Header menu link for other important links
X
Fine-tuning human pose estimations in videos
D. Singh, , C.V. Jawahar
Published in Institute of Electrical and Electronics Engineers Inc.
2016
Abstract
We propose a semi-supervised self-training method for fine-tuning human pose estimations in videos that provides accurate estimations even for complex sequences. We surpass state-of-the-art on most of the datasets used and also show a 2.33% gain over the baseline on our new dataset of unrestricted sports videos. The self-training model presented has two components: a static Pictorial Structure (PS) based model and a dynamic ensemble of exemplars. We present a pose quality criteria that is primarily used for batch selection and automatic parameter selection. The same criteria works as a low-level pose evaluator used in post-processing. We set a new challenge by introducing a full human body-parts annotated complex dataset, CVIT-SPORTS, which contains complex videos from the sports domain. The strength of our method is demonstrated by adapting to videos of complex activities such as cricket-bowling, cricket-batting, football as well as available standard datasets. © 2016 IEEE.