
614 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 4, MAY 2009

Event-Based Instantaneous Fundamental Frequency
Estimation From Speech Signals

B. Yegnanarayana, Senior Member, IEEE, and K. Sri Rama Murty

Abstract—Exploiting the impulse-like nature of excitation in
the sequence of glottal cycles, a method is proposed to derive
the instantaneous fundamental frequency from speech signals.
The method involves passing the speech signal through two ideal
resonators located at zero frequency. A filtered signal is derived
from the output of the resonators by subtracting the local mean
computed over an interval corresponding to the average pitch
period. The positive zero crossings in the filtered signal correspond
to the locations of the strong impulses in each glottal cycle. Then
the instantaneous fundamental frequency is obtained by taking
the reciprocal of the interval between successive positive zero
crossings. Due to filtering by zero-frequency resonator, the effects
of noise and vocal-tract variations are practically eliminated.
For the same reason, the method is also robust to degradation in
speech due to additive noise. The accuracy of the fundamental
frequency estimation by the proposed method is comparable or
even better than many existing methods. Moreover, the proposed
method is also robust against rapid variation of the pitch period
or vocal-tract changes. The method works well even when the
glottal cycles are not periodic or when the speech signals are not
correlated in successive glottal cycles.

Index Terms—Autocorrelation, fundamental frequency, glottal
closure instant, periodicity, pitch, zero-frequency resonator.

I. INTRODUCTION

V
OICED sounds are produced from the time-varying

vocal-tract system excited by a sequence of events

caused by vocal fold vibrations. The vibrations of the vocal

folds result in a sequence of glottal pulses with major excitation

taking place around the instant of glottal closure (GCI). The

rate of vibration of the vocal folds determines the fundamental

frequency , and contributes to the perceived pitch of the

sound produced by the vocal-tract system. Though the usage

of the term “rate of vibration” gives an impression that the

vibrations of the vocal folds are periodic, in practice the vocal

fold vibrations at the glottis may or may not be periodic. Even a

periodic vibration of the vocal folds at the glottis may produce

a speech signal that is less periodic because of the time-varying

vocal-tract system that filters the glottal pulses. Sometimes,

the vocal fold vibrations at the glottis themselves may show
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aperiodic behavior, as in the case of changes in the shape of

the glottal flow waveform (for example, the changes in the

duty cycles of open/closed phases), or the intervals where the

vocal fold vibration reflect several superposed periodicities

(diplophony) [1], or where the glottal pulses occur without ob-

vious regularity in the time (glottalization, vocal fry, or creaky

voice) [2]. In practice, the rate of vibration of the vocal folds

may change from one glottal cycle to the next cycle. Hence,

it is more appropriate to define the instantaneous fundamental

frequency of excitation source for every glottal cycle. In this

paper, we propose an event-based approach to accurately es-

timate the instantaneous fundamental frequency from speech

signals. Throughout the paper, we use the terms fundamental

frequency and pitch frequency interchangeably.

Accurate estimation of the fundamental frequency of voiced

speech plays an important role in speech analysis and processing

applications. The variation in the fundamental frequency with

time contributes to the speech prosody. Estimation of accurate

prosody is useful in various applications such as in speaker

recognition [3], [4], language identification [5], and even speech

recognition [6], [7]. Prosody also reflects the emotion character-

istics of a speaker [8]. Prosody is essential for producing high-

quality speech synthesis, and also for voice conversion. Prosody

features were exploited for hypothesizing sentence boundaries

[9], for speech segmentation, and for story parsing [10]. Al-

though many methods of pitch estimation have been proposed,

reliable and accurate detection is still a challenging task, espe-

cially when the speech signal is weakly periodic, and the in-

stantaneous values of pitch vary even within an analysis frame

consisting of a few glottal cycles. The presence of noise in the

speech signal further complicates the problem of pitch estima-

tion, and degrades the performance of the pitch estimation algo-

rithms.

There are several algorithms proposed in the literature for

estimating the fundamental frequency from speech signals

[11]–[13]. Depending on the type of processing involved, the

algorithms may be classified into three broad categories: 1)

algorithms using time domain properties; 2) algorithms using

frequency domain properties; and 3) algorithms using statistical

methods to aid in the decision making [14]–[16].

Algorithms based on the properties in the time domain

operate directly on the speech signal to estimate the funda-

mental frequency. Depending on the size of the segment used

for processing, the time domain methods can be further cate-

gorized into block-based methods and event-based methods.

In the block-based methods, an estimate of the fundamental

frequency is obtained for each segment of speech, where it is

assumed that the pitch is constant over the segment consisting
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of several pitch periods. In this case, variations of the funda-

mental frequency within the segment are not captured. Among

the time domain block-based methods, the autocorrelation

approaches are popular for their simplicity. For a periodic

signal, its autocorrelation function is also periodic. Due to

periodic nature of the voiced speech, the first peak (also called

the pitch peak) after the center peak in the autocorrelation

function indicates the fundamental period of the signal.

The reciprocal is the fundamental frequency.

The main limitation of this method is that the pitch peak may

get obscured due to the presence of other spurious peaks. The

spurious peaks may arise due to noise, or due to the formant

structure of the vocal-tract system, or due to the quasi-periodic

nature of the speech signal, or due to the position and length of

the analysis window.

Event-based pitch detectors estimate the pitch period by

locating the instants at which glottis closes (called events),

and then measuring the time interval between two such events.

Wavelet transforms are used for pitch period estimation based

on the assumption that the glottal closure causes sharp discon-

tinuities in the derivative of the airflow [17]. The transients

in the speech signal due to glottal closure result in maxima

in the scales of the wavelet transform around the instant of

discontinuity. An optimization scheme is proposed in the

wavelet framework using a multipulse excitation model for

speech signal, and the pitch period is estimated as a result

of this optimization [18]. An instantaneous pitch estimation

algorithm which exploits the advantages of both block-based

and event-based approaches is given in [19]. In this method, the

pitch is modeled by a B-spline expansion, which is optimized

using a multistage procedure for improving the robustness.

Algorithms based on the properties in the frequency domain

assume that if the signal is periodic in the time domain, then

the frequency spectrum of the signal contains a sequence

of impulses at the fundamental frequency and its harmonics

[20]–[23]. Then simple measurements can be made on the

frequency spectrum of the signal, or on a nonlinearly trans-

formed version of it, to estimate the fundamental frequency

of the signal. The cepstrum method for extraction of pitch

utilizes the frequency domain properties of speech signals

[20]. In the short-time spectrum of a given voiced frame, the

information about the vocal-tract system appears as a slowly

varying component, and the information of the excitation

source is in rapidly varying component. These two components

may be separated by considering the logarithm of the spectrum,

and then applying the inverse Fourier transform to obtain the

cepstrum. This operation transforms the information in the

frequency domain to the cepstral domain, which has a strong

peak at the average fundamental period of the voiced speech

segment being analyzed.

Simplified inverse filter tracking (SIFT) algorithm uses both

time and frequency domain properties of the speech signal [24].

In the SIFT algorithm, the speech signal is spectrally flattened

approximately, and autocorrelation analysis is used on the spec-

trally flattened signal to extract pitch. Due to spectral flattening,

a prominent peak will be present in the autocorrelation function

at the pitch period of the voiced speech frame being analyzed.

Most of the existing methods for extraction of the funda-

mental frequency assume periodicity in successive glottal cy-

cles, and therefore they work well for clean speech. The perfor-

mance of these methods is severely affected if the speech signal

is degraded due to noise or other distortions. This is because

the pitch peak in the autocorrelation function or cepstrum may

not be prominent or unambiguous. In fact, during the produc-

tion of voiced speech, the vocal-tract system is excited by a se-

quence of impulse-like signals caused by the rapid closure of

the glottis in each cycle. There is no guarantee that the phys-

ical system, especially due to the time-varying vocal-tract shape,

produces similar speech signal waveforms for each excitation.

Moreover, there is also no guarantee that the impulses occur in

the sequence with any strict periodicity. In view of this, it is

better to extract the interval between successive impulses, and

take the reciprocal of that interval as the instantaneous funda-

mental frequency. In the next section, the basis for the proposed

method of fundamental frequency estimation is discussed. In

Section III, a method for pitch extraction from the speech signals

is developed. In Section IV, the proposed method is compared

with some standard methods for pitch extraction on standard

databases, for which the ground truth is available in the form of

electroglottograph (EGG) waveforms. The performance of the

proposed method is also evaluated for different cases of simu-

lated degradations in speech. Finally, in Section V, a summary

of the ideas presented in this paper is given along with some is-

sues that need to be addressed while dealing with speech signals

in practical environments.

II. BASIS FOR THE PROPOSED METHOD OF PITCH ESTIMATION

As mentioned earlier, voiced speech is the output of the time-

varying vocal-tract filter excited by a sequence of glottal pulses

caused by the vocal fold vibrations. The vocal-tract system mod-

ulates the excitation source by formant frequencies, which de-

pend on the sound unit being generated. The formant frequen-

cies together with the fundamental frequency form important

features of the voiced speech. There is an important distinc-

tion in the production of a formant frequency and in the pro-

duction of the fundamental frequency. Formant frequencies are

due to resonances of the vocal-tract system. The frequency of

the resulting damped sinusoids are controlled by the size and

the shape of the vocal-tract through the movement of the artic-

ulators. Because of the damped sinusoidal nature of the reso-

nance, the formant frequency appears as a broad resonant peak

in the frequency domain, but the fundamental frequency or pitch

is perceived as a result of vibration of the vocal folds, which pro-

duces a sequence of regularly spaced impulses over short inter-

vals of time. Periodic sequence of impulses in the time domain

results in a periodic sequence of impulses in the frequency do-

main also. Hence, unlike the formant frequency, the information

about the fundamental frequency is spread across the frequency

range. This redundancy of information about the fundamental

frequency in the frequency domain makes it a robust feature for

speech analysis. For example, this redundancy helps us in per-

ceiving the pitch even when the fundamental frequency is not

present in the speech signal (as in the case of telephone speech).
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It appears that in speech production mechanism the energy

in the higher ( Hz) frequencies is produced in the form of

formants, whereas the perception of low ( Hz) frequen-

cies is primarily due to the sequence of glottal cycles. In fact,

the perception of pitch ( Hz) is felt more due to the inter-

vals between the impulses rather than due to presence of any

low-frequency components in the form of sinusoids. In other

words, it is the strong discontinuities at these impulse locations

in the sequence that are producing the low-frequency effect in

perception. Moreover, the information about the discontinuities

is spread across all the frequencies including the zero frequency.

In this paper, we propose a method based on using a resonator

located at the zero frequency to derive the information about

the impulse-like discontinuity in each glottal cycle. The de-

rived sequence of impulse locations is used for estimating the

fundamental frequency for each glottal cycle. Note that since

the proposed method is based mainly on the assumption of a

sequence (not necessarily periodic) of impulse-like excitation

of the vocal-tract, it is better to interpret the operations in the

time-domain. The frequency domain interpretation is not very

relevant, and hence is used minimally throughout the paper.

Moreover, due to dependence of the method on the impulse-like

excitation, any spurious impulses caused by echoes or reverber-

ation, or due to communication channels like telephone may af-

fect the performance of the method. Also, in the case of tele-

phone channels, the frequency components below 300 Hz are

heavily damped (i.e., practically eliminated). The output of the

zero-frequency filter may not bring out the effects due to im-

pulse excitation. Hence, the proposed method may not work

well for telephone and high-pass filtered speech signals.

III. METHOD FOR ESTIMATING FUNDAMENTAL FREQUENCY

FROM SPEECH SIGNALS

A. Output of Zero-Frequency Resonator

The discontinuity due to an impulse excitation is reflected

across all the frequencies including the zero frequency. That

is, even the output of the resonator located at zero frequency

should have the information of the discontinuities due to im-

pulse-like excitation. We prefer to use the term resonator, even

though ideally its location at zero frequency does not correspond

to the normal concept of resonance. The advantage of choosing

a filter at zero frequency is that the output of the resonator is

not affected by the time-varying vocal-tract system. This is be-

cause the resonances of the vocal-tract system are located at

much higher frequencies than at the zero frequency. Thus, the

sequence of the excitation impulses, especially their locations,

can be extracted by passing the speech signal though a zero-fre-

quency filter. The signal is passed twice through the (zero-fre-

quency) resonator to reduce the effects of all the resonances of

the vocal-tract system. A cascade of two zero-frequency res-

onators provides a sharper cut-off compared to a single zero-fre-

quency resonator. This will produce approximately a 24 dB

per octave roll-off, thus damping out heavily all the frequency

components beyond the zero frequency. Since the output of a

zero-frequency resonator is equivalent to double integration of

the signal, passing the speech signal twice though the zero-fre-

quency resonator is equivalent to successive integration of the

signal four times. This will result in a filtered output that has

approximately polynomial growth/decay with time, as shown

in Fig. 1(b). The effect of discontinuities due to impulse se-

quences will be overriding with small amplitude fluctuations on

those large values of the output signal. We attempt to compute

the deviation of the output signal from the local mean to extract

the characteristics of the discontinuities due to impulse excita-

tion. Note that the computation of the local mean is difficult due

to rapid growth/decay of the output signal. This is the reason

why it is preferable not to choose more than two resonators.

The choice of the window length for computing the local mean

depends on the interval between the discontinuities. A window

length of about the average pitch period is used to compute the

local mean. The resulting mean subtracted signal is shown in

Fig. 1(c) for the speech signal in Fig. 1(a). We call the mean

subtracted signal the “zero-frequency filtered signal” or merely

the “filtered signal.” The following steps are involved in pro-

cessing the speech signal to derive the zero-frequency filtered

signal [25], [26].

1) Difference the speech signal to remove any dc or low-

frequency bias during recording

(1)

2) Pass the differenced speech signal twice through an

ideal resonator at zero frequency. That is

(2a)

and

(2b)

where , and . Though, this operation

is similar to successive integration of four times, we

prefer to interpret it as filtering at zero frequency.

3) Remove the trend in by subtracting the mean over

about 10 ms window at each sample. The resulting signal

is given by

(3)

where corresponds to the length of window in

number of samples used to compute the mean. The re-

sulting signal is called the filtered signal.

The filtered signal clearly shows rapid changes around the

positive zero crossings. The locations of the instants of positive

zero crossings in Fig. 1(c) are shown in Fig. 1(a) and (d) for

comparison with discontinuities in the speech signal and in the

differenced EGG waveform, respectively. There is close agree-

ment between the locations of the strong negative peaks in the

differenced EGG signal and the instants of positive zero cross-

ings derived from the filtered signal. Therefore, the time instants

of the positive zero crossings can be used as anchor points to es-

timate the fundamental frequency. The instants of positive zero
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Fig. 1. (a) 50 ms segment of speech signal taken from continuous speech utter-
ance. (b) Output of cascade of two zero-frequency resonators. (c) Filtered signal
obtained after mean subtraction. (d) Differenced EGG signal. The locations of
positive zero crossings in the filtered signal (c) are also shown in (a) and (d) for
comparison with speech signal and differenced EGG signal.

crossing of the filtered signal correspond to locations of the exci-

tation impulses even when the impulse sequence is not periodic.

It is important to note that such relation between the excitation

signal and the filtered signal does not exist for a random noise

excitation of the vocal-tract system. Also, the filtered signal will

have significantly lower values for the random noise excitation

compared to the sequence of impulse-like excitation. This is due

to concentration of energy at the location of the impulse relative

to the neighboring values. In the case of random noise there is

no isolated impulse-like characteristic in the excitation.

B. Selection of Window Length for Mean Subtraction

To remove the trend in the output of the zero-frequency res-

onator, suitable window length need to be chosen to compute the

local mean. The length of the window depends on the growth/

decay of the output, and also on the overriding fluctuations in

the output. The growth/decay in turn depends on the nature of

the signal. The desired information of the overriding fluctua-

tions depends on the intervals between impulses. If the window

length is too small relative to the average duration (pitch period)

between impulses, then spurious zero crossings may occur in the

filtered signal, affecting the locations of the genuine zero cross-

ings. If the window length is too large relative to the average

pitch period, then also the genuine zero crossings are affected

in the filtered signal. The choice of the window length for com-

puting the local mean is not very critical, as long as it is in the

range of about 1 to 2 times the average pitch period.

The average pitch period information can be derived in sev-

eral ways. One way is to use the autocorrelation function of short

(30 ms) segments of differenced speech, and determine the pitch

period from the locations of the strongest peak in the interval 2

Fig. 2. Histogram of the locations of the pitch peak in the autocorrelation
function for (a) clean signal from a male speaker, (b) speech signal from the
same male speaker at 0 dB, (c) clean speech signal from a female speaker, and
(d) speech signal from the same female speaker at 0 dB. Note that the location
of the peak in the histogram plot is not affected by noise. (a) Male Speaker
(Clean). (b) Male Speaker (0 dB). (c) Female Speaker (Clean). (d) Female
Speaker (0 dB).

ms to 15 ms (normal range of pitch period). The histogram of the

pitch periods is plotted. The pitch period value corresponding to

the peak in the histogram can be chosen as the window length.

Much simpler procedures can also be used to obtain an estimate

of the average pitch period.

The average pitch period can be estimated using the his-

togram method even from degraded speech as shown in Fig. 2

for a male and a female speech at two different signal-to-noise

ratios (SNRs). The location of the peak does not change signif-

icantly even under noisy conditions. Hence, the average pitch

period can be estimated reliably. The filtered signal and the

locations of the positive zero crossings in the filtered signal

are shown in Fig. 3 for two different window lengths 7 ms and

16 ms for speech from a male voice having a pitch period of

around 7 ms.

C. Validation of Estimates Using Hilbert Envelope

In the process of estimating the instantaneous pitch period

from the intervals of successive positive zero crossings of the

filtered signal, there could be errors due to spurious zero cross-

ings which occur mainly if there is another impulse in between

two glottal closure instants. To reduce the effects due to spurious

zero crossings, the knowledge that the strength of the impulse is

strongest at the GCI in each glottal cycle may be used. In order

to exploit the strength of the impulses in the excitation to reduce

the effects due to spurious zero crossings, the Hilbert envelope
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Fig. 3. (a) 100 ms segment of speech signal. Filtered signal obtained using a
window length of (b) 7 ms and (c) 16 ms.

(HE) of the speech signal is computed. The HE is com-

puted from the speech signal as follows:

(4)

where is the Hilbert transform of , and is given by

IDFT (5)

where

(6)

and

DFT (7)

Here, DFT and IDFT refer to the discrete Fourier transform and

inverse discrete Fourier transform, respectively.

The Hilbert envelope contains sequence of strong impulses

around the glottal closure instants, and may also contain some

spurious peaks at other places due to the formant structure of

the vocal-tract, and the secondary excitations in the glottal cy-

cles, but the amplitudes of the impulses around the glottal clo-

sure instants dominate over those of the spurious impulses in

the computation of the filtered signal. Hence, the filtered signal

of the HE signal mainly contains the zero crossings around the

instants of glottal closure. However, the zero crossings derived

from the filtered signal of the HE deviate slightly (around 0.5

to 1 ms) from the actual locations of the instants of the glottal

closure. In other words, the zero crossings derived from the fil-

tered signal of the HE are not as accurate as those derived from

the filtered signal of the speech signal. Hence, the accuracy of

the zero crossings derived from the filtered signal of speech and

the robustness of the zero crossings derived from the HE are

combined to obtain an accurate and robust estimate of the in-

stantaneous fundamental frequency.

The instantaneous pitch frequency contour obtained from the

filtered signal of speech is used as the primary pitch contour, and

the errors in the contour are corrected using the pitch contour

derived from the HE of the speech signal. The pitch frequency

contours are obtained from the zero crossings of the filtered sig-

nals for every 10 ms. The value of 10 ms is chosen for compar-

ison with the results from other methods. Let and

be the pitch frequency contours derived, respectively, from the

speech signal and the HE of the speech signal. The following

logic is used to correct the errors in

if

otherwise
(8)

where is the frame index for every 10 ms, and is the

corrected pitch contour. This correction reduces any errors in

due to spurious zero crossings.

The significance of using the pitch contour to correct

the errors in the contour is illustrated in Fig. 4. The filtered

signal shown in Fig. 4(c) for the speech segment in Fig. 4(a)

contains spurious zero crossings around 0.1 to 0.2 s due to small

values of the strength of excitation in this region. The filtered

signal derived from the HE gives the correct zero crossings. The

main idea of this logic is to correct the errors due to spurious

zero crossings occurring in the filtered signal derived from the

speech signal.

D. Steps in Computation of Instantaneous Fundamental

Frequency From Speech Signals

1) Compute the difference speech signal .

2) Compute the average pitch period using the histogram of

the pitch periods estimated from the autocorrelation of 30

ms speech segments.

3) Compute the output of the cascade of two zero-fre-

quency resonators.

4) Compute the filtered signal from using a window

length corresponding to the average pitch period.

5) Compute the instantaneous fundamental (pitch) frequency

from the positive zero crossings of the filtered signal. The

locations of the positive zero crossings are given by the

indices for which .

6) Obtain the pitch contour for every 10 ms from the

instantaneous pitch frequency by linearly interpolating the

values from adjacent GCIs. This step is used mainly for

comparison with the ground truth values, which are avail-

able at 10 ms intervals.

7) Compute the Hilbert envelope of speech signal .

8) Compute the pitch contour from the filtered signal of

.

9) Replace the value in with whenever

.

Note: Normally, the trend removal operation in step 4) above

needs to be applied only once, if the duration of the speech signal

being processed is less than about 0.1 s. For longer (up to 30 s)

durations, it may be necessary to apply this trend removal op-

eration several (3 or more) times, due to rapid growth/decay of

the output signal .
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Fig. 4. (a) Speech signal. (b) Hilbert envelope. Zero frequency filtered signal
derived from (c) speech signal and (d) Hilbert envelope of the speech signal.
Fundamental frequency derived from (e) filtered signal of speech signal, (f) fil-
tered signal of Hilbert envelope, and (g) correction suggested in (8). The dashed
lines in the figures indicate the ground truth given by the EGG signals.

IV. PERFORMANCE EVALUATION AND COMPARISON WITH

OTHER PITCH EXTRACTION METHODS

In this section, the proposed method of extracting the funda-

mental frequency from the speech signals is compared with four

existing methods in terms of accuracy in estimation and in terms

of robustness against degradation. The four methods chosen for

comparison are Praat’s autocorrelation method [27], crosscorre-

lation method [28], subharmonic summation [21], and a funda-

mental frequency estimator (YIN) [2]. Initially the fundamental

frequency estimation algorithms are evaluated on clean data.

Subsequently, the robustness of the proposed method and the

four existing methods are examined at different levels of degra-

dation by white noise. A brief description of the implementa-

tion details of the four chosen methods for comparison is given

below. The software codes for implementing these methods are

available at the respective web sites, and are used in this study

for evaluation.

A. Description of Existing Methods

Praat’s Autocorrelation Method (AC) [27]: The Praat algo-

rithm performs an acoustic periodicity detection on the basis

of an accurate autocorrelation method. This method is more

accurate and robust than the cepstrum-based methods and the

original autocorrelation-based method [27]. It was pointed out

that sampling and windowing the data cause problems in deter-

mining the peak corresponding to the fundamental period in the

autocorrelation function. In this method, the autocorrelation of

the original signal segment is computed by dividing the

autocorrelation of the windowed signal with the autocor-

relation of the window . That is

(9)

This correction does not let the autocorrelation function

taper to zero as the lag increases, which helps in identifica-

tion of the peak corresponding to the fundamental period. To

overcome the artifacts due to sampling, the algorithm employs

a sinc interpolation around the local maxima. The interpola-

tion provides an estimation of the fundamental period. The soft-

ware code for implementation of this algorithm is available at

http://www.fon.hum.uva.nl/praat/[29].

Crosscorrelation method (CC) [28]: In the computation of

the autocorrelation function, fewer samples are included as the

lag increases. This effect can be seen as the roll-off of the au-

tocorrelation values for the higher lags. The values of the au-

tocorrelation function at higher lags are important, especially

for low-pitched male voices. For a 50-Hz pitch, the lag between

successive pitch pulses is 200 samples at a sampling frequency

of 10 kHz. To overcome this limitation in the computation of the

autocorrelation function, a cross-correlation function which op-

erates on two different data windows is used. Each value of the

cross-correlation function is computed over the same number of

samples. A software implementation of this algorithm is avail-

able with the Praat system [29].

Subharmonic summation (SHS) [21]: Subharmonic summa-

tion performs pitch analysis based on a spectral compression

model. Since a compression on a linear scale corresponds to a

shift on a logarithmic scale, the spectral compression along the

linear frequency abscissa can be substituted by shifts along the

logarithmic frequency abscissa. This model is equivalent to the

concept that each spectral component activates not only those

elements of the central pitch processor, but also those elements

that have a lower harmonic relation with this component. For

this reason, this method is referred to as the subharmonic sum-

mation method. The contributions of various components add

up, and the activation is highest for that frequency sensitive ele-

ment that is most activated by its harmonics. Hence, the maxima

of the resulting sum spectrum gives an estimate of the funda-

mental frequency. A software implementation of this algorithm

is available with the Praat system [29].

Fundamental Frequency Estimator YIN [2]: The funda-

mental frequency estimator YIN [2] was developed by de
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Cheveigne and Kawahara, is named after the oriental yin-yang

philosophical principle of balance. In this algorithm, the authors

attempt to balance between autocorrelation and cancellation

of the secondary peaks due to harmonics. The difficulty with

autocorrelation-based methods is that the peaks occur at mul-

tiples of the fundamental period also, and it is sometimes

difficult to determine which peak corresponds to the true

fundamental period. YIN attempts to solve these problems in

several ways. YIN is based on a difference function, which

attempts to minimize the difference between the waveform and

its delayed duplicate instead of maximizing the product as in

the autocorrelation. The difference function is given by

(10)

In order to reduce the occurrence of subharmonic errors, YIN

employs a cumulative mean function which deemphasizes

higher period valleys in the difference function. The cumulative

mean function is given by

otherwise (11)

The YIN method also employs a parabolic interpolation of the

local minima, which has the effect of reducing the errors when

the estimated pitch period is not a factor of the window length.

The Matlab code for implementation of this algorithm is avail-

able at http://www.auditory.org/postings/2002/26.html [30].

B. Databases for Evaluation

Keele Database: The Keele pitch extraction reference data-

base [31], [32] is used to evaluate the proposed method, and

to compare with the existing methods. The database includes

five male and five female speakers, each speaking a short story

of about 35-s duration. All the speech signals were sampled at

a rate of 20 kHz. This database provides a reference pitch for

every 10 ms, which is obtained from a simultaneously recorded

laryngograph signal, and is used as the ground truth. Pitch

values are provided at a frame rate of 100 Hz using a 25.6 ms

window. Unvoiced frames are indicated with zero pitch values,

and negative values are used for uncertain frames.

CSTR Database: The CSTR database [33], [34] is formed

from 50 sentences, each read by one adult male and one adult fe-

male, both with non-pathological voices. The database contains

approximately five minutes of speech. The speech is recorded

simultaneously with a close-talking microphone and a laryn-

gograph in an anechoic chamber. The database is biased to-

wards utterances containing voiced fricatives, nasals, liquids,

and glides. Since some of these phones are aperiodic in com-

parison to vowels, standard pitch estimation methods find them

difficult to analyze. In this database the reference pitch values

are provided at the instants of glottal closure. Using this refer-

ence, the pitch values are derived for every 10 ms, i.e., at a frame

rate of 100 Hz.

C. Evaluation Procedure

The performance of the existing as well as the proposed pitch

estimation algorithms are evaluated on both Keele database and

TABLE I
PERFORMANCE OF FUNDAMENTAL FREQUENCY ESTIMATION ALGORITHMS ON

CLEAN DATA. � ��� DENOTES THE PITCH CONTOUR DERIVED FROM FILTERED

SPEECH SIGNAL ALONE. � ��� DENOTES THE PITCH CONTOUR DERIVED

FROM FILTERED HE ALONE. ���� DENOTES THE PITCH CONTOUR OBTAINED

BY COMBINING EVIDENCES FROM � ��� AND � ��� (8)

CSTR database. All the signals are downsampled to 8 kHz for

this evaluation. All the methods are evaluated using a search

range of 40 to 600 Hz (typical pitch frequency range of human

beings). The postprocessing and voicing detection mechanisms

of the existing algorithms are disabled (wherever applicable) in

this evaluation.

The accuracy of pitch estimation methods is measured ac-

cording to the following criteria [1].

• Gross Error (GE): It is percentage of voiced frames with an

estimated value that deviates from the reference value

by more than 20%.

• Mean Error (M): It is the mean of the absolute value of the

difference between the estimated and the reference pitch

values. Gross errors are not considered in this calculation.

• Standard Deviation (SD): It is the standard deviation of

the absolute value of the difference between estimated and

reference pitch values. Gross errors are not considered in

this calculation.

The reference estimates as provided in the databases are used for

evaluating the pitch estimation algorithms. The reference esti-

mates are time-shifted and aligned with the estimates of each

of the methods. The best alignment is determined by taking the

minimum error, over a range of time-shifts, between the esti-

mates derived from the speech signal and the ground truth [2].

This compensation for time-shift is required due to acoustic

propagation delay from glottis to microphone, and/or due to the

differences in the implementations of the algorithms.

The gross estimation errors, the mean errors, and the stan-

dard deviation of errors for different fundamental frequency es-

timation algorithms are given in Table I. In the table, the per-

formances of pitch contours derived from and are

also given in addition to . Most of the time the percentage

gross errors for the proposed method are significantly lower than

the percentage gross errors for other methods. Since the number

of values of pitch frequency falling within 20% of the refer-

ence values is large in the proposed method (due to inclusion

of difficult and low SNR segments in the correct category, thus

giving low GE), the mean error and the standard deviation error

are higher compared to the other methods. The results clearly

demonstrate the effectiveness of the proposed method over other

methods. Note that the proposed method is based on the strength
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Fig. 5. (a) Speech signal. (b) Zero frequency filtered signal. (c) Differenced
EGG signal. Pulses indicate the positive zero crossings of the zero-frequency
filtered signal. Fundamental frequency derived from (d) proposed method,
(e) Praat’s autocorrelation method, (f) cross-correlation method, (g) subhor-
monic summation, and (h) YIN method. The dotted line corresponds to the
reference pitch contour (i.e., ground truth).

of the impulse-like excitation, and it does not depend on the pe-

riodicity of the signal in successive glottal cycles. The method

does not use any averaging or smoothing of the estimated values

over a longer segment consisting of several glottal cycles.

The potential of the proposed method in estimating the in-

stantaneous fundamental frequency from the speech signals is

illustrated in Fig. 5. The segment of voiced speech in Fig. 5(a)

is not periodic. The signal shows more similarity between alter-

nate periods, than between adjacent periods. It is only through

the analysis of the differenced EGG signal [Fig. 5(c)], the actual

pitch periods could be observed. The correlation-based methods

fail to estimate the actual fundamental frequency of the speech

segment in these cases. On the other hand, the positive zero

crossings of the filtered signal clearly show the actual glottal

closure instants.

D. Evaluation Under Noisy Conditions

In this section, we study the effect of noise on the accuracy

of pitch estimation algorithms. The existing methods and the

proposed method were evaluated on an artificially generated

noisy speech database. The noisy environment conditions were

simulated by adding noise to the original speech signal at dif-

ferent SNRs. The noise signals were taken from Noisex-92 data-

base [35]. Three noise environments namely white Gaussian

noise, babble noise, and vehicle noise were considered in this

study. The utterances were appended with silence so that the

total amount of silence in each utterance is constrained to be

about 60% of data, including the pauses in the utterances. The

resulting data consist of about 40% speech samples, which is

the amount of speech activity in a typical telephone conversa-

tion. The noise from Noisex-92 database are added to both Keele

database and CSTR database to create the noisy data at SNR

levels ranging from 5 to 20 dB.

Table II shows the gross estimation errors for different

pitch estimation algorithms on the Keele database and CSTR

database at varying levels of degradation by white noise. The

performance of the correlation-based methods is similar, and

is reasonable at low noise levels (up to an SNR of 10 dB).

However, for higher levels of degradation, the estimation

errors increase dramatically for all the systems, except for

the proposed method, where the degradation in performance

is somewhat gradual. Robustness of the proposed method to

noise can be attributed to the impulse-like nature of the glottal

closure instants in the speech signal. The energy of white noise

is distributed both in time and frequency domains. While the

energy of an impulse is distributed across the frequency range,

and it is highly concentrated in the time domain. Therefore,

the zero crossing due to an impulse is unaffected in the output

of the zero-frequency resonator even in the presence of high

levels of noise. Fig. 6 illustrates the robustness of the proposed

method in estimating the instantaneous fundamental frequency

under noisy conditions. Fig. 6(a) and (b) shows the waveforms

of a weakly voiced sound under clean and degraded conditions,

respectively. Fig. 6(c) and (d) shows the zero-frequency filtered

signals derived from the clean [Fig. 6(a)] and the noisy signals

[Fig. 6(b)], respectively. Though the individual periods can

be observed from the clean signal in Fig. 6(a), it is difficult to

observe any periodicity in the noisy signal shown in Fig. 6(b),

but the zero crossings of the filtered signal derived from the

noisy waveform remain almost the same as those derived from

the clean signal, illustrating the robustness of the proposed

method.

Fig. 7 illustrates the performance of the proposed method

under noisy conditions, compared to the performance of the

other methods. A segment of noisy speech at 0-dB SNR is

shown in Fig. 7(a). The estimated pitch contour from the

proposed method is given in Fig. 7(d), where the estimated

values match well with the reference pitch values or ground

truth (shown by dashed curves). The errors in the estimated

pitch (deviation from the ground truth) can be seen clearly

in all the other four methods used for comparison. Since the

other methods depend mostly on the periodicity of the signal
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TABLE II
GROSS ESTIMATION ERRORS (IN %) FOR DIFFERENT PITCH ESTIMATION ALGORITHMS AT VARYING LEVELS OF DEGRADATION BY WHITE NOISE

Fig. 6. (a) Speech signal of a weakly voiced sound. (b) Speech signal de-
graded by noise at 0-dB SNR. (c) Filtered signal derived from clean signal in
(a). (d) Filtered signal derived from noisy signal in (b).

in successive glottal cycles, the periodicity of the signal wave-

form is affected by noise, and hence the accuracy. Even for

clean signal, there may be regions where the signal is far from

periodic in successive glottal cycles, and hence there are more

errors in comparison to the proposed method as can be seen

in Table I. In fact, by using the additional knowledge of the

strength of excitation at the impulses, it is possible to obtain

the percentage gross error as low as 1.5%., but this requires

significantly more heuristics which are difficult to implement

automatically. Note that the proposed method does not use any

knowledge of the periodicity of the speech signal, nor assume

regularity of the glottal cycles. Therefore, there is scope for

further improvement in the accuracy of the pitch estimation

by combining the proposed method with methods based on

autocorrelation.

Tables III and IV show the performance of all the five pitch

estimation methods under speech-like degradation as in babble

Fig. 7. (a) Speech signal at 0-dB SNR, (b) zero frequency filtered signal,
(c) differenced EGG of the clean signal, pulses indicate the positive zero
crossings of filtered signal in (b). � derived from (d) proposed method,
(e) Praat’s autocorrelation method, (f) crosscorrelation method, (g) subhar-
monic summation, and (h) YIN method. The dotted line corresponds to the
reference pitch contour.

noise and low-frequency degradation as in vehicle noise. The

performance of the proposed method is comparable or even
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TABLE III
GROSS ESTIMATION ERRORS (IN %) FOR DIFFERENT PITCH ESTIMATION ALGORITHMS AT VARYING LEVELS OF DEGRADATION BY BABBLE NOISE

TABLE IV
GROSS ESTIMATION ERRORS (IN %) FOR DIFFERENT PITCH ESTIMATION ALGORITHMS AT VARYING LEVELS OF DEGRADATION BY VEHICLE NOISE

better than the other methods even for these two types of degra-

dation.

V. SUMMARY AND CONCLUSION

In this paper, we have proposed a method for extracting the

fundamental frequency from speech signal exploiting the im-

pulse-like characteristic of excitation in the glottal vibrations

for producing voiced speech. Since an impulse sequence has

energy at all frequencies, a zero-frequency resonance filter was

proposed to derive the instants of significant excitation in each

glottal cycle. The method does not depend on the periodicity of

glottal cycles, nor it relies on the correlation of speech signal in

successive pitch periods. Thus, the method extracts the instan-

taneous fundamental frequency given by the reciprocal of the in-

terval between successive glottal closure instants. Errors occur

when the strength of excitation around the instant of glottal clo-

sure is not high. To correct these errors, the pitch period in-

formation derived from the zero-frequency resonator output is

modified based on the pitch period information derived from

the Hilbert envelope of the differenced speech signal using the

proposed method. The method gives better accuracy in compar-

ison with many standard pitch estimation algorithms. Moreover,

the method was shown to be robust even under low signal-to-

noise ratio conditions. Thus, the method is a very useful tool for

speech analysis.

The proposed method depends only on the impulse-like exci-

tation in each glottal cycle, and hence the intervals between suc-

cessive glottal cycles are obtained without using the periodicity

property in the time domain, and hence the harmonic structure

in the frequency domain. Since the correlation of speech signal

in successive glottal cycles is not used, the method is robust even

when there are rapid changes in the successive periods of exci-

tation, and also when there are rapid changes in the vocal-tract

system, as in dynamic sounds. It may be possible to improve the

performance of the proposed method by exploiting additionally

the periodicity and correlation properties of the glottal cycles

and speech signals, respectively.

Since the method exploits the impulse-like excitation char-

acteristic, if there are additional impulses due to echoes or re-

verberation, or due to overlapping speech from a competing

speaker, then the method is not likely to work well. In fact, the

positive zero crossings in the filtered signal for such degraded

signals may not correspond to the instants of significant exci-

tation in the desired signal. Thus, the proposed method works

well when the speech signal is captured using a close speaking

microphone. For more practical degraded signals, the correla-

tion of speech signals between adjacent glottal cycles also need

to be exploited together with the proposed method.
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