that of electrons in PbTe creates this
difference in their concentrations, and because of the narrow
band gap of PbTe, easier activation of holes and electron begins to
control the conductivity at high temperatures. However, even at
high temperatures the computed free carrier concentrations from
HSE + SOC are about two order of magnitude lower than
experimental values under Te-rich conditions.
Lastly, we raise the question of the possible influence of vibrations

to the predictions of defect and carrier concentrations. In narrow
gap systems such as PbTe relatively small deviations in defect
formation energies and/or band edge positions could come from
vibrations and could have a profound effect on the predictions. This
is certainly a valid point that warrants further investigations of the

Band gap(a) Band edges(b)
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Fig. 6 Shows a band gap, and b band edges in PbTe as a function of temperature as adopted from experiments.35,60,68 The computed free
carrier concentrations in c under Te-rich, and Te-poor conditions, agree well with the experiments. Eg(T) correspond to concentrations
computed using band gap and band edge energies as function of temperature in defect formation energy (DFE), and Eg(T= 0 K) correspond
to concentrations computed using DFE with band gap of 0.2 eV and band edges at T= 0 K. Experimental data for free carrier concentrations is
adopted from Refs. 34,35,36,37
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phonon contributions to defect formation energies, especially in
relatively soft systems like PbTe in which the occupation of phonon
modes can be significant even at moderate temperatures, and
which also exhibit a significant amount of anharmonicity.23,25 While
the defect calculations in the presence of phonons are beyond the
scope of the present study, our results clearly show that by
neglecting phonon contributions to defect formation energies
defined in Eq. 1 it is possible to obtain qualitatively correct and
quantitatively reasonably accurate description of defect chemistry
and intrinsic carrier concentration in PbTe. This implies that the
phonon contributions amount to differences between the predicted
and experimentally measured carrier concentrations, that are
estimated to be roughly of an order of magnitude.
Despite the challenges, our results show that it is possible to

accurately predict the intrinsic dopability in PbTe from first-
principles point defect calculations and thermodynamic simula-
tionss. These results have important implication towards the other
thermoelectric materials such as PbSe, PbS, and Bi2X3 (X = S, Se, Te).
These systems have narrow band gaps due to strong spin–orbit
interactions. However, an accurate description of point defects in
these systems is still missing. Intrinsic dopability controls the
effectiveness of external dopants, as native point defects with low
formation energy can act as compensating ‘killer’ defects. Therefore,
using the computational methodology described in this paper will
not only enhance the understanding of point defects, but also help
in making accurate prediction about dopability in these materials.
In conclusion, we have systematically reviewed first-principles

calculations of native point defects in PbTe using different levels of
theory, with the goal of achieving qualitatively correct and
quantitively accurate description of its intrinsic defect chemistry
and self doping behavior. Similar to other narrow band gap
systems, achieving accurate atomic-level description of intrinsic
defect chemistry is challenging because small uncertainties in the
calculations can lead to large deviations in the predictions. We
showed here that accurate description of the experimentally
observed bipolar doping behavior as a function of the synthesis
conditions and measured charge carrier concentrations, requires
defect calculations that combine hybrid functionals with spin–orbit
coupling included and quasi-particle G0W0 description of the
position of the individual band edges. The primary difference
between different levels of theory considered here (DFT and
Hybrid functionals, with and without SOC and GW band edge
shifts) is actually in the position of the valence and conduction
band edges relative to vacuum. The correct description of intrinsic
defect chemistry and self-doping emerges only if total energies are
calculated at the HSE + SOC level and the results are corrected
using the G0W0 band-edge shifts. Our results reaffirm the
importance of the band edge positions in defect calculations and
help formulate reliable first-principles procedure for predicting
dopability in PbTe and other narrow band gap systems.

METHODS

DFT calculations are performed using the projector augmented wave
(PAW) method62 as implemented in VASP.63 The plane wave energy cutoff
of 340 eV, and a Monkhorst-Pack k-point sampling64 is used. The bulk
properties (Table 1) are calculated using a 12 × 12 × 12 and 8 × 8 × 8 k-
point mesh for the primitive cell with GGA and HSE calculations,
respectively. The static total (electronic + ionic) dielectric constant with
GGA functional is calculated via the density functional perturbation
theory65,66 (DFPT). With HSE functional, the electronic component to the
dielectric tensor is calculated from the self-consistent response of the
system to a finite electric field,67 and the ionic part is taken same as that of
the GGA functional from DFPT calculation. Defect calculations are
performed on 64 atom bulk supercell with a Γ-centered 2 × 2 × 2 k-point
mesh. Static self-consistent SOC calculations are performed on GGA and
HSE relaxed defect structures. In the present VASP implementation of the
GWmethod,63 the inclusion of SOC is not possible. Therefore, the GW band

edge shifts are estimated relative to the GGA or HSE computed band
edges, and subsequently added to the SOC results.
To test the convergence of our results with supercell size we have

performed additional calculations using DFT-PBE on a 216-atom supercell.
The defect formation energies are converged within 0.1–0.2 eV depending
on the type and charge state of the defect, and the net carrier
concentrations are converged within an order of magnitude or less
depending on the temperature. The overall description of the defect
chemistry remains essentially the same, and the position of the equilibrium
Fermi energy is well converged within 0.02 eV between the 64 and 216-
atom supercell calculations. Results from 216-atom supercell calculations
are summarized in Fig. 1 in the Supporting information.
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