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EQUIDISTRIBUTION OF SIGNS FOR HILBERT MODULAR

FORMS OF HALF-INTEGRAL WEIGHT

SURJEET KAUSHIK, NARASIMHA KUMAR, AND NAOMI TANABE

Abstract. We prove an equidistribution of signs for the Fourier coefficients
of Hilbert modular forms of half-integral weight. Our study focuses on certain
subfamilies of coefficients that are accessible via the Shimura correspondence.
This is a generalization of the result of Inam and Wiese [4] to the setting of
totally real number fields.

1. Introduction

The Fourier coefficients of integral or half-integral weight modular forms over
number fields have been extensively studied because of rich arithmetic and algebraic
properties that they encompass. In recent years, many problems addressing the sign
changes of these Fourier coefficients have been studied by various authors. In this
article, we are interested in the equidistribution of signs of these Fourier coefficients.

For the integral weight cusp forms over Q, one can show that the Fourier coeffi-
cients change signs infinitely often (cf. [8]). For normalized cuspidal eigenforms of
integral weight without complex multiplication (CM), the equidistribution of signs
is a consequence of the Sato-Tate equidistribution theorem due to Barnet-Lamb,
Geraghty, Harris, and Taylor (cf. [1]). Recently, study on sign change has been
extended to cusp forms of half-integral weight over Q (cf. [6]). In [3], Bruinier
and Kohnen conjectured an equidistribution of signs for half-integral weight mod-
ular forms over Q (cf. [7] for more details). In [4, 5], Inam and Wiese showed the
equidistribution of signs for certain subfamilies of coefficients that are accessible via
the Shimura correspondence.

It is natural to ask similar questions for modular forms defined over number fields,
in particular, over totally real number fields, say F . There are not many results
available in this setting as compared to the classical case (over Q). For Hilbert cusp
forms of integral weight, one can show that the Fourier coefficients change signs
infinitely often (cf. [9]). Furthermore, the equidistribution of signs for primitive
Hilbert forms of integral weight without CM can be obtained as, similar to the case
of classical forms, a consequence of the Sato-Tate equidistribution theorem due to
Barnet-Lamb, Gee, and Geraghty [2] (cf. Theorem 3.3 in the text). To the best
of authors knowledge, similar results are not available in the literature for Hilbert
modular forms of half-integral weight.

This article is a modest attempt to show that the ideas of Inam and Wiese in [4]
generalize to the case of Hilbert modular cusp forms of half-integral weight. We
show that the equidistribution of signs holds for certain subfamilies of coefficients
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that are accessible via the Shimura correspondence. The proof uses the Sato-Tate
equidistribution theorem for non-CM primitive Hilbert modular forms. As a con-
sequence, we see that the Fourier coefficients change signs infinitely often.

The article is organized as follows. In §2, we review the basic definitions of
Hilbert modular forms of integral, half-integral weight and state the Shimura corre-
spondence between them. In §3, we recall the Sato-Tate equidistribution Theorem
for automorphic representations of GL2(AF ). In §4, the main result of this article
is stated as Theorem 4.1 with its proof immediately after.

2. Preliminaries

In this section, we recall important definitions and properties of holomorphic
Hilbert modular forms of both integral and half-integral weight. We adopt the
setting from Shimura [12]. For the case of integral weight, the reader may also
refer [10] and [11]. Throughout the paper, let F denote a totally real number field
of degree n, OF its ring of integers, and DF the different ideal of F . We also fix
the order of real embeddings {ηj}nj=1 of F and denote as η. Then, an element α in
F sits inside Rn by (η1(α), . . . , ηn(α)). We write it as (α1, . . . , αn), η(α), or simply
α again when no confusion arises. An element α ∈ F is said to be totally positive
if αj > 0 for all j, and for any subset X ⊂ F , we denote by X+ the set of totally
positive elements in X .

2.1. Half-integral weight Hilbert modular forms. Let k = (k1, . . . , kn) be an
integral or a half-integral weight, i.e., kj ∈ Z>0 for all j or kj = 1/2 + mj with
mj ∈ Z>0 for all j, respectively. Both cases together, we denote k = u/2+m while
it is understood that u ∈ {0, 1} and m = (m1, . . . , mn) ∈ Zn>0. Given a holomorphic

function g on hn and an element γ = (γ1, . . . , γn) of SL2(R)
n with γj =

(

aj bj
cj dj

)

,

define

g||kγ(z) = h(γ, z)−u
∏

j

(cjzj + dj)
−mjg(γz) (2.1)

where z ∈ hn and h(γ, z) is some non-vanishing holomorphic function on hn. See
[12, Proposition 2.3] for the precise definition for h. We note that the function h
is only defined when γ is in a “nice” subgroup of SL2(R), but we shall not worry
about the details as we only consider such a congruence subgroup Γ of SL2(R) as
in (2.2). We refer the reader to Shimura [12, Section 2] for the details.

For the rest of this section, we assume k is half-integral. Let c be an integral ideal
of F that is divisible by 4, and define a congruence subgroup Γ = Γ(c) of SL2(R)
by

Γ(c) =

{(

a b
c d

)

∈ SL2(R) :
a ∈ OF , b ∈ 2D−1

F

c ∈ 2−1cDF , d ∈ OF

}

. (2.2)

Let us take a Hecke character ψ on the idele group A×
F of F whose conductor divides

c and infinite part ψ∞ =
∏

j ψηj satisfies the following condition;

ψ∞(−1) = (−1)
∑

j mj . (2.3)

Such a character ψ can be extended to a character of Γ(c), which is again denoted

by ψ, as ψ(γ) = ψ(a) where γ =

(

a b
c d

)

. We denote by Mk(Γ(c), ψ) the set of all
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holomorphic functions g on hn satisfying

g||kγ = ψc(γ)g

for all γ ∈ Γ(c), where ψc is the “c-part” of ψ, i.e., ψc =
∏

p|c ψp. It should be
noted that our choice of Hecke character ψ only depends on finitely many places,
namely at archimedean places and the c-part. However, we will keep the notation
Mk(Γ(c), ψ) without replacing ψ with ψc, as the choice of characters become more
crucial in §4.

Such a form g ∈Mk(Γ(c), ψ) is known to have the Fourier expansion correspond-
ing to any given fractional ideal a. Its coefficients are denoted by {λg(ξ, a)}ξ,a where
ξ varies over totally positive elements in F . One can treat {λg(ξ, a)} as a two pa-
rameter family of Fourier coefficients for g, as varies over ξ in F and fractional ideals
a. It should be noted that λg(ξ, a) = 0 unless ξ ∈ (a−2)+ or ξ = 0. A modular form
g is said to be a cusp form if λg|γ (0, a) = 0 for every fractional ideal a and every
γ ∈ SL2(F ). The space of such g is denoted by Sk(Γ(c), ψ). For more details, we
refer the reader to [12, Proposition 3.1].

Our aim in this article is to study the equidistribution of signs for a family of
Fourier coefficients {λg(ξ, a)} with a varying over a certain family of fractional
ideals.

2.2. Integral weight Hilbert modular forms. This section is essentially a sum-
mary of Raghuram and Tanabe [10, Section 4.1] with some modifications following
Shimura [12, Section 6].

We assume that k = (k1, . . . , kn) ∈ Zn>0 throughout this section. For a non-
archimedean place p of F , let Fp be a completion of F . Let a and b be integral
ideals of F , and define a subgroup Kp(a, b) of GL2(Fp) as

Kp(a, b) =

{(

a b
c d

)

∈ GL2(Fp) :
a ∈ Op, b ∈ a−1

p D−1
p ,

c ∈ bpDp, d ∈ Op, |ad− bc|p = 1

}

where the subscript p means the p-parts of given ideals. Furthermore, we put

K0(a, b) = SO(2)n ·
∏

p<∞

Kp(a, b) and W (a, b) = GL+
2 (R)

nK0(a, b).

In particular, if a = OF , we simply writeKp(b) = Kp(OF , b) andW (b) =W (OF , b).
Then, we have the following disjoint decomposition of GL2(AF ),

GL2(AF ) = ∪hν=1GL2(F )x
−ι
ν W (b), (2.4)

where x−ιν =

(

t−1
ν

1

)

with {tν}hν=1 taken to be a complete set of representatives

of the narrow class group of F . We note that such tν can be chosen so that the
infinity part tν,∞ is 1 for all ν. For each ν, we also put

Γν(a, b) = GL2(F ) ∩ xνW (a, b)x−1
ν

=

{(

a t−1
ν b

tνc d

)

∈ GL2(F ) :
a ∈ OF , b ∈ a−1D−1

F ,
c ∈ bDF , d ∈ OF , ad− bc ∈ OF

}

.

It is understood that Γν(b) = Γν(OF , b) as before.
Let ψ be a Hecke character of A×

F such that its conductor divides b and its infinite
part ψ∞ is of the form

ψ∞(x) = sgn(x∞)k|x∞|iµ
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where µ = (µ1, . . . , µn) ∈ Rn with
∑n

j=1 µj = 0. We let Mk(Γν(b), ψb, µ) denote the
space of all functions fν that are holomorphic on hn and at cusps, satisfying

fν ||kγ = ψb(γ) det γ
iµ/2fν

for all γ in Γν(b). We note that such a function fν affords a Fourier expansion,
and its coefficients are denoted as {aν(ξ)}ξ where ξ runs over all the totally positive
elements in t−1

ν OF and ξ = 0. Similar to the case of half-integral weight forms, a
Hilbert modular form is called a cusp form if, for all γ ∈ GL+

2 (F ), the constant
term of f ||kγ in its Fourier expansion is 0, and the space of cusp forms with respect
to Γν(b) is denoted by Sk(Γν(b), ψb, µ).

Now, put f = (f1, . . . , fh) where fν belongs to Mk(Γν(b), ψb, µ) for each ν, and
define f to be a function on GL2(AF ) as

f(g) = f(γx−ιν w) := ψb(w
ι) detwiµ/2∞ (fν ||kw∞)(ii) (2.5)

where γx−ιν w ∈ GL2(F )x
−ι
ν W (b) as in (2.4), wι = ω0(

tw)ω−1
0 with ω0 =

(

1
−1

)

,

and i = (i, . . . , i). The space of such f is denoted as

Mk(ψb, µ) =
∏

ν

Mk(Γν(b), ψb, µ).

Furthermore, the space consisting of all f = (f1, . . . , fh) ∈ Mk(ψb, µ) satisfying

f(xg) = ψ(x)f(g) for anyx ∈ A×
F and g ∈ GL2(AF )

is denoted as Mk(b, ψ). In particular, if each fν belongs to Sk(Γν(b), ψb, µ), then
the space of such f is denoted by Sk(b, ψ). A cusp form f is called primitive if it is
a normalized new form and a common eigenfunction of all Hecke operators.

Let m be an ideal of F and write m = ξt−1
ν OF with a totally positive element ξ

in F . Then the Fourier coefficient of f at m is defined as

c(m, f) =

{

aν(ξ)ξ
−(k+iµ)/2 if m = ξt−1

ν OF ⊂ OF

0 if m is not integral.
(2.6)

2.3. Shimura Correspondence. In this section, we shall recall the Shimura cor-
respondence, which states that, given a non-zero half-integral weight cusp form,
there is an integral automorphic form associated with it.

For any integral ideal a in OF , we introduce a formal symbol M(a) satisfying that
M(OF ) = 1 and M(ab) = M(a)M(b) for all a, b ⊆ OF . Then one can consider the
ring of formal series in these symbols, indexed by integral ideals.

The following result is the Shimura correspondence for Hilbert modular forms [12,
Theorems 6.1 and 6.2]. We assume for simplicity that ψ is a quadratic character,
as it will be the case in our setting.

Theorem 2.1. Let 0 6= g ∈ Sk(Γ(c), ψ) with a half-integral weight k = 1
2
+m with

m ≥ 1, an integral ideal c of F divisible by 4, and ψ being a Hecke character of
F such that it satisfies (2.3) and its conductor divides c. Further, we assume that
ψ∞(x) = |x|iµ for any totally positive element x in A×

F,∞ with some µ ∈ Rn such
that

∑

j µj = 0.

Let τ be an arbitrary element in O+
F , and write τOF = a2r for some integral ideal

a and a square free integral ideal r. Then the following assertions hold.
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(1) Let b be a fractional ideal of F and define Γ = GL2(F )∩W (b, 2−1cb). Then
there exists f ∈M2m(Γ, ψ

2
2−1c

, µ) so that
∑

ξ∈b/O×,+
F

a(ξ)ξ−m−iµM(ξb−1) =
∑

m⊆OF

λg(τ, a
−1m)M(m)

∑

nmb∼1

(ψǫτ )
∗(n)N(n)−1M(n),

(2.7)
where λg(τ, a

−1m) is the Fourier coefficient of g at a cusp corresponding to
a−1m, ψ{2−1c} =

∏

p|2−1c ψp, ǫτ is the Hecke character of F corresponding to

F (
√
τ )/F , and (ψǫτ )

∗ is the character induced from ψǫτ . In the second sum
of the right hand side in (2.7), n runs through all the integral ideal of F that
are prime to cr and equivalent to (mb)−1.

(2) Let fτ = (f1, . . . , fh) where fν is of the form given in (1) with b = tνOF for
all ν = 1, . . . , h. Then fτ ∈ M2m(2

−1c, ψ2) and it satisfies

∑

m

c(m, fτ )M(m) =
∑

m

λg(τ, a
−1m)M(m)

∏

p∤cr

(

1− (ψǫτ )
∗(p)

N(p)
M(p)

)−1

(2.8)

where m runs over all the integral ideals of F and p over all the prime ideals
which do not divide cr.

(3) The function f given in (1) is a cusp form if mj > 1 for some j.

3. Sato-Tate equidistribution theorem for Hilbert Modular forms

We now recall the Sato-Tate equidistribution theorem for Hilbert modular forms
of integral weight without CM. Let P denote the set of all prime ideals of OF . We
begin by recalling the notion of natural density for a subset of P.

Definition 1. Let F be a number field and S be a subset of P. We define the natural
density of S to be

d(S) = lim
x→∞

#{p : N(p) ≤ x, p ∈ S}
#{p : N(p) ≤ x, p ∈ P} , (3.1)

provided the limit exists.

In [2], Barnet-Lamb, Gee, and Geraghty proved the following Sato-Tate equidis-
tribution theorem.

Theorem 3.1. (Barnet-Lamb, Gee, Geraghty, [2, Corollary 7.1.7]) Let F be a
totally real number field of degree n and Π a non-CM regular algebraic cuspidal
automorphic representation of GL2(AF ). Write µ = (µ1, . . . , µn) for an integral
weight for the diagonal torus of GL2(R)

n with µj = (aj, bj) and aj ≥ bj for all j.
We note that the values aj + bj are the same for all j, and therefore we may put
ωΠ = aj + bj. Let χ be the product of the central character of Π with | · |ωπ , so that
χ is a finite order character. Let ζ be a root of unity such that ζ2 is in the image
of χ. For any place p of F such that Πp is unramified, let λp denote the eigenvalue
of the Hecke operator

GL2(Op)

(

̟p

1

)

GL2(Op) (3.2)

on Π
GL2(Op)
p , where ̟p is a uniformizer of Op.
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Then as p ranges over the unramified places of F such that χp(̟p) = ζ2, the
number given by

λp
2N(p)(1+ωΠ)/2ζ

belongs to [−1, 1], and furthermore they are equidistributed in [−1, 1] with respect
to the measure (2/π)

√
1− t2dt.

For convenience, we now rewrite the above theorem in terms of the Fourier co-
efficients of primitive Hilbert modular forms. From now on, we assume that f is a
primitive form of weight k = (k1, . . . , kn) with k1 ≡ · · · ≡ kn ≡ 0 (mod 2) and each
kj ≥ 2, level c, and with trivial nebentypus. We first need the following lemma:

Lemma 3.2. Let f ∈ Sk(c, 11) be a primitive form, that is, a normalized common
eigenform in the new space, and Π = Πf an irreducible cuspidal automorphic rep-
resentation corresponding to f . Let p be an prime ideal of F such that p ∤ cDF . Let
c(p, f) be the Fourier coefficients at p defined as in (2.6), and λp be the eigenvalue
of the Hecke operator defined as in (3.2), then

λp = c(p, f)N(p).

Proof. The proof of this lemma can be found in [10, Page 305-306]. �

To make the calculation simpler at a later point, we re-normalize c(p, f) as follows:
Define

C(p, f) = c(p, f)N(p)k0/2,

where k0 = maxj{kj} with k = (k1, . . . , kn) being the weight of f . Since we are
interested in sign changes of the Fourier coefficients, this re-normalization will not
make any difference. The following theorem is a consequence of Theorem 3.1 above:

Theorem 3.3. Let f ∈ Sk(c, 11) be a primitive form of weight k = (k1, . . . , kn) such
that k1 ≡ · · · ≡ kn ≡ 0 (mod 2) and each kj ≥ 2. Suppose that f does not have
complex multiplication. Then, for any prime ideal p of F such that p ∤ cDF , we
have

B(p) :=
C(p, f)

2N(p)
k0−1

2

∈ [−1, 1].

Furthermore, {B(p)}p are equidistributed in [−1, 1] with respect to the measure µ =

(2/π)
√
1− t2dt. In other words, for any subinterval I of [−1, 1], we have

lim
x→∞

#{p ∈ P : p ∤ cDF ,N(p) ≤ x,B(p) ∈ I}
#{p ∈ P : N(p) ≤ x} = µ(I) =

2

π

∫

I

√
1− t2dt,

i.e., the natural density of the set {p : B(p) ∈ I} is µ(I).

Proof. Let Π = Πf be the non-CM irreducible cuspidal automorphic representation
corresponding to f . Since k1 ≡ · · · ≡ kn ≡ 0 (mod 2) and each kj ≥ 2, it follows
from [10, Theorem 1.4] that Π is algebraic and regular. By Lemma 3.2, we have

λp
2N(p)(1+ωΠ)/2

=
N(p)c(p, f)

2N(p)(1+ωΠ)/2
=

c(p, f)

2N(p)(ωΠ−1)/2
.

Given that the highest weight vector µ = (µ1, . . . , µn) of Π being µj = ((kj −
2)/2,−(kj − 2)/2) (cf. [10, Section 4.6]), we have ωΠ =

kj−2

2
− kj−2

2
= 0. Hence, we



EQUIDISTRIBUTION OF SIGNS FOR HMF OF HALF-INTEGRAL WEIGHT 7

get

λp
2N(p)1/2

=
c(p, f)

2N(p)
−1

2

=
C(p, f)

2N(p)
k0−1

2

.

Now, the theorem follows from Theorem 3.1 by taking ζ = 1. �

4. Main Result

Before stating the main theorem, we introduce some more notation. Let τ ∈ O+
F

and a an integral ideal of F . Our interest is to study a certain family of Fourier
coefficients of a half-integral cusp form g, namely {λg(τ, a−1p)}p where p varies over
prime ideals. For a fixed g, we put

P>0(τ, a) = {p ∈ P : p ∤ cDF , λg(τ, a
−1p) > 0},

and similarly P<0(τ, a), P≥0(τ, a), P≤0(τ, a), and P=0(τ, a). We also write Pc for the
set of all prime ideals not dividing c.

We are now ready to state the main result of the article.

Theorem 4.1. Let 0 6= g ∈ Sk(Γ(c), ψ) with a half-integral weight k = 1
2
+m with

mj > 1 for some j, an integral ideal c of F divisible by 4, and ψ a Hecke character
of AF satisfying the following conditions:

a. the conductor of ψ divides c,
b. ψ∞(−1) = (−1)

∑
j mj , and

c. for any totally positive element x in A×
F,∞, ψ∞(x) = |x|iµ with some µ ∈ Rn

such that
∑

j µj = 0.

Furthermore, we suppose that the Fourier coefficients of g are real and the character
ψ of g is quadratic.

Let τ be an arbitrary element in O+
F , and write τOF = a2r for some integral ideal

a and a square free integral ideal r. Then, there is a lift fτ of g under the Shimura
correspondence (as in Theorem 2.1). Assume that fτ is a non-CM primitive Hilbert
modular form.

Then, the natural density of P>0(τ, a) (resp., of P<0(τ, a) ) is 1/2, i.e., d(P>0(τ, a)) =
1/2 (resp., d(P<0(τ, a)) = 1/2 ), and d(P=0(τ, a)) = 0.

The rest of this article is devoted to proving the theorem. From now on, we
simply write P>0 for P>0(τ, a), etc. Let us also define

π(x) = #{p ∈ P : N(p) ≤ x} and π>0(x) = #{p ∈ P>0 : N(p) ≤ x}.
Then we have the following proposition.

Proposition 4.2. Assume that all the hypotheses in Theorem 4.1 hold. Then, we
have

lim inf
x→∞

π>0(x)

π(x)
≥ µ([0, 1]) =

1

2
and lim inf

x→∞

π≤0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

Proof. The equality of the formal sums in (2.8) can also be re-interpreted as

∏

p∤cr

(

1− (ψǫτ )
∗(p)

N(p)
M(p)

)

∑

m

c(m, fτ )M(m) =
∑

m

λg(τ, a
−1m)M(m).
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For any non-zero prime ideal p ∤ cr, comparing the coefficients of M(p) on both sides
gives

c(p, fτ )−
(ψǫτ )

∗(p)

N(p)
= λg(τ, a

−1p) (4.1)

since fτ is primitive (i.e., c(OF , fτ ) = 1). There are exactly two terms on the left
side of (4.1) because the unique factorization of ideals holds in OF , and hence the
only integral ideals which divides p are p and OF itself.

Since ψ is a quadratic character, the primitive Hilbert modular form fτ has triv-
ial nebentypus. Hence, the Fourier coefficients c(p, fτ ) are real numbers (cf. [11,
Proposition 2.5]). This implies that (ψǫτ )

∗(p) ∈ {±1} since, by our assumption,
(ψǫτ )

∗(p) is a root of unity and λg(τ,m) is real for all fractional ideals m.
By (4.1), we have

λg(τ, a
−1p) > 0 ⇔ c(p, fτ ) >

(ψǫτ )
∗(p)

N(p)
,

which gives us

λg(τ, a
−1p) > 0 ⇔ B(p) >

(ψǫτ )
∗(p)

2N(p)
1

2

since B(p) = C(p,fτ )

2N(p)
k0−1

2

.

For any ǫ > 0, we have the following inequality:

π>0(x) + π

(

1

4ǫ2

)

≥ #{p ∈ PcrDF
: N(p) ≤ x and B(p) > ǫ}

since | (ψǫτ )∗(p)
2N(p)1/2

| = 1
2N(p)1/2

< ǫ if N(p) > 1/4ǫ2. Now divide the above inequality by

π(x) to obtain

π>0(x)

π(x)
+
π
(

1
4ǫ2

)

π(x)
≥ #{p ∈ PcrDF

: N(p) ≤ x and B(p) > ǫ}
π(x)

.

The term π
(

1
4ǫ2

)

/π(x) tends to 0, as x → ∞, since π
(

1
4ǫ2

)

is finite. On the other
hand, Theorem 3.3 gives

#{p ∈ P : N(p) ≤ x and B(p) > ǫ}
π(x)

→ µ([ǫ, 1])

as x→ ∞, and therefore we have

lim inf
x→∞

π>0(x)

π(x)
≥ µ([ǫ, 1]) for all ǫ > 0.

Hence, we can conclude that

lim inf
x→∞

π>0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

A similar proof shows that

lim inf
x→∞

π≤0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

�
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Proof of Theorem of 4.1. By Proposition 4.2, we have

1

2
≤ lim inf

x→∞

π>0(x)

π(x)
.

Since π>0(x) = π(x)− π≤0(x), we have

lim sup
x→∞

π>0(x)

π(x)
≤ µ([0, 1]) =

1

2
.

Hence,
1

2
≤ lim inf

x→∞

π>0(x)

π(x)
≤ lim sup

x→∞

π>0(x)

π(x)
≤ µ([0, 1]) =

1

2
,

and therefore, limx→∞
π>0(x)
π(x)

exists and equals 1
2
. Thus, the set P>0 has natural

density 1
2
. The same argument yields that P<0 has natural density 1

2
as well. This

proves that P=0 has natural density 0. �

We conclude the article with the following corollary.

Corollary 4.3. Assume that all the hypotheses of Theorem 4.1 hold. Then, the set
{λg(τ, a−1p)}p∈P changes signs infinitely often. In particular, there exist infinitely
many primes p ∈ P for which λg(τ, a

−1p) > 0 (resp., λg(τ, a
−1p) < 0).
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