Outlier detection is a challenging activity. Several machine learning techniques are proposed in the literature for outlier detection. In this article, we propose a new training approach for bidirectional GAN (BiGAN) to detect outliers. To validate the proposed approach, we train a BiGAN with the proposed training approach to detect taxpayers, who are manipulating their tax returns. For each taxpayer, we derive six correlation parameters and three ratio parameters from tax returns submitted by him/her. We train a BiGAN with the proposed training approach on this nine-dimensional derived ground-truth data set. Next, we generate the latent representation of this data set using the encoder (encode this data set using the encoder) and regenerate this data set using the generator (decode back using the generator) by giving this latent representation as the input. For each taxpayer, compute the cosine similarity between his/her ground-truth data and regenerated data. Taxpayers with lower cosine similarity measures are potential return manipulators. We applied our method to analyze the iron and steel taxpayer's data set provided by the Commercial Taxes Department, Government of Telangana, India. © 2022 IEEE.