
Finding Even Subgraphs Even Faster∗

Prachi Goyal1, Pranabendu Misra2, Fahad Panolan2,

Geevarghese Philip4, and Saket Saurabh2,3

1 Indian Institute of Science, Bangalore, India

prachi.goyal@csa.iisc.ernet.in

2 Institute of Mathematical Sciences, Chennai, India

{pranabendu,fahad,saket}@imsc.res.in

3 University of Bergen, Norway

4 Chennai Mathematical Institute, India

gphilip@cmi.ac.in

Abstract

Problems of the following kind have been the focus of much recent research in the realm of

parameterized complexity: Given an input graph (digraph) on n vertices and a positive integer

parameter k, find if there exist k edges (arcs) whose deletion results in a graph that satisfies some

specified parity constraints. In particular, when the objective is to obtain a connected graph in

which all the vertices have even degrees – where the resulting graph is Eulerian the problem is

called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where

the resulting graph should be strongly connected and every vertex should have the same in-degree

as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [Algorithmica,

2014] showed that these problems are fixed parameter tractable (FPT), and gave algorithms

with the running time 2O(k log k)nO(1). They also asked, as an open problem, whether there exist

FPT algorithms which solve these problems in time 2O(k)nO(1). It was also posed as an open

problem at the School on Parameterized Algorithms and Complexity 2014, Bȩdlewo, Poland.

In this paper we answer their question in the affirmative: using the technique of computing

representative families of co-graphic matroids we design algorithms which solve these problems

in time 2O(k)nO(1). The crucial insight we bring to these problems is to view the solution as an

independent set of a co-graphic matroid. We believe that this view-point/approach will be useful

in other problems where one of the constraints that need to be satisfied is that of connectivity.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Eulerian Edge Deletion, FPT, Representative Family

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.434

1 Introduction

Many well-studied algorithmic problems on graphs can be phrased in the following way: Let

F be a family of graphs or digraphs. Given as input a graph (digraph) G and a positive

integer k, can we delete k vertices (or edges or arcs) from G such that the resulting graph

(digraph) belongs to the class F? Recent research in parameterized algorithms has focused

on problems of this kind where the class F consists of all graphs/digraphs whose vertices

∗ Supported by the European Research Council (ERC) via grant PARAPPROX, reference 306992; and by
the Department of Science and Technology (DST), Government of India, the German Federal Ministry
of Education and Research (BMBF), and the Max Planck Society (MPG), via the Indo-German Max
Planck Center for Computer Science(IMPECS)

© Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 434–447

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 435

satisfy certain parity constraints [4, 9, 2, 8, 5]. In this paper we obtain significantly faster

parameterized algorithms for two such problems, improving the previous best bounds due to

Cygan et al. [4]. We also settle the parameterized complexity of a third problem, disproving a

conjecture of Cai and Yang [2] and solving an open problem posed by Fomin and Golovach [9].

We obtain our results using recently-developed techniques for the efficient computation of

representative sets of matroids.

An undirected graph G is even (respectively, odd) if every vertex of G has even (resp.

odd) degree. A directed graph D is balanced if the in-degree of each vertex of D is equal to

its out-degree. An undirected graph is Eulerian if it is connected and even; and a directed

graph is Eulerian if it is strongly connected and balanced. Cai and Yang [2] initiated the

systematic study of parameterized Eulerian subgraph problems. In this work we take up the

following edge-deletion problems of this kind:

Undirected Eulerian Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.

Question: Does there exist a set S of at most k edges in G such that G\S is Eulerian?

Undirected Connected Odd Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.

Question: Does there exist a set S of at most k edges in G such that G \ S is odd and

connected?

Directed Eulerian Edge Deletion Parameter: k

Input: A strongly connected directed graph D and an integer k.

Question: Does there exist a set S of at most k arcs in D such that D \S is Eulerian?

Our algorithms for these problems also find such a set S of edges/arcs when it exists; so

we slightly abuse the notation and refer to S as a solution to the problem in each case.

Previous Work. Cai and Yang [2] listed sixteen odd/even undirected subgraph problems

in their pioneering paper, and settled the parameterized complexity of all but four. The

first two problems above are among these four; Cai and Yang conjectured that these are

both W[1]-hard, and so are unlikely to have fixed-parameter tractable (FPT) algorithms:

those with running times of the form f(k) · nO(1) for some computable function f where n is

the number of vertices in the input graph. Cygan et al. [4] disproved this conjecture for the

first problem: they used a novel and non-trivial application of the colour-coding technique

to solve both Undirected Eulerian Edge Deletion and Directed Eulerian Edge

Deletion in time 2O(k log k)nO(1). They also posed as open the question whether there exist

2O(k)nO(1)-time algorithms for these two problems. It was also posed as an open problem at

the School on Parameterized Algorithms and Complexity 2014, Bȩdlewo, Poland [3]. Fomin

and Golovach [9] settled the parameterized complexity of the other two problems – not

defined here – left open by Cai and Yang, but left the status of Undirected Connected

Odd Edge Deletion open.

Our Results and Methods. We devise deterministic algorithms of running time 2O(k)nO(1)

for all the three problems defined above. This answers the question of Cygan et al. [4] in the

affirmative, solves the problem posed by Fomin and Golovach, and disproves the conjecture

of Cai and Yang for Undirected Connected Odd Edge Deletion.

◮ Theorem 1.1. Undirected Eulerian Edge Deletion, Undirected Connected

Odd Edge Deletion, and Directed Eulerian Edge Deletion can all be solved in

FSTTCS 2015

436 Finding Even Subgraphs Even Faster

time O(2(2+ω)k · n2m3k6) + mO(1) where n = |V (G)|, m = |E(G)| and ω is the exponent of

matrix multiplication.

Our main conceptual contribution is to view the solution as an independent set of a co-graphic

matroid, which we believe will be useful in other problems where one of the constraints that

need to be satisfied is that of connectivity.

We now give a high-level overview of our algorithms. Given a subset of vertices T of a

graph G, a T -join of G is a set S ⊆ E(G) of edges such that T is exactly the set of odd

degree vertices in the subgraph H = (V (G), S). Observe that T -joins exist only for even-sized

vertex subsets T . The following problem is long known to be solvable in polynomial time [7].

Min T -Join

Input: An undirected graph G and a set of terminals T ⊆ V (G).

Question: Find a T -join of G of the smallest size.

Consider the two problems we get when we remove the connectivity (resp. strong

connectivity) requirement on the graph G\S from Undirected Eulerian Edge Deletion

and Directed Eulerian Edge Deletion; we call these problems Undirected Even

Edge Deletion and Directed Balanced Edge Deletion, respectively. Cygan et

al. show that Undirected Even Edge Deletion can be reduced to Min T -Join, and

Directed Balanced Edge Deletion to a minimum cost flow problem with unit costs,

both in polynomial time [4]. Thus it is not the local requirement of even degrees which makes

these problems hard, but the simultaneous global requirement of (strong) connectivity.

To handle this situation we turn to a matroid which correctly captures the connectivity

requirement. Let I be the family of all subsets X ⊆ E(G) of the edge set of a graph G such

that the subgraph (V (G), E(G) \X) is connected. Then the pair (E(G), I) forms a linear

matroid called the co-graphic matroid of G (See Section 2 for definitions). Let T be the

set of odd-degree vertices of the input graph G. Observe that for Undirected Eulerian

Edge Deletion, the solution S we are after is both a T -join and an independent set of the

co-graphic matroid of G. We exploit this property of S to design a dynamic programming

algorithm which finds S by computing “representative sub-families” [10, 12, 14, 15] of certain

families of edge subsets in the context of the co-graphic matroid of G. We give simple

characterizations of solutions which allow us to do dynamic programming, where at every

step we only need to keep a representative family of the family of partial solutions where

each partial solution is an independent set of the corresponding co-graphic matroid. To find

the desired representative family of partial solutions we use the algorithm by Lokshtanov et

al. [13]. Our methods also imply that Undirected Connected Odd Edge Deletion

admits an algorithm with running time 2O(k)nO(1).

2 Preliminaries

Throughout the paper we use ω to denote the exponent in the running time of matrix

multiplication, the current best known bound for which is ω < 2.373 [17].

Graphs and Directed Graphs. We use “graph” to denote simple graphs without self-loops,

directions, or labels, and “directed graph” or “digraph” for simple directed graphs without

self-loops or labels. We use standard terminology from the book of Diestel [6] for those

graph-related terms which we do not explicitly define. In general we use G to denote a graph

and D to denote a digraph. We use V (G) and E(G), respectively, to denote the vertex and

edge sets of a graph G, and V (D) and A(D), respectively, to denote the vertex and arc

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 437

sets of a digraph D. For an edge set E′ ⊆ E(G), we use (i) V (E′) to denote the set of end

vertices of the edges in E′, (ii) G \ E′ to denote the subgraph G′ = (V (G), E(G) \ E′) of

G, and (iii) G(E′) to denote the subgraph (V (E′), E′) of G. The terms V (A′), D \A′, and

D(A′) are defined analogously for an arc subset A′ ⊆ A(D).

If P is a path from vertex u to vertex v in graph G (or in digraph D) then we say that

(i) P connects u and v, (ii) u, v are, respectively, the initial vertex and the final vertex of

P , and (iii) u, v are the end vertices of path P . Let P1 = x1x2 . . . xr and P2 = y1y2 . . . ys be

two edge-disjoint paths in graph G. If xr = y1 and V (P1)∩ V (P2) = {xr}, then we use P1P2

to denote the path x1x2 . . . xry2 . . . ys. A path system P in graph G (resp., digraph D) is

an ordered collection of paths in G (resp. in D), and it is edge-disjoint if no two paths in

the system share an edge. We use V (P) and E(P) (A(P) for a path system in digraph) for

the set of vertices and edges, respectively, in a path system P. We say that a path system

P = {P1, . . . , Pr} ends at a vertex u if the path Pr ends at u, and u is called the final vertex

of P. We use V e(P) to denote the set of end vertices of paths in a path system P. For a

path system P in a digraph D, we use V i(P) and V f (P), respectively, to denote the set of

initial vertices and the set of final vertices, respectively, of paths in P. For a path system

P = {P1, . . . , Pr} and an edge/arc (u, v), we define P ◦ (u, v) as follows.

P ◦ (u, v) =

{
{P1, . . . , Prv} if u is the final vertex of Pr and v /∈ V (Pr)

{P1, . . . , Pr, uv} if u is not the final vertex of Pr

A directed graph D is strongly connected if for any two vertices u and v of D, there is

a directed path from u to v and a directed path from v to u in D. A digraph D is weakly

connected if the underlying undirected graph is connected. The in-neighborhood of a vertex v

in D is the set N−
D (v) = {u | (u, v) ∈ A(D)}, and the in-degree of v in D is d−

D(v) = |N−
D (v)|.

The out-neighborhood of v is the set N+
D (v) = {w | (v, w) ∈ A(D)}, and its out-degree is

d+
D(v) = |N+

D (v)|.

Co-Graphic Matroids. The co-graphic matroid of a connected graph G is defined as M =

(E(G), I) where I = {S ⊆ E(G) | (G \ S) is connected}. It is a linear matroid and, given a

graph G, a representation of the co-graphic matroid of G over the finite field F2 can be found

in polynomial time [14, 16]. The rank of the cographic matroid of a connected graph G is

(|E(G)| − |V (G)|+ 1). We use MG to denote the co-graphic matroid of a graph G. For a

directed graph D we use MD to denote the co-graphic matroid of the underlying undirected

graph of D.

Let A be a family of path systems in a graph G. Let e = (u, v) be an edge in G (or an

arc in D), and let M = (E, I) be the co-graphic matroid of graph G (or of digraph D). We

use A • {e} to denote the family of path systems

A • {e} = {P ′ = P ◦ e | P ∈ A, e /∈ E(P), E(P ′) ∈ I } .

Representative Families of Matroids. The notion of representative families of matroids

and their fast computation play key roles in our algorithms.

◮ Definition 2.1. [10, 14] Given a matroid M = (E, I), a family S of subsets of E, and

a non-negative integer q, we say that a subfamily Ŝ ⊆ S is q-representative for S if the

following holds. For every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.

FSTTCS 2015

438 Finding Even Subgraphs Even Faster

In other words, if some independent set X in S can be extended to a larger independent set

by a set Y of at most q new elements, then there is a set X̂ in Ŝ that can be extended by

the same set Y . If Ŝ ⊆ S is q-representative for S we write Ŝ ⊆q
rep S.

In this paper we are interested in linear matroids and in representative families derived

from them. The following theorem states the key algorithmic result which we use for the

computation of representative families of linear matroids.

◮ Theorem 2.2 ([13]). Let M = (E, I) be a linear matroid of rank n and let S = {S1, . . . , St}

be a family of independent sets, each of size b. Let A be an n × |E| matrix representing

M over a field F, where F = Fpℓ or F is Q. Then there is deterministic algorithm which

computes a representative set Ŝ ⊆q
rep S of size at most nb

(
b+q

b

)
, using O

((
b+q

b

)
tb3n2 +

t
(

b+q
b

)ω−1
(bn)ω−1

)
+ (n + |E|)O(1) operations over the field F.

3 Undirected Eulerian Edge Deletion

In this section we describe our 2O(k)nO(1)-time algorithm for Undirected Eulerian Edge

Deletion. Let (G, k) be an instance of the problem. Cygan et al. [4] observed the following

characterization.

◮ Observation 3.1. A set S ⊆ E(G) ; |S| ≤ k of edges of a graph G is a solution to the

instance (G, k) of Undirected Eulerian Edge Deletion if and only if it satisfies the

following conditions:

(a) G \ S is a connected graph; and,

(b) S is a T -join where T is the set of all odd degree vertices in G.

For a designated set T ⊆ V (G) of terminal vertices of graph G, we call a set S ⊆ E(G)

a co-connected T -join of graph G if (i) G \ S is connected and (ii) S is a T -join. From

Observation 3.1 we get that the Undirected Eulerian Edge Deletion problem is

equivalent to checking whether the given graph G has a co-connected T -join of size at most

k, where T is the set of all odd-degree vertices in G. We present an algorithm which finds

a co-connected T -join for an arbitrary (even-sized) set of terminals T within the claimed

time-bound. That is, we solve the following more general problem:

Co-Connected T -Join Parameter: k

Input: A connected graph G, an even-sized subset T ⊆ V (G) and an integer k.

Question: Does there exist a co-connected T -join of G of size at most k?

We design a dynamic programming algorithm for this problem where the partial solutions

which we store satisfy the first property of co-connected T -join and “almost satisfy” the

second property. To limit the number of partial solutions which we need to store, we

compute and store instead, at each step, a representative family of the partial solutions in

the corresponding co-graphic matroid. We start with the following characterization of the

T -joins of a graph G.

◮ Proposition 3.2 ([11, Proposition 1.1]). Let T be an even-sized subset of vertices of a

graph G, and let ℓ = |T |
2 . A subset S of edges of G is a T -join of G if and only if S can be

expressed as a union of the edge sets of (i) ℓ paths which connect disjoint pairs of vertices in

T , and (ii) zero or more cycles, where the paths and cycles are all pairwise edge-disjoint.

This proposition yields the following useful property of inclusion-minimal co-connected

T -joins (minimal co-connected T -joins for short) of a graph G.

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 439

◮ Lemma 3.3 (♣). 1 Let T be an even-sized subset of vertices of a graph G, and let ℓ = |T |
2 .

Let S be a minimal co-connected T -join of G. Then (i) the subgraph G(S) is a forest, and (ii)

the set S is a union of the edge-sets of ℓ pairwise edge disjoint paths which connect disjoint

pairs of vertices in T .

Note that the set of paths described in Lemma 3.3 are just pairwise edge-disjoint. Vertices

(including terminals) may appear in more than one path as internal vertices. A partial

converse of the above lemma follows directly from Proposition 3.2.

◮ Lemma 3.4 (♣). Let T be an even-sized subset of vertices of a graph G, and let ℓ = |T |
2 .

Let a subset S ⊆ E(G) of edges of G be such that (i) G \ S is connected, and (ii) S is a

union of the edge-sets of ℓ pairwise edge-disjoint paths which connect disjoint pairs of vertices

in T . Then S is a co-connected T -join.

An immediate corollary of Lemma 3.3 is that for any set T ⊆ V (G), any T -join of the

graph G has at least |T |/2 edges. Hence if |T | > 2k then we can directly return No as

the answer for Co-Connected T -Join. So from now on we assume that |T | ≤ 2k. From

Lemmas 3.3 and 3.4 we get that to solve Co-Connected T -Join it is enough to check for

the existence of a pairwise edge-disjoint collection of paths P = {P1, . . . , P |T |
2

} such that

(i) the subgraph (G \ E(P)) is connected, (ii) |E(P)| ≤ k, and (iii) the paths in P connect

disjoint pairs of terminals in T . We use dynamic programming to find such a path system.

We first state some notation which we need to describe the dynamic programming table.

We use Q to denote the set of all path systems in G which satisfy the above conditions.

For 1 ≤ i ≤ k we use Q(i) to denote the set of all potential partial solutions of size i :

Each Q(i) is a collection of path systems Q(i) = {P
(i)
1 , . . . ,P

(i)
t } where each path system

P
(i)
s = {P1, . . . , Pr} ∈ Q

(i) has the following properties:

(i) The paths P1, . . . , Pr are pairwise edge-disjoint.

(ii) The end-vertices of the paths P1, . . . , Pr are all terminals and are pairwise disjoint,

with one possible exception. One end-vertex (the final vertex) of the path Pr may be a

non-terminal, or a terminal which appears as an end-vertex of another path as well.

(iii) |E(P
(i)
s)| = i, and the subgraph G \ E(P

(i)
s) is connected.

Note that the only ways in which a partial solution P
(i)
s may violate one of the conditions in

Lemma 3.4 are: (i) it may contain strictly less than |T |
2 paths, and/or (ii) there may be a

path Pr (and only one such), which has one end-vertex vr which is a non-terminal or is a

terminal which is an end-vertex of another path as well. For a path system P = {P1, . . . , Pr}

and u ∈ V (G) ∪ {ǫ}, we use W (P, u) to denote the following set.

W (P, u) =

{
V e(P) if u = ǫ

(V e(P \ {Pr})) ∪ {v | v is the initial vertex of Pr} if u 6= ǫ

Finally, for each 1 ≤ i ≤ k, T ′ ⊆ T , and v ∈ (V (G) ∪ {ǫ}) we define

Q[i, T ′, v] = {P ∈ Q(i) |W (P, v) = T ′, and if v 6= ǫ then v is the final vertex of P}

as the set of all potential partial solutions of size i whose set of end vertices is exactly T ′∪{v}.

Observe from this definition that in the case v = ǫ, the last path Pr in each path system

P = {P1, . . . , Pr} ∈ Q[i, T ′, ǫ] ends at a “good” vertex; that is, at a terminal vertex which is

different from all the end vertices of the other paths P1, . . . , P(r−1) in P.

1 Proof of results labelled with ♣ will appear in the full version of the paper.

FSTTCS 2015

440 Finding Even Subgraphs Even Faster

It is not difficult to see that this definition of Q[i, T ′, v] is a correct notion of a partial

solution for Co-Connected T -Join:

◮ Lemma 3.5. Let (G, T, k) be a Yes instance of Co-Connected T -Join which has

a minimal solution of size k′ ≤ k, and let ℓ = |T |
2 . Then for each 1 ≤ i ≤ k′ there

exist T ′ ⊆ T , v ∈ (V (G) ∪ {ǫ}), and path systems P = {P1, P2, . . . , Pr} ∈ Q[i, T ′, v] and

P ′ = {P ′
r, P ′

r+1, . . . , P ′
ℓ} in G (where E(P ′

r) = ∅ if v = ǫ) such that (i) E(P)∩E(P ′) = ∅, (ii)

PrP ′
r is a path in G, and (iii) P ∪ P ′ = {P1, P2, . . . , PrP ′

r, P ′
r+1, . . . , P ′

ℓ} is an edge-disjoint

path system whose edge set is a solution to the instance (G, T, k).

Proof. Let P̂ = {P̂1, . . . , P̂ℓ} be a path system in graph G which witnesses – as per Lemma 3.3

– the fact that (G, T, k) has a solution of size k′. If i =
∑r

j=1 |E(P̂j)| for some 1 ≤ r ≤ ℓ then

the path systems P = {P̂1, P̂2, . . . , P̂r} ∈ Q[i, T ′, v] and P ′ = {∅, P̂r+1, P̂r+2, . . . , P̂ℓ} satisfy

the claim, where T ′ = T ∩ V e(P) and v = ǫ.

If i takes another value then let 1 ≤ r ≤ ℓ be such that
∑r−1

j=1 |E(P̂j)| < i <
∑r

j=1 |E(P̂j)|.

“Split” the path P̂r as P̂r = P̂ 1
r P̂ 2

r such that
∑r−1

j=1 |E(P̂j)| + |E(P̂ 1
r)| = i. Now the path

systems P = {P̂1, P̂2, . . . , P̂r−1, P̂ 1
r } ∈ Q[i, T ′, v] and P ′ = {P̂ 2

r , P̂r+1, P̂r+2, . . . , P̂ℓ} satisfy

the claim, where T ′ = T ∩ V e(P) and v is the final vertex of the path P̂ 1
r . ◭

Given this notion of a partial solution the natural dynamic programming approach is to

try to compute, in increasing order of 1 ≤ i ≤ k, partial solutions Q[i, T ′, v] for all T ′ ⊆ T ,

v ∈ (V (G) ∪ {ǫ}) at step i. But this is not feasible in polynomial time because the sets

Q[i, T ′, v] can potentially grow to sizes exponential in |V (G)|. Our way out is to observe

that to reach a final solution to the problem we do not need to store every element of a set

Q[i, T ′, v] at each intermediate step. Instead, we only need to store a representative family

R of partial solutions corresponding to Q[i, T ′, v], where R has the following property: If

there is a way of extending – in the sense of Lemma 3.5—any partial solution P ∈ Q[i, T ′, v]

to a final solution then there exists a P̂ ∈ R which can be extended the same way to a final

solution.

Observe now that our final solution and all partial solutions are independent sets in

the co-graphic matroid MG of the input graph G. We use the algorithm of Lokshtanov

et al. [13]—see Theorem 2.2—to compute these representative families of potential partial

solutions at each intermediate step. In step i of the dynamic programming we store, in place

of the set Q[i, T ′, v], its (k − i)-representative set ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T ′, v] with respect to

the co-graphic matroid MG; for the purpose of this computation we think of each element P

of Q[i, T ′, v] as the edge set E(P). Lemma 3.8 below shows that this is a safe step. Whenever

we talk about representative families in this section, it is always with respect to the co-graphic

matroid MG associated with G; we do not explicitly mention the matroid from now on. We

start with the following definitions.

◮ Definition 3.6. Let 1 ≤ i ≤ k , T ′ ⊆ T, ℓ = |T |
2 and v ∈ (V (G) ∪ {ǫ}), and let Q[i, T ′, v]

be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} be a path system in

the set Q[i, T ′, v]. Let P ′ = {P ′
r, P ′

r+1, . . . , P ′
ℓ} be a path system in G (where E(P ′

r) =

∅ if v = ǫ) such that (i) |E(P ′)| ≤ (k − i), (ii) PrP ′
r is a path in G, (iii) P ∪ P ′ =

{P1, P2, . . . , PrP ′
r, P ′

r+1, . . . , P ′
ℓ} is an edge-disjoint path system that connects disjoint pairs

of terminals in T , (iv) V e(P ∪P ′) = T and (v) G \ (E(P)∪E(P ′)) is connected. Then P ′ is

said to be an extender for P.

◮ Definition 3.7. Let 1 ≤ i ≤ k , T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}), and let Q[i, T ′, v] be the

corresponding set of partial solutions. We say that J [i, T ′, v] ⊆ Q[i, T ′, v] is a path-system

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 441

equivalent set to Q[i, T ′, v] if the following holds: If P ∈ Q[i, T ′, v] and P ′ be an extender

for P, then there exists P∗ ∈ J [i, T ′, v] such that P ′ is an extender for P∗ as well. We say

that J [i, T ′, v] ⊑k−i
peq Q[i, T ′, v].

The next lemma shows that a representative family is indeed a path-system equivalent

set to Q[i, T ′, v].

◮ Lemma 3.8. Let (G, T, k) be an instance of Co-Connected T -Join such that the

smallest co-connected T -join of G has size k and let ℓ = |T |
2 . Let 1 ≤ i ≤ k , T ′ ⊆ T

and v ∈ (V (G) ∪ {ǫ}), and let Q[i, T ′, v] be the corresponding set of partial solutions. If
̂Q[i, T ′, v] ⊆k−i

rep Q[i, T ′, v], then ̂Q[i, T ′, v] ⊑k−i
peq Q[i, T ′, v]. More generally, if J [i, T ′, v] ⊆

Q[i, T ′, v] and ̂J [i, T ′, v] ⊆k−i
rep J [i, T ′, v] then ̂J [i, T ′, v] ⊑k−i

rep J [i, T ′, v].

Proof. We first prove the first claim. The second claim of the lemma follows by similar

arguments. Let ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T ′, v], let P = {P1, . . . , Pr} be a path system in the

set Q[i, T ′, v], and let P ′ = {P ′
r, P ′

r+1, . . . , P ′
ℓ} be a path system in G (where E(P ′

r) = ∅

if v = ǫ) which is an extender for P. We have to show that there exists a path system

P∗ ∈ ̂Q[i, T ′, v] such that P ′ is an extender for P∗ as well. Since P ′ is an extender

for P we have, by definition, that (i) |E(P ′)| ≤ (k − i), (ii) PrP ′
r is a path in G, (iii)

P ∪ P ′ = {P1, . . . , PrP ′
r, P ′

r+1, . . . , P ′
ℓ} is an edge-disjoint path system that connects disjoint

pairs of terminals in T , (iv) V e(P ∪ P ′) = T and (v) G \ (E(P) ∪ E(P ′)) is connected.

Since (i) P ∈ Q[i, T ′, v], (ii) E(P) ∩ E(P ′) = ∅, (iii) G \ (E(P) ∪ E(P ′)) is connected,

and (iv) ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T ′, v], there exists a path system P∗ = {P ∗

1 , P ∗
2 , . . . , P ∗

r } in

̂Q[i, T ′, v] such that (i) E(P∗) ∩E(P ′) = ∅ and (ii) G \ (E(P∗) ∪E(P ′)) is connected. This

follows directly from the definitions of a co-graphic matroid and a representative set.

We now show that P ′ is indeed an extender for P∗. Since P and P∗ both belong to the

set Q[i, T ′, v] we get that |E(P)| = |E(P∗)| = i and that P∗ is an edge-disjoint path system.

And since E(P∗) ∩ E(P ′) = ∅, we have that P∗ ∪ P ′ = {P ∗
1 , . . . , P ∗

r−1, P ∗
r P ′

r, P ′
r+1, . . . , P ′

ℓ}

is an edge-disjoint path system but for P ∗
r P ′

r which could be an Eulerian walk (walk where

vertices could repeat but not the edges). Now we prove that the “path system” P∗ ∪ P ′

connects disjoint pairs of terminals in T , but for a pair which is connected by an Eulerian

walk. We now consider two cases for the “vertex” v.

Case 1: v = ǫ. In this case, since P and P∗ both belong to the set Q[i, T ′, ǫ] we

have that V e(P) = V e(P∗) = T ′. Also E(P ′
r) = ∅, and P ∪ P ′ is the path system

{P1, . . . , Pr, P ′
r+1, P ′

r+2, . . . , P ′
ℓ} with exactly ℓ = |T |

2 paths which connect disjoint pairs of

terminals in T . Since V e(P ∪ P ′) = T , P = {P1, . . . , Pr} and V e(P) = T ′, we get that

V e(P ′) = T \ T ′. Now since V e(P∗) = T ′ it follows that P∗ ∪ P ′ is a path system which

connects disjoint pairs of terminals in T .

Case 2: v 6= ǫ. In this case, since P and P∗ both belong to the set Q[i, T ′, v] we have

that V e(P) = V e(P∗) = T ′ ∪ {v}, and that the final vertex of each of these two path

systems is v. Also P ∪P ′ = {P1, . . . , PrP ′
r, P ′

r+1, P ′
r+2, . . . , P ′

ℓ} is a path system with exactly

ℓ = |T |
2 paths which connect disjoint pairs of terminals in T . Since (i) V e(P ∪ P ′) = T , (ii)

P = {P1, . . . , Pr}, (iii) P ′ = {P ′
r, P ′

r+1, . . . , P ′
ℓ}, (iv) V e(P) = T ′ ∪ {v}, and (v) the final

vertex of the path Pr in P is v, we get that (i) the initial vertex of the path P ′
r in P ′ is v

and (ii) V e(P ′) = (T \ T ′) ∪ {v}. Now since V e(P∗) = T ′ ∪ {v} and (ii) the final vertex of

P∗ is v it follows that P∗ ∪ P ′ is a path system which connects disjoint pairs of terminals in

T , where P ∗
r P ′

r which could be an Eulerian walk.

FSTTCS 2015

442 Finding Even Subgraphs Even Faster

Thus, we have shown that P∗ ∪ P ′ connects disjoint pairs of terminals in T with paths,

except for P ∗
r P ′

r which could be an Eulerian walk. Combining this with Proposition 3.2 and

the fact that G \ (E(P∗)∪E(P ′)) is connected, we get that E(P∗)∪E(P ′) is a co-connected

T -join of G.

Finally, we show that P∗ ∪ P ′ is a path system. Towards this we only need to show that

P ∗
r P ′

r is not an Eulerian walk but a path. Observe that |E(P∗)∪E(P ′)| ≤ |E(P∗)|+|E(P ′)| ≤

k. However, E(P∗) ∪ E(P ′) is a co-connected T -join of G and thus by our assumption,

E(P∗) ∪ E(P ′) has size exactly k – thus a minimum sized solution. By Lemma 3.3 this

implies that E(P∗) ∪ E(P ′) is a forest and hence P ∗
r Pr is a path in G. This completes the

proof. ◭

For our proofs we also need the transitivity property of the relation ⊑q
peq.

◮ Lemma 3.9 (♣). The relation ⊑q
peq is transitive.

Our algorithm is based on dynamic programming and stores a table D[i, T ′, v] for all

i ∈ {0, . . . , k}, T ′ ⊆ T and v ∈ V (G)∪{ǫ}. The idea is that D[i, T ′, v] will store a path-system

equivalent set to Q[i, T ′, v]. That is, D[i, T ′, v] ⊑k−i
peq Q[i, T ′, v]. The recurrences for dynamic

programming is given by the following.

For i = 0, we have the following cases.

D[0, T ′, v] :=

{
{∅} if T ′ = ∅ and v = ǫ

∅ otherwise
(1)

For i ≥ 1, we have the following cases based on whether v = ǫ or not.

D[i, T ′, v] :=

(⋃

t∈T ′

(t,v)∈E(G)

D[i− 1, T ′ \ {t}, ǫ] • {(t, v)}

) ⋃

(⋃

(u,v)∈E(G)

D[i− 1, T ′, u] • {(u, v)}

)
(2)

D[i, T ′, ǫ] :=

(⋃

t1,t2∈T ′

(t1,t2)∈E(G)

D[i− 1, T ′ \ {t1, t2}, ǫ] • {(t1, t2)}

) ⋃

(⋃

t∈T ′

(u,t)∈E(G)

D[i− 1, T ′ \ {t}, u] • {(u, t)}

)
(3)

The next lemma will be used in proving the correctness of the algorithm.

◮ Lemma 3.10. For all i ∈ {0, . . . , k}, T ′ ⊆ T, v ∈ V (G) ∪ {ǫ}, D[i, T ′, v] ⊑k−i
peq Q[i, T ′, v].

Proof. Let I denote the family of independent sets in MG, the co-graphic matroid associated

with G. We prove the lemma using induction on i. The base case is i = 0. From the

definition of Q[0, T ′, v], we have that Q[0, T ′, v] = {∅} if T ′ = ∅ and v = ǫ, and Q[0, T ′, v] = ∅

otherwise.

Now we prove that the claim holds for i ≥ 1. Let us also assume that by induction

hypothesis the claim is true for all i′ < i. Fix a T ′ ⊆ T , and v ∈ V (G) ∪ {ǫ} and let

Q[i, T ′, v] be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} ∈ Q[i, T ′, v]

and P ′ = {P ′
r, P ′

r+1, . . . , P ′
ℓ} be a path system such that P ′ is an extender for P. We need

to show that there exists a P∗ ∈ D[i, T ′, v] such that P ′ is also an extender for P∗.

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 443

Case 1: v 6= ǫ. Consider the path system P = {P1, . . . , Pr} ∈ Q[i, T ′, v]. P has i edges

and its set of end-vertices is T ′ ∪ {v}. Also, its final vertex is v. Let (u, v) be the last edge

in path Pr. Let P ′′
r be the path obtained by deleting edge (u, v) from Pr. More precisely:

If Pr has at least two edges then P ′′
r is the non-empty path obtained by deleting the edge

(u, v) and the vertex v from Pr, and if (u, v) is the only edge in Pr (in which case u ∈ T ′)

then P ′′
r = ∅. Note that the initial vertex of P ′

r ∈ P
′ is v. Let uP ′

r be the path obtained by

concatenating the path uv and P ′
r. Let P1 = {P1, . . . , P ′′

r } and P ′
1 = {uP ′

r, P ′
r+1, . . . , P ′

ℓ}.

Then P1 has (i− 1) edges and P ′
1 is an extender for P1. Now we consider two cases:

(u, v) is the only edge in Pr: Here P ′′
r = ∅ and u ∈ T ′; let t = u. Note that P1 =

{P1, . . . , Pr−1} ∈ Q[i − 1, T ′ \ {t}, ǫ]. Hence by induction hypothesis there exists P∗
1 ∈

D[i− 1, T ′ \ {t}, ǫ] such that P ′
1 is also an extender for P∗

1 . Since P ′
1 is an extender for P∗

1 ,

E(P∗
1) ∪ E(P ′

1) ∈ I (by the definition of extender). This implies that E(P∗
1) ∪ {(t, v)} ∈ I.

Since P∗
1 ∈ D[i − 1, T ′ \ {t}, ǫ] and (t, v) ∈ E(G), by Equation 2, we get a path system

P∗ ∈ D[i, T ′, v] by adding the new path Pr = tv to P∗
1 . Since P ′

1 is an extender of P∗
1 , P ′ is

an extender of P∗ as well.

(u, v) is not the only edge in Pr: Here P ′′
r 6= ∅, and u is the final vertex in P ′

r. Hence

P1 = {P1, . . . , P ′′
r } ∈ Q[i− 1, T ′, u]. Since P ′

1 is an extender for P1, by induction hypothesis

there exists P∗
1 ∈ D[i− 1, T ′, u] such that P ′

1 is also an extender for P∗
1 . By the definition of

extender, we have that E(P∗
1) ∪ E(P ′

1) ∈ I . This implies that E(P∗
1) ∪ {(u, v)} ∈ I. Since

P∗
1 ∈ D[i− 1, T ′, u] and (u, v) ∈ E(G), by Equation 2, we get a path system P∗ ∈ D[i, T ′, v]

by adding the new edge {(u, v)} to P∗
1 . Since P ′

1 is an extender of P∗
1 , P ′ is an extender of

P∗ as well.

Case 2: v = ǫ. We have that P = {P1, . . . , Pr} ∈ D[i, T ′, ǫ]. Then P has i edges, its set of

end-vertices is T ′, and no end-vertex repeats. Let (u, t) be the last edge in path Pr. Then

t ∈ T ′. Let P ′′
r be the path obtained by deleting edge (u, t) from Pr. More precisely: If Pr

has at least two edges then P ′′
r is the non-empty path obtained by deleting the edge (u, t) and

the vertex t from Pr, and if (u, t) is the only edge in Pr then P ′′
r = ∅. Let P1 = {P1, . . . , P ′′

r }

and P ′
1 = {ut, P ′

r, P ′
r+1, . . . , P ′

ℓ}. Then P1 has (i − 1) edges and P ′
1 is an extender for P1.

Now we consider two cases:

(u, t) is the only edge in Pr: Here P ′′
r = ∅, and {u, t} ⊆ T ′. Let t1 = u, t2 = t.

Then P1 is a path system in Q[i− 1, T ′ \ {t1, t2}, ǫ]. By induction hypothesis there exists

P∗
1 ∈ D[i − 1, T ′ \ {t1, t2}, ǫ] such that P ′

1 is also an extender of P∗
1 . By the definition of

extender, we have that E(P∗
1) ∪ E(P ′

1) ∈ I. This implies that E(P∗
1) ∪ {(t1, t2)} ∈ I. Since

P∗
1 ∈ D[i − 1, T ′ \ {t1, t2}, ǫ] and (t1, t2) ∈ E(G), by Equation 3, we get a path system

P∗ ∈ D[i, T ′, v] by adding the new path t1t2 to P∗
1 . Since P ′

1 is an extender of P∗
1 , P ′ is an

extender of P∗ as well.

(u, t) is not the only edge in Pr: Here P ′′
r 6= ∅, u is the final vertex in P ′′

r . Then

P1 ∈ Q[i − 1, (T ′ \ t), u]. By induction hypothesis there exists P∗
1 ∈ D[i − 1, (T ′ \ t), u]

such that P ′
1 is also an extender of P∗

1 . By the definition of extender, we have that

E(P∗
1) ∪ E(P ′

1) ∈ I. This implies that E(P∗
1) ∪ {(u, t)} ∈ I. Since P∗

1 ∈ D[i− 1, (T ′ \ t), u]

and (u, t) ∈ E(G), by Equation 3, we get a path system P∗ ∈ D[i, T ′, ǫ] by adding the new

edge (u, t) to P∗
1 . Since P ′

1 is an extender of P∗
1 , P ′ is an extender of P∗ as well.

In both cases above we showed that D[i, T ′, v] ⊑k−i
peq Q[i, T ′, v]. ◭

FSTTCS 2015

444 Finding Even Subgraphs Even Faster

Algorithm, Correctness and Running Time. We now describe the main steps of the algo-

rithm. It finds a smallest sized co-connected T -join (of size at most k) for G. The algorithm

iteratively tries to find a solution of size |T |
2 ≤ k′ ≤ k and returns a solution corresponding to

the smallest k′ for which it succeeds; else it returns No. By Lemma 3.8 it is enough, in the

dynamic programming (DP) table, to store the representative set ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T ′, v]

instead of the complete set Q[i, T ′, v], for all i ∈ {1, 2, . . . , k}, T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}).

In the algorithm we compute and store the set ̂Q[i, T ′, v] in the DP table entry D[i, T ′, v].

We follow Equations 1, 2 and 3 and fill the table D[i, T ′, v]. For i = 0 we use Equation 1

and fill the table. After this we compute the values of D[i, T ′, v] in increasing order of i

from 1 to k. At the ith iteration of the for loop, we compute D[i, T ′, v] from the DP table

entries computed at the previous iteration. Since we need to keep the size of potential

partial solutions in check, we compute the representative family ̂D[i, T ′, v] for each DP table

entry D[i, T ′, v] constructed in the ith iteration and then set D[i, T ′, v] ← ̂D[i, T ′, v]. By

the definition of Q[i, T, ǫ] and Lemma 3.4, any path system in D[i, T, ǫ] is a solution to

the instance (G, T, k); we check for such a solution as the last step. This completes the

description of the algorithm.

The correctness of the algorithm follows from the following. By Lemma 3.10 we know

that D[i, T ′, v] ⊑k−i
peq Q[i, T ′, v] and by Lemma 3.8 we have that ̂D[i, T ′, v] ⊑k−i

peq D[i, T ′, v].

Thus, by transitivity of ⊑q
peq (by Lemma 3.9) we have that ̂D[i, T ′, v] ⊑k−i

peq Q[i, T ′, v]. This

completes the proof of correctness. We now compute an upper bound on the running time of

the algorithm.

◮ Lemma 3.11. The above algorithm runs in time O(2(2+ω)k · n2m3k5) + mO(1) where

n = |V (G)| and m = |E(G)|.

Proof. Let 1 ≤ i ≤ k and T ′ ⊆ T and v ∈ (V (G) ∪ {ǫ}) be fixed, and let us con-

sider the running time of computing ̂D[i, T ′, v]. That is, the running time to compute

(k − i)-representative family of D[i, T ′, v]. We know that the co-graphic matroid MG

is representable over F2 and that its rank is bounded by m − n + 1. By Theorem 2.2,

the running time of this computation of the (k − i)-representative family is bounded by

O
((

k
i

)
· |D[i, T ′, v]|i3m2 + |D[i, T ′, v]| ·

(
k
i

)ω−1
(i ·m)ω−1

)
+mO(1).

The family D[i, T ′, v] is computed using Equation 2 or Equation 3 from the DP table

entries D[i − 1, T ′′, u], computed in the previous iteration and the size of D[i − 1, T ′′, u]

is bounded according to Theorem 2.2. Thus the size of the family D[i, T ′, v] is upper

bounded by, |D[i, T ′, v]| ≤ ((2k)2 + 2kn) ·
(

maxT ′′⊆T ′,u∈V
̂D[i− 1, T ′′, u]

)
. Theorem 2.2

gives bounds on the sizes of these representative families ̂D[i− 1, T ′′, u], from which we get

|D[i, T ′, v]| ≤ 4kn ·mi
(

k
i−1

)
. Observe that since the number choices for (T ′, v) such that

T ′ ⊆ T and v ∈ V (G){ǫ} is bounded by 4k(n + 1), and we compute DP table entries for

i = 1 to k, the overall running time can be bounded by O
(

4kn
∑k

i=1

((
k
i

)
·
(

k
i−1

)
kni4m3 +

(
k

i−1

)
·
(

k
i

)ω−1
kn(im)ω

))
+ mO(1). The running time above simplifies to O(2(2+ω)k · n2m3k5)

+mO(1). ◭

Putting all these together we get

◮ Theorem 3.12. Co-Connected T -Join can be solved in O(2(2+ω)k · n2m3k6) + mO(1)

time where n = |V (G)| and m = |E(G)|.

Using Theorem 3.1 and Theorem 3.12 we get

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 445

◮ Theorem 3.13. Undirected Eulerian Edge Deletion can be solved in time O(2(2+ω)k ·

n2m3k6) + mO(1) where n = |V (G)| and m = |E(G)|.

4 Directed Eulerian Edge Deletion

In this section we modify the algorithm described for Undirected Eulerian Edge

Deletion to solve the directed version of the problem. The main ingredient of the proof is

the characterization of “solution” for the directed version of the problem. We begin with

a few definitions. For a digraph D, we call S ⊆ A(D) a balanced arc deletion set, if D \ S

is balanced. We call a set S ⊆ A(D) a co-connected balanced arc deletion set if D \ S is

balanced and weakly connected.

Let (D, k) be an instance to Directed Eulerian Edge Deletion. A solution S ⊆ A(D)

of the problem should satisfy the following two properties, (a) S must be a balanced arc

deletion set of D and, (b) D \ S must be strongly connected. In fact, something stronger is

known in the literature.

◮ Proposition 4.1 ([1]). A digraph D is Eulerian if and only if D is weakly connected and

balanced.

Due to Proposition 4.1, we can relax the property (b) of the solution S and replace the

requirement of having D \ S as strongly connected with just requiring D \ S to be be weakly

connected. Now observe that solution S of Directed Eulerian Edge Deletion is in

fact a co-connected balanced arc deletion set of the directed graph D. Thus our goal is to

compute a minimal co-connected balanced arc deletion set of D of size at most k.

We start with the following easy property of in-degrees and out-degrees of vertices in D. For

a digraph D, define T − = {v ∈ V (D) | d−
D(v) > d+

D(v)}, T = = {v ∈ V (D) | d−
D(v) = d+

D(v)}

and T + = {v ∈ V (D) | d−
D(v) < d+

D(v)}.

◮ Proposition 4.2 (♣). In a digraph D,
∑

v∈T +

d+
D(v)− d−

D(v) =
∑

v∈T −

d−
D(v)− d+

D(v).

The following lemma characterizes the set of arcs which form a minimal solution S of the

given instance (D, k). We then use this characterization to design a dynamic-programming

algorithm for the problem.

◮ Lemma 4.3 (♣). Let D be a digraph, and ℓ =
∑

v∈T + d+
D(v)− d−

D(v). Let S ⊆ A(D) be a

minimal co-connected balanced arc deletion set. Then S is a union of ℓ arc disjoint paths

P = {P1, . . . , Pℓ} such that

1. For i ∈ {1, . . . , ℓ}, Pi starts at a vertex in T + and ends at a vertex in T −.

2. The number of paths in P that starts at v ∈ T + is equal to d+
D(v)−d−

D(v) and the number

of paths in P that ends at u ∈ T − is equal to d−
D(u)− d+

D(u).

Finally, we prove a kind of “converse” of Lemma 4.3.

◮ Lemma 4.4 (♣). Let D be a digraph, ℓ =
∑

v∈T + d+
D(v) − d−

D(v) and let S ⊆ A(D).

Furthermore, S is a union of ℓ arc disjoint paths P = {P1, . . . , Pℓ} with the following

properties.

1. The digraph D \ S is weakly connected.

2. For i ∈ {1, . . . , ℓ}, Pi starts at a vertex in T + and ends at a vertex in T −.

3. The number of paths in P that starts at v ∈ T + is equal to d+
D(v)−d−

D(v) and the number

of paths in P that ends at u ∈ T − is equal to d−
D(u)− d+

D(u).

Then S is a co-connected balanced arc deletion set.

FSTTCS 2015

446 Finding Even Subgraphs Even Faster

Now we are ready to describe the algorithm for Directed Eulerian Edge Deletion.

Let (D, k) be an instance of the problem. Lemma 4.3 and Lemma 4.4 imply that for a

solution we can seek a path system P with properties mentioned in Lemma 4.4. Let T +
m be

the multiset of vertices in the graph G such that each vertex v ∈ T + appears d+
D(v)− d−

D(v)

times in T +
m . Similarly, let T −

m be the multiset of vertices in the graph D such that each

vertex v ∈ T − appears d−
D(v)− d+

D(v) times in T −
m . Due to Proposition 4.2 we know that

|T +
m | = |T −

m |. Observe that if |T +
m | > k, then any balanced arc deletion set must contain

more than k arcs and thus the given instance is a No instance. So we assume that |T +
m | ≤ k.

Lemma 4.3 implies that the solution can be thought of as a path system P = {P1, . . . , Pℓ}

connecting vertices from T +
m to the vertices of T −

m such that all the vertices of T +
m ∪ T

−
m

appear as end points exactly once and D \ A(P) is weakly connected. Observe that the

solution is a path system with properties which are similar to those in the undirected case of

the problem. Indeed, the solution S corresponds to an independent set in the co-graphic

matroid of the underlying (undirected) graph of D. After this the algorithm for Directed

Eulerian Edge Deletion is identical to the algorithm for Co-Connected T -Join. Let

T = T +
m ∪ T

−
m . We can define a notion of partial solutions analogous to Q[i, T ′, v]. The

definition of extender remains the same except for the last item, where we now require that

P ∪P ′ is an arc disjoint path system connecting vertices from T +
m to the vertices of T −

m such

that every vertex of T +
m ∪ T

−
m is an endpoint of exactly one path. Finally, we can define the

recurrences for dynamic programming similar to those defined for D[i, T ′, v] in the case of

Co-Connected T -Join. We then use these recurrences along with an algorithm to compute

representative families to solve the given instance. The correctness of the algorithm follows

via similar arguments as before. And by an analysis similar to the case of Co-Connected

T -Join we can obtain the following bound on the running time of the algorithm.

◮ Theorem 4.5. Directed Eulerian Edge Deletion can be solved in time O(2(2+ω)k ·

n2m3k6) + mO(1) where where n = |V (D)| and m = |A(D)|.

References

1 Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and Applications.

Springer Publishing Company, Incorporated, 2nd edition, 2008.

2 Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph problems.

J. Discrete Algorithms, 9(3):231–240, 2011.

3 Marek Cygan, Fedor Fomin, Bart M. P. Jansen, Łukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Open Problems for FPT

School 2014, Bȩdlewo, Poland. http://fptschool.mimuw.edu.pl/opl.pdf.

4 Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Pa-

rameterized complexity of eulerian deletion problems. Algorithmica, 68(1):41–61, 2014.

5 Konrad K Dabrowski, Petr A Golovach, Pim van’t Hof, and Daniël Paulusma. Editing to

eulerian graphs. In 34th International Conference on Foundation of Software Technology

and Theoretical Computer Science(FSTTCS), 2014.

6 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,

2010.

7 Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the Chinese postman.

Mathematical Programming, 5(1):88–124, 1973.

8 Fedor V. Fomin and Petr A. Golovach. Long circuits and large euler subgraphs. In ESA,

volume 8125, pages 493–504, 2013.

9 Fedor V. Fomin and Petr A. Golovach. Parameterized complexity of connected even/odd

subgraph problems. J. Comput. Syst. Sci., 80(1):157–179, 2014.

P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh 447

10 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repre-

sentative sets with applications in parameterized and exact algorithms. In SODA, pages

142–151, 2014.

11 András Frank. A survey on T-joins, T-cuts, and conservative weightings. In Combinatorics,

Paul Erdös is eighty, volume 2, pages 213–252. János Bolyai Mathematical Society, 1993.

12 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New

tools for kernelization. In Proceedings of the 53rd Annual Symposium on Foundations of

Computer Science (FOCS 2012), pages 450–459. IEEE, 2012.

13 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic

truncation of linear matroids. In Proceedings of the Automata, Languages, and Program-

ming – 42nd International Colloquium, (ICALP 2015), pages 922–934, 2015.

14 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput.

Sci, 410(44):4471–4479, 2009.

15 B. Monien. How to find long paths efficiently. Ann. Discrete Math., 25:239–254, 1985.

16 James G Oxley. Matroid theory, volume 3. Oxford University Press, 2006.

17 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.

In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC 2012),

pages 887–898. ACM, 2012.

FSTTCS 2015

	Introduction
	Preliminaries
	Undirected Eulerian Edge Deletion
	Directed Eulerian Edge Deletion

