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Abstract

We revisit the problem of fair clustering, first introduced by Chierichetti
et al. (2017), that requires each protected attribute to have approximately
equal representation in every cluster; i.e., a Balance property. Existing solu-
tions to fair clustering are either not scalable or do not achieve an optimal
trade-off between clustering objective and fairness. In this paper, we pro-
pose a new notion of fairness, which we call τ -ratio fairness, that strictly
generalizes the Balance property and enables a fine-grained efficiency vs.
fairness trade-off. Furthermore, we show that simple greedy round-robin
based algorithms achieve this trade-off efficiently. Under a more general
setting of multi-valued protected attributes, we rigorously analyze the
theoretical properties of the our algorithms. Our experimental results
suggest that the proposed solution outperforms all the state-of-the-art
algorithms and works exceptionally well even for a large number of clusters.

Keywords: Fairness, Clustering, Machine Learning, Unsupervised Learning

1 Introduction

Advances in machine learning research have resulted in the development of
increasingly accurate models, leading to the wide adoption of these algorithms
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in applications ranging from self-driving cars, approving home loan applications,
criminal risk prediction, college admissions, and health risk prediction. While
improving the accuracy is the primary objective of these algorithms, their use
to allocate social goods and opportunities such as access to healthcare and job
and educational opportunities warrants a closer look at the societal impacts of
their outcomes (Carey and Wu (2022); Ntoutsi et al. (2020)). Recent studies
have exposed a discriminatory outlook in the outcomes of these algorithms
leading to treatment disparity towards individuals belonging to marginalized
groups based on gender and race in real-world applications like automated
resume processing (Dastin, 2018), loan application screening, and criminal risk
prediction (Julia et al., 2016). Designing fair and accurate machine learning
models is thus an essential and immediate requirement for these algorithms to
make a meaningful real-world impact.

While fairness in supervised learning is studied (Correa et al., 2021; Chika-
hara et al., 2021; Lee et al., 2021; Mehrabi et al., 2021; Le Quy et al., 2022;
Dwork et al., 2012), the fairness in unsupervised learning is still in its forma-
tive stages (Deepak et al. (2020); Chhabra et al. (2021)). To emphasize the
importance of fairness in unsupervised learning, we consider the following hypo-
thetical scenario: An employee-friendly company is looking to open branches at
multiple locations across the city and distribute its workforce in these branches
to improve work efficiency and minimize overall travel time to work. The com-
pany has employees with diverse backgrounds based on, for instance, race and
gender and does not prefer any group of employees over other groups based
on these attributes. The company’s diversity policy dictates hiring a mini-
mum fraction of employees from each group in every branch. Thus, the natural
question is: where should the branches be set up to maximize work efficiency,
minimize travel time, and maintain diversity. In other words, the problem is to
devise an unsupervised learning algorithm for identifying branch locations with
the fairness (diversity) constraints applied to each branch. This problem can
be naturally formulated as a clustering problem with additional fairness con-
straints on allocating the data points to the cluster centers. Clustering, along
with classification, forms the core of powerful machine learning algorithms with
significant societal impact through applications such as automated assessment
of job suitability (Padmanabhan, 2020) and facial recognition (Li et al., 2020).
These constraints arise naturally in applications where data points correspond
to individuals, and cluster association signifies the partitioning of individuals
based on features.

Typically, fairness in supervised learning is measured by the algorithm’s
performance over different groups based on protected(sensitive) attributes
such as gender, race, and ethnicity. The first fairness notion for clustering
was proposed by Chierichetti et al. (2017), wherein each cluster is required
to exhibit a Balance; defined as the ratio of protected attribute and non-
protected attribute in each cluster to the level of this ratio in the entire
dataset. Their methodology— apart from having significant computational
complexity—applies only to binary-valued protected attributes and does not
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allow for trade-offs between the clustering objective and fairness guarantees.
The subsequent literature Backurs et al. (2019); Schmidt et al. (2019); Schmidt
and Wargalla (2021); Huang et al. (2019) improve efficiency; however, do not
facilitate explicit trade-off between the clustering objective cost and the fairness
guarantee. In this paper we define a new notion of fairness which we call τ -ratio
guarantee. To each cluster, a τ -ratio guarantee ensures a certain fraction of
data points for a given protected attribute. We show that this simple notion of
fairness has several advantages. First, the definition of τ -ratio naturally extends
to multi-valued protected attributes; second τ -ratio fairness strictly generalizes
the Balance property; third, it admits an intuitive and computationally efficient
round-robin approach to fair allocation; and fourth, it is straightforward for the
algorithm designer to input the requirement into the algorithm as constraints
and easy to interpret and evaluate it from the output. In our running example,
if a company wants to have minimum fraction of employees from each group in
every branch (clusters) then one can simply specify this in the form of a vector
τ of size equal to number of protected groups. Through rigorous theoretical
analysis, we show that the proposed algorithm FRACOE provides a 2(α+ 2)-
approximate guarantee on the objective cost with τ -ratio fairness guarantee up
to three clusters. Here, α is the approximation factor achieved by the vanilla
clustering algorithm. We further experimentally demonstrate that our approach
can achieve better clustering objective costs than any state-of-the-art (SOTA)
approach on real-world data sets, even for a large number of clusters. Overall,
the following are the contributions of our work.

1.1 Our Contribution

Conceptual Contribution

We introduce a new notion of fairness which we call a τ -ratio guarantee and
show that any algorithm satisfying a τ -ratio guarantee also satisfies the Balance
property (Theorem 4). Also, we show that every parameter setting of Balance
collapses to a degenerate value of τ -ratio fairness showing generalisation of
proposed notion. We propose two simple and efficient round-robin-based algo-
rithms for the τ -ratio fair allocation problem (see, Section 4). Our algorithms
use the clustering algorithm as a black-box implementation and modify its
output appropriately to ensure τ -ratio guarantee. The fairness guarantee is
deterministic and verifiable, i.e., holds for every run of the algorithm, and can
be verified from the outcome without explicit knowledge of the underlying
clustering algorithm. The guarantee on objective cost, however, depends on
the approximation guarantee of the clustering algorithm.

Our algorithms can handle multi-valued protected attributes, allow user-
specified bounds on Balance, are computationally efficient, and incur only an
additional time complexity of O(kn log(n)), best in the current literature. Here,
n is the size of the dataset, and k is the number of clusters.
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Theoretical Contributions

We show theoretical guarantees for our first algorithm; FracOE . First, we
show that our algorithm achieves 2(α+ 2)-approximate fairness for clustering
instances upto three clusters (Theorem 7 and Lemma 11) with respect to optimal
fair clustering cost for τ=1/k; here α is a clustering algorithm specific constant.
That is, given a fair clustering instance with k ≤ 3 clusters, n datapoints and
a fairness vector τ , our proposed algorithm returns an allocation that has
objective cost of 2(α+ 2) times the objective cost of optimal assignment that
also satisfies the τ -ratio guarantee. We further show that this guarantee is
tight (Proposition 12). For k > 3 clusters we show 2k−1(α+ 2)-approximation
guarantee on the τ -ratio. We conjecture that the exponential dependence of the
approximation guarantee on k can be reduced to a constant. The guarantees are
extended to work for any general τ vector (see Section 5.2). We also theoretically
analyse the convergence of FRACOE (Lemma 14).

Experimental Contributions

Through extensive experiments on four datasets (Adult, Bank, Diabetes, and
Census II), we show that the proposed algorithm outperforms all the existing
algorithms on fairness and objective costs. Perhaps the most important insight
from our experiments is that the performance of our proposed algorithms does
not deteriorate with increasing k, experimentally validating our conjecture. We
compare our algorithms with SOTA algorithms for their fairness guarantee,
objective cost, and runtime analysis. We also note that our algorithms do not
require hyper-parameter tuning, making our method easy to train and scalable.
While our algorithms are applicable to center based clustering approach, we
demonstrate its efficacy using k-means and k-median.

2 Related Work

While there is abundant literature on fairness in supervised learning (Chikahara
et al. (2021); Gong et al. (2021); Zhang et al. (2021); Ranzato et al. (2021);
Lohaus et al. (2020); Cho et al. (2020); Baumann and Rumberger (2018);),
research on fair clustering is still in infancy and is rapidly gathering attention
(Chierichetti et al. (2017); Kleindessner et al. (2019); Ziko et al. (2021); Liu and
Vicente (2021); Davidson and Ravi (2020);Bercea et al. (2018); Chhabra et al.
(2021)). These studies include extending the existing fairness notions such as
group and individual fairness to clustering (Bera et al. (2019); Kleindessner et al.
(2020); Chen et al. (2019a)), proposing new problem-specific fairness notions
such as social fairness (Abbasi et al. (2021); Makarychev and Vakilian (2021)),
characterizing the fairness and efficiency trade-off (Ziko et al. (2021); Abraham
et al. (2020) ) and developing and analyzing fair and efficient algorithms
(Bandyapadhyay et al. (2020); Schmidt et al. (2019)).

The fairness in clustering is introduced at different stages of implementation
namely – pre-processing, in-processing and post-processing.



Springer Nature 2021 LATEX template

Efficient Algorithms For Fair Clustering with a New Fairness Notion 5

Pre-processing: Following a disparate impact doctrine (Barocas and Selbst
(2016)), Chierichetti et al. (2017), in their pioneering work, defines fairness
in clustering through a Balance property. Balance is the ratio of data points
with different protected attribute values in a cluster. A balanced clustering
ensures Balance in all the clusters equal to the Balance in the original dataset
(see Definition 2). Chierichetti et al. (2017) achieve balanced clustering through
the partitioning of the data into balanced sets called fairlets, followed by
merging of the partitions. Subsequently, Backurs et al. (2019) proposes an
efficient algorithm to compute the fairlets. Both the approaches have two major
drawbacks: they are limited to the datasets having only binary-valued protected
attributes, and can only create clusters exhibiting the exact Balance present in
the original dataset, thereby not being flexible in achieving an optimal trade-
off between Balance and accuracy. Schmidt et al. (2019) extend the notion of
coresets to fair clustering and provide an efficient and scalable algorithm using
composable fair coresets (see also Huang et al. (2019); Schmidt and Wargalla
(2021); Bandyapadhyay et al. (2020); Feng et al. (2021)). A coreset is a set of
points approximating the optimal clustering objective value for any k cluster
centers. Though the coreset construction can be performed in a single pass
over the data as opposed to the fairlets construction, storing coresets takes
exponential space in terms of the dimension of the dataset. Bandyapadhyay
et al. (2020) though reduces this exponential size requirement to linear in terms
of space; the algorithm still has the running complexity that is exponential in
the number of clusters. Our proposed approach is efficient because we do not
need any additional space. Simultaneously, the running complexity is linear in
the number of clusters and near-linear in the number of data points.
In-processing: Böhm et al. (2020) propose an (α+2)-approximate algorithm
for fair clustering using minimum cost-perfect matching algorithm. While the
approach works with a multi-valued protected attribute, it has O(n3) time
complexity and is not scalable. Ziko et al. (2021) propose a variational framework
for fair clustering. Apart from being applicable on datasets with multi-valued
protected attributes, the approach works for both prototype-based (k-mean/k-
median) and graph-based clustering problems (N -cut or Ratio-cut). However,
the sensitivity of the hyper-parameter to various datasets and the number of
clusters necessitates extensive tuning rendering the approach computationally
expensive. Further, the clustering objective also deteriorates significantly under
strict fairness constraints when dealing with many clusters (refer Section 7.1).
Along the same lines, Abraham et al. (2020) devise an optimization-based
approach for fair clustering with multiple multi-valued protected attributes
with a trade-off hyper-parameter similar to Ziko et al. (2021).
Post-processing: Bera et al. (2019) converted fair clustering into a fair
assignment problem and formulated a linear programming (LP) based solution.
The LP-based formulation leads to a higher execution time (refer to Section
7.4). Also, the approach fails to converge when dealing with a large number
of clusters. The proposed approach takes a similar route as Bera et al. (2019)
to convert the fair clustering problem into a fair allocation problem. However,
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we give a simple polynomial-time algorithm which, in O(nk log n) additional
computations, guarantees a more general notion of fairness which we call τ -
ratio fairness. Our allocation algorithms have following main advantages over
the current state of the art;
1. they are computationally efficient,
2. they work for multi-valued protected attributes,
3. no hyperparameter tuning is required and,
4. they are simple and more interpretable (refer Section 3).
The work by Bera et al. (2019) is extended by Harb and Lam (2020) for

k-center problem whereas we in present study consider k-means and k-median
based centering techniques. Similarly the works by (Ahmadian et al. (2019);
Jones et al. (2020); Bandyapadhyay et al. (2019); Jia et al. (2020); Anegg et al.
(2020); Chakrabarti et al. (2022); Brubach et al. (2020)) are applicable only for
k-center clustering. While we focus on the fairness notion of Balance based on
the protected attribute value, other perspectives on fairness are defined in the
literature. Kleindessner et al. (2020) define individual fairness: every data point
on average is closer to the points in its cluster than to the points in any other
cluster, while Chen et al. (2019a); Mahabadi and Vakilian (2020); Vakilian and
Yalciner (2022); Negahbani and Chakrabarty (2021) uses a radii-based approach
to characterize fairness. Ghadiri et al. (2021); Abbasi et al. (2021); Deepak and
Abraham (2020); Makarychev and Vakilian (2021); Goyal and Jaiswal (2021)
study social fairness inspired by equitable representation. This body of work
mainly seeks to equalize the objective cost across all groups. The notion of
proportionally fair clustering is proposed by (Chen et al. (2019b); Micha and
Shah (2020)) wherein subset of points are allowed to form their own clusters if
a center exists that is close to all points in subset. While existing works tightly
integrate achieving fairness with the clustering algorithms, Chhabra et al. (2021)
recently devised the idea to use a pre-processing technique by addition of a
small number of extra data points called antidotes. Vanilla clustering techniques
applied to this augmented dataset result in fair clusters with respect to the
original data. The pre-processing technique to add antidotes requires solving
a bi-level optimization problem. While the pre-processing routine makes fair
clustering algorithms irrelevant, its high running time limits its usability.

Another line of related works studying fairness in clustering revolves around
hierarchical clustering, spectral clustering algorithms for graphs, and hyper-
graph clustering (Bose and Hamilton (2019);Kleindessner et al. (2019)). Jones
et al. (2020) define fairness on the cluster centers, wherein each center comes
from a demographic group. Clustering has also been used for solving fair facil-
ity location problems (Jung et al. (2020); Micha and Shah (2020); Chen et al.
(2019a)). Recently, Li et al. (2021) propose a new fairness notion of core fairness
that is motivated by both group and individual fairness (Kar et al. (2021)).
Elzayn et al. (2019) use fair clustering for resource allocation problems. Klein-
dessner et al. (2019) use fair clustering for data summarization. Fair clustering
is also being studied in dynamic (Chan et al. (2018)), capacitated (Quy et al.
(2021)), bounded cost (Esmaeili et al. (2021)), budgeted (Byrka et al. (2014)),
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privacy preserving (Rösner and Schmidt (2018)), probabilistic (Esmaeili et al.
(2020)), correlated (Ahmadian et al. (2020)), diversity aware (Thejaswi et al.
(2021)) and distributed environments (Anderson et al. (2020)). Finally, our
fairness notion (τ -ratio), resembles to that of balanced (in terms of number
of points in each cluster) clustering studied by Banerjee and Ghosh (2006)
without fairness constraint. However, their proposed sampling technique is not
designed to guarantee τ -ratio fairness and does not analyze loss incurred due
to having these fairness constraint.

3 Preliminaries

Let X ⊆ R
d be a finite set of points that needs to be partitioned into k clusters.

Each data point xi ∈ X is a feature vector described using d real valued features.
A k-clustering 1 algorithm C = (C, φ) produces a partition of X into k subsets
([k]) with centers C = {cj}

k
j=1 using an assignment function φ : X → C which

maps each point to corresponding cluster center. Throughout this paper we
consider that each point xi ∈ X is associated with a single protected attribute
ρi (say ethinicity from a pool of other available protected attributes) which
takes values from the set m values denoted by [m]. The number of distinct
protected attribute values is finite and much smaller than size of set X 2.
Furthermore, let d : X × X → R+ be a distance metric defined on X and
measures the dissimilarity between features. Additionally, we are also given a
vector τ = {τℓ}

m
ℓ=1 where each component τℓ satisfies 0 ≤ τℓ ≤

1
k and denotes

the fraction of data points from the protected attribute value ℓ ∈ [m] required
to be present in each cluster. An end-user can simply specify a ℓ dimensional
vector with values between 0 to 1/k as fairness target. Also, let us denote Xℓ,
nℓ as set of datapoints and number of points having value ℓ in X. Let I(.)
denote the indicator function. A vanilla (an unconstrained) clustering algorithm
determines the cluster centers as to minimize the clustering objective cost
which is defined as follows:

Definition 1 (Objective Cost). Given p, the cluster objective cost with respect
to the metric space (X, d) is defined as:

Lp(X,C, φ) =





∑

xi∈X

∑

j∈[k]

I(φ(xi) = j)d(xi, cj)
p





1

p

(1)

Different values of p, will result in different objective cost: p = 1 for k-
medians, p = 2 for k-means, and p =∞ for k-centers. Our aim is to develop
an algorithm that minimizes the objective cost irrespective of p while ensuring
the fairness.

1Throughout the paper, for simplicity, we call a k-clustering algorithm as a clustering algorithm.
2Otherwise, the problem is uninteresting as the balanced clustering may not be feasible.
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Group Fairness Notions: We begin with first defining the most popular
notion of group fairness which is called Balance. The notion is first put forward
for binary protected groups by Chierichetti et al. (2017) and extended to multi-
valued group by Bera et al. (2019); Ziko et al. (2021). The balanced fairness
notion is defined as follows.

Definition 2 (Balance). [Chierichetti et al. (2017)] The Balance of an
assignment function φ is defined as

Balance(φ) = min
j∈[k]

(

min

(

∑

xi∈X I(φ(xi) = j)I(ρi = a)
∑

xi∈X I(φ(xi) = j)I(ρi = b)

))

∀a, b ∈ [m] (2)

Balance is computed by finding the minimum possible ratio of protected
(say. male) and non-protected group (say. female) over all clusters. Any fair
clustering algorithm using Balance as a measure of fairness would produce
clusters that maximize the Balance. Note that the maximum Balance achieved
by an algorithm is equal to the ratio of points available in the dataset having
a and b as the protected attribute values and is known as dataset balance.
Further, the clusters maximizing the Balance are not unique.

A generalization of Balance to multi-valued protected attributes is proposed
by Bera et al. (2019) in terms of cluster sizes. The fairness notion constraints
the upper and lower bound on the number of points from each protected group
in every cluster.

Definition 3 (Minority Protection). A clustering C is τ -MP if

∑

xi∈X

I(φ(xi) = j)I(ρi = ℓ) ≥ τℓ
∑

xi∈X

I(φ(xi) = j) ∀ℓ ∈ [m], ∀j ∈ [k] (3)

Definition 4 (Restricted Dominance). A clustering C is τ -RD if

∑

xi∈X

I(ρi = ℓ)I(φ(xi) = j) ≤ τℓ
∑

xi∈X

I(φ(xi) = j) ∀ℓ ∈ [m], ∀j ∈ [k] (4)

The generalization by Bera et al. (2019) needs cluster sizes that are not
known beforehand. Thus, Bera et al. (2019) proposes a linear programming-
based solution.

We now define our proposed τ -ratio fairness notion which ensures that each
cluster has a predefined fraction of points for each protected attribute value.
τ -ratio requires only priorly known dataset composition, which helps achieve
polynomial-time algorithms.
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Definition 5 (τ -ratio Fairness). An assignment function φ satisfies τ -ratio
fairness if

∑

xi∈X

I(φ(xi) = j)I(ρi = ℓ) ≥ τℓ
∑

xi∈X

I(ρi = ℓ) ∀j ∈ [k] and ∀ℓ ∈ [m] (5)

The τ -ratio fairness is different from the balanced fairness of Chierichetti
et al. (2017) that tries to Balance the ratio of points for any pair of values
corresponding to the protected attribute in each cluster.

Our first theorem (Theorem 4) in Section 5 shows that an algorithm
satisfying τ -ratio fairness notion produces one set of clusters that maximizes the
Balance. In particular, when τℓ =

1
k , then τ -ratio fairness achieve the Balance

equal to the dataset ratio. We also show that a perfectly balanced cluster need
not imply τ -ratio fairness for arbitrary τ (Lemma 6 in Section 5). Hence τ -ratio
is a more generalized fairness notion.

We now define the fair clustering problem with respect to the proposed
fairness notion:

Definition 6 (τ -ratio Fair Clustering Problem). The objective of a τ -ratio fair
clustering problem I is to estimate C = (C, φ) that minimizes the objective cost
Lp(X,C, φ) subject to the τ -ratio fairness guarantee. The optimal objective cost
of a τ -ratio fair clustering problem is denoted by OPT clust(I).

A solution to this problem is to rearrange the points (learn a new φ) with
respect to the cluster centers obtained after a traditional clustering algorithm
to guarantee τ -ratio fairness. The problem of rearrangement of points with
respect to the fixed centers is known as the fair assignment problem, which we
define below:

Definition 7 (τ -ratio Fair Assignment Problem). Given X and C = {cj}
k
j=1,

the solution to the fair assignment problem T produces an assignment φ :
X → C that ensures τ -ratio fairness and minimizes Lp(X,C, φ). The opti-
mal objective function value to a τ -ratio fair assignment problem is denoted by
OPT assign(T ).

However, this transformation of the fair clustering problem I into a fair
assignment problem T should ensure that OPT assign(T ) is not too far from
OPT clust(I). The connection between fair clustering and fair assignment
problem is established through the following lemma.

Lemma 1. Let I be an instance to fair clustering problem and T is an instance
to τ -ratio fair assignment problem after applying α-approximate algorithm to
the vanilla clustering problem, then OPT assign(T ) ≤ (α+ 2)OPT clust(I).
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Proof Let C the cluster centers obtained by running a vanilla clustering algorithm
on instance I. The proof of the Lemma depends on the existence of an assign-
ment φ′ satisfying τ -ratio fairness such that Lp(X,C, φ′) ≤ (α + 2)OPT clust(I).
As OPT assign(T ) ≤ Lp(X,C, φ′) ≤ (α + 2)OPT clust(I). Let (C∗, φ∗) denote the
optimal solution to I. Define φ′ as follows: for every c∗ ∈ C∗, let nrst(c∗) =
argminc∈C d(c, c∗) be the nearest center to c∗. Then, for every x ∈ X, define
φ′(x) = nrst(φ∗(x)). Then we have the following two claims:

Claim 2. φ′ satisfies τ -ratio fairness.

Proof Let set of points having protected attribute value ℓ in cluster c∗ ∈ C∗ be nℓ(c
∗).

Since (C∗, φ∗) satisfy τ -ratio fairness we have | nℓ(c
∗) | ≥ τℓnℓ ∀c∗ ∈ C∗. For any

center c ∈ C, let N(c) = {c∗ ∈ C∗ : nrst(c∗) = c} be all the centers in C∗ for which
c is the nearest center. Then: |{x ∈ Xℓ : φ′(x) = c}| = | ∪c∗∈N(c) nℓ(c

∗)| ≥ nℓτℓ that
is union over combined assignments for each center in N(c) and since each set of
assignments satisfy τ -ratio so union will also satisfy τ -ratio fairness. �

Claim 3. Lp(X,C, φ′) ≤ (α+ 2)OPT clust(I).

The proof of this claim uses triangle inequality and is exactly same as claim 5 of
Bera et al. (2019). �

A similar technique of converting fair clustering to a fair assignment problem
was proposed by Bera et al. (2019). However, Bera et al. (2019) proposed a linear
programming based solution to obtain the Balance fair assignment. Although,
the solution is theoretically strong, there are two issues with the algorithm.
Firstly, the time complexity is high (as can be seen from the experiments in
Section 7.4) and secondly, the solution obtained is not easy to interpret due to
the use of the complicated linear program. By interpretability we try to find the
answer to the following question – Why is a point assigned to a specific cluster
to maintain fairness? What criteria did the algorithm decide for a data-point
to go to a particular cluster? To answer these, our paper proposes a simple
round-robin algorithm for fair assignment problem with a time complexity of
O(kn log(n)).

4 Fair Round-robin Algorithm for Clustering
Over End (FRACOE)

Fair Round-robin Algorithm for Clustering Over End (FRACOE) algorithm
first runs a vanilla clustering algorithm to produce the initial clusters C = (C, φ)
and then make corrections as follows. The algorithm first checks if τ -ratio
fairness is met with the current allocation φ, in which case it returns φ̂ = φ
and Ĉ = C. If the assignment φ violates the τ -ratio fairness constraint then
the new assignment function φ̂ is computed according to FairAssignment

procedure in Algorithm 2.
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Algorithm 1: τ -FRACOE

Input: set of datapoints X, number of clusters k, fairness requirement
vector τ , range of protected attribute values m, clustering
objective norm p

Output: cluster centers Ĉ and assignment function φ̂
1 Solve the vanilla (k, p)-clustering problem and let (C, φ) be the solution

obtained.
if τ -ratio fairness is met then

2 return (C, φ)
else

3 (Ĉ, φ̂) = FairAssignment(C,X, k, τ,m, p, φ)

return (Ĉ, φ̂)
4 end

5 end

Algorithm 2 iteratively allocates the data points with respect to each
protected attribute value. Let Xℓ and nℓ denote the set of data points and the
number of data points having ℓ as the protected attribute value. The algorithm
allocates ⌊τℓ · nℓ⌋ number of points 3 to each cluster in a round-robin fashion
as follows. Let {c1, c2, . . . , ck} be a random ordering of the cluster centers. At
each round t, each center cj picks the point x of its preferred choice from Xℓ

i.e. φ̂(x) = j. Once the τℓ fraction of points are assigned to the centers, i.e.,
after τℓ · nℓ number of rounds, the allocation of remaining data points is set
to its original assignment φ. Note that this algorithm will certainly satisfy
τ -ratio fairness as, in the end, the algorithm assures that at least τℓ fraction of
points are allotted to each cluster for a protected attribute value ℓ. We defer
to theoretical results to assert the quality of the clusters.

FRACOE ensures fairness at the last step. The run time complexity of
Algorithm 2 is O(kn log(n)) as step 4 requires the data points to be sorted in
the increasing order of their distances with the cluster centers.

5 Theoretical Results

Our first result provides the relationship between the two notions of fairness,
namely τ -ratio fairness and the Balance fairness.

Theorem 4. Let a and b be two values of a given binary protected attribute
with na and nb being the total number of datapoints respectively. Suppose an
allocation returned by a clustering algorithm satisfies τ -ratio guarantee, then
the Balance of the given allocation is atleast τana

nb(1−kτb+τb)
.

3For the sake of simplicity we assume τℓ · nℓ ∈ N and ignore the floor notation.
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Algorithm 2: FairAssignment

Input: Cluster centers C, Set of datapoints X, Number of clusters k,
Fairness requirement vector τ , Range of protected attribute m,
clustering objective norm p, Assignment function φ

Output: Cluster centers Ĉ and assignment function φ̂
1 Fix a random ordering on centers and let the centers are numbered

from 1 to k with respect to this random ordering.
Initialize φ̂(x)← 0 ∀x ∈ X.
for ℓ← 1 to m do

2 nℓ ← number of datapoints having value of protected attribute ℓ.
Xℓ ← set of datapoints having value of protected attribute ℓ.
for t← 1 to τℓnℓ do

3 for j ← 1 to k do
4 xmin ← argminx∈Xℓ:φ̂(x)=0 d(x, cj)

φ̂(xmin) = j

5 end

6 end

7 For all x ∈ Xℓ such that φ̂(x) = 0, set φ̂(x) = φ(x)

8 end

9 Recompute the centers Ĉ with respect to the new allocation function φ̂.

Return (Ĉ, φ̂).

Proof Suppose an algorithm satisfies τ -ratio fairness then for any cluster Cj and
protected attribute value a, we have:

τana ≤
∑

xi∈X

I(φ(xi) = j)I(ρi = a) ≤ na(1− kτa + τa)

Here, the lower bound comes directly from the fairness definition and upper bound is
derived from the fact that all the clusters together will be allocated at least kτana

number of points. The extra points that a particular cluster can take is upper bounded
by na − knaτa. Thus, the Balance of the cluster with respect to the two values a and
b should follow

∑

xi∈X I(φ(xi) = j)I(ρi = a)
∑

xi∈X I(φ(xi) = j)I(ρi = b)
≥

τana

nb(1− kτb + τb)

�

We remark here that the notion of Balance which is concerned with allocation
of the points to clusters such that each cluster satisfies the dataset balance.
We now show that the τ -ratio guarantee strictly generalizes Balance as follows.
We first show that setting τi = 1/k for all attributes values i implies dataset
balance.

Corollary 5. For τa = τb =
1
k , τ -ratio fairness guarantee ensures the dataset

Balance for all the clusters.
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This result follows from trivially by replacing the attribute constraints in
Theorem 4. We now show that the converse is not true. That is, a clustering
satisfying Balance equal to dataset balance can result in arbitrary bad τ -ratio
fairness.

Lemma 6. There exists a fair clustering instance and an allocation of points
such that the allocation satisfies the Balance property and has arbitrarily low
τ -ratio fairness.

Proof Consider a fair clustering instance with k = 2 and let the protected attribute
be binary; call them a and b. Further, let na = nb = n/2. It is easy to see that
the dataset balance is 1. Consider the following allocation that satisfies the dataset
balance for each cluster. Cluster 1 is assigned two points, one belonging to each
attribute value and rest of the points are allocated to cluster 2. Note that for this
allocation, τa = τb = 1/na = 1/nb = 2/n. For large value of n this value can be made
arbitrarily small. �

Along with Theorem 4, Lemma 6 shows that τ -ratio is a more general
fairness notion than Balance. Apart from above technical difference, these
fairness notions differ conceptually in the way they induce fair clustering. The
Balance property requires a certain minimum representation ratio guarantee to
hold in each cluster without any additional constraint on relative size of each
of the cluster. This may lead to (potentially) skewed cluster sizes. Whereas
under τ -ratio the algorithm can appropriately control the minimum number of
points to be assigned to each cluster.

We now provide the theoretical guarantees of FRACOE with respect to
τ -ratio fairness. We begin by providing guarantees for a perfectly balanced
clusters i.e. τℓ = 1/k ∀ℓ ∈ [m].

5.1 Guarantees for FRACOE for τ={1/k}m

l=1

Theorem 7. Let k = 2 and τℓ =
1
k for all ℓ ∈ [m]. An allocation returned by

FRACOE guarantees τ -ratio fairness and satisfies 2-approximation guarantee
with respect to an optimal fair assignment upto an instance-dependent additive
constant.

Proof Correctness and Fairness: Clear from the construction of the algorithm.
Proof of (approximate) Optimality: We will prove 2-approximation with respect
to each value ℓ of protected attribute separately. Let nℓ be the number of data points
corresponding the value ℓ. Let c1 and c2 be the cluster centers and C1, C2 be the
optimal fair assignment of data points with respect to these centers.4

We now show that FRACOE(T ) ≤ 2 OPT assign(T ) + β, where FRACOE(T )
and OPT assign(T ) denote the objective value of the solution returned by FRACOE

and optimal assignment algorithm respectively on given instance T = (C,X). Let,

4Note that an optimal fair allocation need not be unique. Our result holds for any optimal fair
allocation.



Springer Nature 2021 LATEX template

14 Efficient Algorithms For Fair Clustering with a New Fairness Notion

β := 2 supx,y∈X d(x, y) be the diameter of the feature space. We begin with the
following useful definition.

Definition 8. Let C1 and C2 represent the set of points assigned to c1 and c2 by
optimal assignment algorithm. The ith round (i.e. assignments gi to c1 and hi to c2)
of FRACOE is called

• 1-bad if exactly one of 1) gi /∈ C1 and 2) hi /∈ C2 is true, and

• 2-bad if both 1) and 2) above are true.

Furthermore, a round is called bad if it is either 1-bad or 2-bad and called good
otherwise.

Let all incorrectly assigned points in a bad round be called bad assignments. We
use following convention to distinguish between different bad assignments. If gi /∈ C1
holds we refer to it as type 1 bad assignment i.e. if point gi is currently assigned
to C1 but should belong to optimal clustering C2. Similarly if hi /∈ C2 holds it is a
type 2 bad assignment i.e. hi should belong to optimal clustering C1 but is currently
assigned to c2. Hence a 2-bad round results in 2 bad assignments one of each i.e.
gi ∈ C2 and hi ∈ C1. Finally let B be the set of all bad rounds.

Definition 9. (Complementary Bad Pair) A pair of points w, z ∈ B such that w is
a bad point of type t and z is a bad point of type |3− t| is called a complimentary bad
pair if,

1) w and z are allocated in same round (i.e. a 2-bad round) or
2) if they are allocated in ith and jth 1-bad rounds respectively with i < j, then z

is the first bad point of type |3−t| which has not been assigned a complementary point.

Lemma 8. If nℓ is even, every bad point in the allocation returned by FRACOE

has a complementary point. If nℓ is odd, at most one bad point will be left without a
complementary point.

Proof Let B = B1 ∪ B2, where Bt is a set of t-bad rounds. Note that the claim is
trivially true if B1 = ∅. Hence, let |B1| > 0 and write B1 = B1,1 ∪B1,2. Here B1,t is
a 1-bad round that resulted in type t bad point. Let H1,t be the set of good points
of type t (i.e. correctly assigned to the center ct) allocated in 1-bad rounds. When
nℓ is even, |C1| = |C2| we have |B1,2|+ |H1,1| = |B1,1|+ |H1,2|. This is true because
one can ignore good rounds and 2-bad rounds as every 2-bad round can be converted
into a good round by switching the assignments. Further observe that, as FRACOE

distributes two points per round and each round assigns exactly one bad point, each
round must assign exactly one good point i.e. |H1,t| = |B1,(3−t)|. Together, we have

|B1,1| =
|B1,2|+|H1,1|

2 = |B1,2|. When nℓ is odd, we might have one additional point
left in the last 1-bad round that is not being assigned any complementary point. This
completes the proof of the lemma. �

We will bound the optimality of 1-bad rounds and 2-bad rounds separately.
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(a) Two 1-bad round pairs (b) Two 2-bad round pairs

Fig. 1: Different cases for k = 2. (a) Shows two 1-bad rounds with four points
such that x, y are good points and allocated to the optimal center by algorithm,
whereas gi and hi are bad points with an arrow showing the direction to the
optimal center from the assigned center. (b) Shows four bad points such that
gi, g

′
i are assigned to c1 but should belong to c2 in optimal clustering (the

arrow depicts the direction to optimal center). Similarly hi, h
′
i should belong

to c1 in optimal clustering.

Bounding 1-bad rounds:

When nℓ is even, from Lemma 8, there are even number of 1-bad rounds; two for
each complimentary bad pair. Let the 4 points of corresponding two 1-bad rounds be

Gi : (x, hi) and G
′

i : (gi, y) as shown in Fig. 1a. Note that x ∈ C1 and y ∈ C2 ie. both
are good points and gi /∈ C1, hi /∈ C2 ie. are bad points. Now, consider an instance
Ti = {C, {x, hi, gi, y}}, then OPT assign(Ti) = d(x, c1)+d(hi, c1)+d(gi, c2)+d(y, c2).

We consider, without loss of generality, that the round Gi takes place before G
′

i in
the execution of FRACOE . The proof is similar for the other case. First note that
since FRACOE allocated the point hi to cluster 2 while both the points gi and y
were available, we have

d(hi, c2) ≤ d(gi, c2) and d(hi, c2) ≤ d(y, c2) (6)

So,

FRACOE(Ti)

= d(x, c1) + d(hi, c2) + d(gi, c1) + d(y, c2)

≤ d(x, c1) + d(hi, c2) + d(gi, c2) + d(c1, c2) + d(y, c2) (triangle inequality)

≤ d(x, c1) + d(hi, c2) + d(gi, c2) + d(hi, c2) + d(hi, c1) + d(y, c2)

≤ d(x, c1) + d(y, c2) + d(gi, c2) + d(gi, c2) + d(hi, c1) + d(y, c2) ( Eqn. 6)

≤ 2 OPT assign(Ti)

If nℓ is odd, then all the other rounds can be bounded using the above cases
except one extra 1-bad round. Let the two points corresponding to this round Gi be
(gi, y). Thus, FRACOE(Ti) ≤ 2OPT assign(Ti) + β.Here β=2 supx,y∈X d(x, y) is the
diameter of the feature space.
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Bounding 2-bad rounds:

First assume that there are even number of 2-bad rounds. In this case consider the
pairs of consecutive 2-bad rounds as Gi : (gi, hi) and G

′

i = (g′i, h
′
i) with G

′

i bad round
followed by Gi (Fig. 1b). Note that gi, g

′
i ∈ C2 and hi, h

′
i ∈ C1. Now consider instance

Ti = {C, {gi, g
′
i, hi, h

′
i}}, then , OPT assign(Ti) = d(hi, c1) + d(h′i, c1) + d(gi, c2) +

d(g′i, c2). As a consequence of allocation rule used by FRACOE we have

d(gi, c1) ≤ d(hi, c1), d(g′i, c1) ≤ d(h′i, c1) and d(hi, c2) ≤ d(h′i, c2). (7)

Furthermore,

FRACOE(Ti) = d(gi, c1) + d(g′i, c1) + d(hi, c2) + d(h′i, c2)

≤ d(hi, c1) + d(h′i, c1) + d(g′i, c2) + d(h′i, c2) (using Eqn. 7)

≤ d(hi, c1) + d(h′i, c1) + d(g′i, c2) + d(h′i, c1) + d(c1, c2)
(triangle inequality)

≤ d(hi, c1) + d(h′i, c1) + d(g′i, c2) + d(h′i, c1) + d(gi, c1)

+ d(gi, c2) (triangle inequality)

≤ d(hi, c1) + d(h′i, c1) + d(g′i, c2) + d(h′i, c1) + d(hi, c1)

+ d(gi, c2) (Using Eqn. 7)

≤ 2d(hi, c1) + 2d(h′i, c1) + d(gi, c2) + d(g′i, c2)

≤ 2OPT assign(Ti)

If there are odd number of 2-bad rounds then, let G = (gi, hi) be the last 2-bad
round. It is easy to see that FRACOE(Ti)−OPT assign(Ti) = d(gi, c1) + d(hi, c2)−
d(gi, c2)− d(hi, c1) ≤ d(gi, c1) + d(hi, c2) ≤ β. Thus,

FRACOE(T ) =

{

∑r/2
i=1 FRACOE(Ti) if even no. of 2-bad rounds

∑⌊r/2⌋
i=1 FRACOE(Ti) + β Otherwise

≤ 2

⌊r/2⌋
∑

i=1

OPT assign(Ti) + β = 2OPT assign(T ) + β

Here, r is the number of 2-bad rounds. and β=2 supx,y∈X d(x, y) is the diameter of
the feature space. �

Corollary 9. For k = 2 and τℓ = 1
k for all ℓ ∈ [m], we have FRACOE(I)

≤ (2(α+2)OPT clust(I)+β)-approximate where α is approximation factor for
vanilla clustering problem for any given instance I.

The above corollary is a direct consequence of Lemma 1 and the fact that
FRACOE(Ĉ,X) ≤ FRACOE(C,X). The result can easily be extended for k
clusters to directly obtain 2k−1-approximate solution with respect to τ -ratio
fair assignment problem.

Theorem 10. When τℓ = 1
k for all ℓ ∈ [m], an allocation returned by

FRACOE for given centers and data points is τ -ratio fair and satisfies 2k−1-
approximation guarantee with respect to an optimal τ -ratio fair assignment
problem up to an instance-dependent additive constant.
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Proof In the previous proof we basically considered two length cycles. Two 1-bad
allocations resulted in 1 cycles and one 2-bad allocations resulted in another type
of cycles. When the number of clusters are greater than two, then any 2 ≤ q ≤ k
length cycles can be formed. Without loss of generality, let us denote {c1, c2, . . . , cq}

as the centers that are involved in forming such cycles. Further denote by set Xj
i

to be the set of points that are allotted to cluster i by FRACOE but should have
been allotted to cluster j in an optimal fair clustering. The q length cycle can then
be visualized in the Fig. 2. Since the cycle is formed with respect to these points, we
have |Xq

1 | = |X1
2 | = . . . = |Xq−1

q | The cost by FRACOE algorithm is then given as:
q

∑

i=2

∑

x∈Xi−1

i

d(x, ci) +
∑

x∈Xq
1

d(x, c1)

≤ 2





∑

x∈X1

2

d(x, c1) +
∑

x∈Xq
1

d(x, c2) + β



+

q
∑

i=3

∑

x∈Xi−1

i

d(x, ci)

≤ 2(
∑

x∈X1

2

d(x, c1) + β) + 22





∑

x∈X2

3

d(x, c2) +
∑

x∈Xq
1

d(x, c3) + β



+

q
∑

i=4

∑

x∈Xi−1

i

d(x, ci)

≤ 2q−1







q
∑

i=2

∑

x∈Xi−1

i

d(x, ci−1) +
∑

x∈Xq
1

d(x, cq)






+ 2qβ

Here, the first inequality follows by exchanging the points in X1
2 and Xq

1 using
Theorem 7. Since the maximum length cycle possible is k, we straight away get the
proof of 2k−1- approximation. �

Fig. 2: Visual representation of set Xj
i and cycle of length q for Theorem 10.

The arrow represents the direction from the assigned center to the center in
optimal clustering. Thus, for each set Xj

i we have ci as the currently assigned
center and cj as the center in optimal assignment.

Next, in contrast with Theorem 10 which guarantees a 4-approximation for
k = 3, we show that one can achieve a 2-approximation guarantee. The proof
of this result relies on explicit case analysis and, as the number of cases to be
solved increase exponentially with k, one needs a better proof technique for
larger values of k. We leave this analysis as an interesting future work.
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Theorem 11. For k=3 and τℓ = 1
k allocation returned by FRACOE with

arbitrary centers and data points is 2-approximate with respect to optimal τ -
ratio fair assignment.

Proof We will here find the approximation for k = 3 using number of possible cases
where one can have cycle of three length. Let the centers involved in three cycles be
denoted by ci, cj , and ck. Note that if there is only one cycle involving these three
centers, then it will lead to only constant factor approximation. The challenge is
when multiple such cycles are involved. Unlike k = 2 proof, here we bound the cost
corresponding to each cycle with respect to the cost of another cycle. The three cases
shown in Fig. 3 depicts multiple rounds when the two 3-length cycles can be formed.
In the figure, if ci is taking a point from cj it is denoted using an arrow from ci to cj .
It can further be shown that it is enough to consider these three cases. Further, let
Ti = {C, {xi, xj , xk, gi, gj , gk}} and T ′

i = {C, {yi, yj , yk, g
′
i, g

′
j , g

′
k}} denote the two

instances.

Fig. 3: Different use cases for 3-length cycle involving k=3 clusters (a) Case 1:
Two-three length cycle pair (Gi, Hi) and (G′

i, H
′
i) (b) Case 2: Second possibility

of two-three length cycle pair (Gi, Hi) and (G′
i, H

′
i) (c) Case 3:Three length

cycle pair (Gi, G
′
i).

Case 1: In this case we bound the rounds shown in Fig. 3(a). Let, one cycle
completes in rounds Gi, Hi and another cycle completes in rounds G′

i, H
′
i. Then,

OPT assign(Ti) = d(xi, cj) + d(xj , ck) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ci)

OPT assign(T
′
i ) = d(yi, cj) + d(yj , ck) + d(g′k, ck) + d(g′i, ci) + d(g′j , cj) + d(yk, ci)

Further,

FRACOE(Ti) = d(xi, ci) + d(xj , cj) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ck)

≤ d(g′i, ci) + d(g′j , cj) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ck)

Now,

d(xk, ck) ≤ d(xk, ci) + d(ci, ck) ≤ d(xk, ci) + d(ci, cj) + d(cj , ck)

≤ d(xk, ci) + d(xi, ci) + d(xi, cj) + d(xj , cj) + d(xj , ck)
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≤ d(xk, ci) + d(yk, ci) + d(xi, cj) + d(yi, cj) + d(xj , ck)

Combining the above two, we get:

FRACOE(Ti) ≤ OPT assign(Ti) +OPT assign(T
′
i )

Thus, the cost of each cycle can be bounded by the sum of optimal cost of its own
and the optimal cost of the next cycle. If we take sum over all such cycles, we will
get 2-approximation result plus a constant due to the last remaining cycle.

Case 2: In this case we bound the rounds shown in Fig. 3(b). The optimal
assignments in this case will be

OPT assign(Ti) = d(xi, cj) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(xj , ck) + d(xk, ci)

OPT assign(T
′

i ) = d(yi, cj) + d(g′j , cj) + d(g′k, ck) + d(g′i, ci) + d(yj , ck) + d(yk, ci)

Also, we know that

FRACOE(Ti) = d(xi, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(xj , cj) + d(xk, ck)

≤ d(g′i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(ci, cj)+

d(yj , ck)

≤ d(g′i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(xk, ci)+

d(xi, cj) + d(yj , ck)

Combining the above two, we get:

FRACOE(Ti) ≤ OPT assign(Gi, Hi) +OPT assign(G
′
i, H

′
i)

Case 3: Here again we will have two allocation rounds namely Gi, G
′

i as shown in
Fig. 3 (c). It is easy to see that for this case,

FRACOE(Gi) ≤ OPT assign(G
′
i)

This completes the proof for k = 3. �

The following proposition proves that 2-approximation guarantee is tight
with respect to FRACOE algorithm.

Proposition 12. There is an instance with arbitrary centers and data
points on which FRACOE achieves 2-approximation with respect to optimal
assignment.

Proof The worst case for any fair clustering instance can be the situation wherein
rather than choosing the points from the center’s own set of optimal points, it prefers
points from other centers. One such example is depicted in Fig. 4. In this example
we consider k centers, and for each of these centers we have set of n optimal points
that are at a negligible distance (say zero) and these set are denoted by Xi for center
ci except the last center ck. The set of optimal points for center ck is located at a
distance ∆ such that ∆= (k − 1)δ where δ is the distance between all the centers.
Now we will try to approximate the tightest bound on cost that one can achieve. In
optimal assignment each cluster center will take points from its optimal set of points.
Thus optimal cost can be summed up as

OPT assign =
∑

xi∈X1

d(xi, c1) +
∑

xi∈X2

d(xi, c2) + . . .+
∑

xi∈Xk

d(xi, ck)
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Fig. 4: The worst case example for fair clustering instance.

= 0 + 0 + 0 + n∆

If one uses round-robin based FRACOE to solve assignment problem then at the
start of t = 0th round, each of the set Xi has n points. Now since ∆ is quite large as
compared to δ so ck will prefer to chose points from the set of previous center ck−1.
Rest all centers will take points from their respective set of optimal points as those
points will be at the least cost of zero. This type of assignment will continue until all
the points in set Xk−1 gets exhausted. Thus the cost after n/2 rounds will be

Cost1 =
∑

xi∈X1

d(xi, c1) + . . .+
∑

xi∈Xk−1

d(xi, ck−1) +
∑

xi∈Xk−1

d(xi, ck−1)

= 0 + 0 + 0 +
nδ

2

Now since all the points in set Xk−1 are exhausted, both ck−1 and ck will prefer to
choose the points from set Xk−2. Other centers will still continue to choose the points
from their respective optimal sets. It should be noted that now n

2 points are left with
the center Xk−2 that are being distributed amongst 3 clusters. Such assignments will
be take place for next n

6 rounds and after that the set Xk−2 will get exhausted. The
cost incurred to different centers in such assignment will be

Cost2 =
∑

xi∈X1

d(xi, c1) + . . .+
∑

xi∈Xk−2

d(xi, ck−2) +
∑

xi∈Xk−2

d(xi, ck−1)

+
∑

xi∈Xk−2

d(xi, ck)

=
nδ

6
+

2nδ

6

=
3nδ

6
=

nδ

2

It is easy to see that the additional cost that is incurred at each phase will be nδ
2

until the only left out points are from Xk. The total number of such phases will be

k − 1. Thus, exhibiting a cost of
n(k−1)δ

2 . Further, at the last round all the points
from Xk need to be equally distributed amongst X1, X2, . . . , Xk, thus incurring the
total cost of ((k − 1)δ +∆+ (k − 2)δ +∆+ . . .+ δ +∆+∆)nk . Thus, the total cost
by FRACOE is given as:

CostFRACOE
=

n(k − 1)δ

2
+ ((k − 1)δ +∆+ (k − 2)δ +∆+ . . .+ δ +∆+∆)

n

k
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=
n(k − 1)δ

2
+

nk(k − 1)δ

2k
+

nk∆

k

= n(k − 1)δ + n∆

= 2n∆

�

Research gap: Theorem 10 suggests that the approximation ratio with
respect to the number of clusters k can be exponentially bad. However, our
experiments show—agreeing with our finding on small values of k(≤ 3)—
that the performance of FRACOE does not degrade with k. To assert a
2-approximation bound for general k a novel proof technique is needed and we
leave this analysis as an interesting future work. Here, we provide the following
conjecture.

Conjecture 13. FRACOE is 2-approximate with respect to optimal τ -ratio
fair assignment problem for any value of k.

We note that FRACOE uses vanilla k-means/k-median algorithm followed
by one round of fair assignment procedure. It remains to be shown that given
a convergence guarantee of a clustering algorithm, the output of the returned
by the FRACOE algorithm indeed converges to approximately optimal τ -ratio
allocation in finite time. Convergence guarantees of vanilla clustering algorithms
are well known in the literature (Bottou and Bengio (1994); Kalyanakrishnan
(2016); Krause (2016)). Since, fair assignment procedure performs corrections
for all available data points only once, FRACOE is bound to converge. This
gives us the following lemma.

Lemma 14. FRACOE algorithm converges.

5.2 Guarantees for FRACOE for general τ

We first begin with a simple observation that the problem of solving τ -ratio
fair assignment problem on instance T for given centers C and set of points X.
The problem can be divided into two subproblems:
1. Solving 1/k-ratio fair assignment problem on subset of points X1 ∈ X

such that |X1| =
∑

ℓ∈[m] k.τℓ.nℓ.

2. Solving optimal fair assignment problem on X2 ∈ X \ X1 without any
fairness constraint.

Let us denote the first instance by T 1/k and second instance with T 0.

Lemma 15. There exists two separate instances T 1/k with τ={1/k}mℓ=1 and
T 0 with τ={0}mℓ=1 such that fair assignment problem on instance T can be
divided into solving two problem on these two instances, i.e., OPT assign(T ) =
OPT assign(T

1/k) +OPT assign(T
0).
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Fig. 5: Set of pointsX divided into instance T 1/k and T 0. Further the instances

T
1/k
f and T 0

f are depicted in the same set of points X leading to formation of
regions A,B,C.

Proof The T basically ensures that each cluster should have atleast τℓ.nℓ number
of points. Rest all the points can be allocated in the optimal manner without any
fairness constraint. Therefore in optimal assignment, there exists a set XOPT

1 such
that |XOPT

1 | =
∑m

ℓ=1 τℓ.nℓ.k that satisfy the τ−ratio fairness with τℓ = 1/k ∀ℓ ∈ [m].
�

Let Xf
1 be the set of points that are allocated in line number 4 by Algorithm

2. Further, let T
1/k
f be an instance to τ -ratio fair assignment problem with

τ = {1/k}mℓ=1 and T 0
f be instance when τ={0}mℓ=1 by FRACOE (depicted in

Fig. 5). Then, our next lemma shows that the partition returned by FRACOE

is the optimal one.

Lemma 16. OPT assign(T
1/k
f ) + OPT assign(T

0
f ) ≤ OPT assign(T

1/k) +

OPT assign(T
0) for any partition T 1/k and T 0. Thus, OPT assign(T ) =

OPT assign(T
1/k
f ) +OPT assign(T

0
f ).

Proof We divide the complete set of points X into three regions A, B, and C as
shown in Fig. 5. The region B contains the points in the overlap of T 1/k and

T
1/k
f . Since, we are talking about the optimal assignment problem, these points

will be assigned to same centers and hence we can ignore these points. Let the

points allocated to any center cj in T
1/k
f by FRACOE be P = {x1, x2, x3, . . . , xmj}

and points allocated to cj in partition T 1/k be Q = {y1, y2, y3, . . . , ymj}. Let g be
a mapping function from P → Q. It maps any point xj assigned to center i to

some point yj assigned to same center when partition under consideration is T 1/k.

Then, we have OPT assign(T
1/k
f ) ≤ FRACOE(T

1/k
f ) =

∑k
j=1

∑mj

i=1 d(xi, cj) ≤
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∑k
j=1

∑mj

i=1 d(yi, cj) = OPT assign(T
1/k). This is because despite point yi being

available to center cj , it chose the point xi. Since other points have no such constraint,

we have, OPT assign(T
0
f ) ≤ OPT assign(T

0).
�

Theorem 17. For k=2, 3 and any general τ vector, an allocation returned
by FRACOE guarantees τ -ratio fairness and satisfies (2(α + 2)OPT clust)-
approximate guarantee with respect to an fair clustering problem where α is
approximation factor for vanilla clustering problem.

Proof With the help of Lemma 15 the cost of FRACOE on instance Tf can be
computed as,

FRACOE(T ) = FRACOE(T
1/k
f ) + FRACOE(T 0

f ) (8)

Now, from Section 5.1, FRACOE(T
1/k
f ) ≤ 2.OPT assign(T

1/k
f ).

Also, since T 0
f is solved for τ={0}mℓ=1 i.e. assignment is carried solely on the

basis of k−means clustering, so we have FRACOE(T 0
f ) = OPT assign(T

0
f ) ≤

2.OPT assign(T
0
f ).

So Equation 8 becomes,

FRACOE(T ) = 2.OPT assign(T
1/k
f ) + 2.OPT assign(T

0
f )

= 2.OPT assign(T ) (using Lemma 15)

= 2.(α+ 2)OPT clust(I) (Using Lemma 1)

�

6 Fair Round Robin Algorithm for Clustering
(FRAC) –A Heuristic Approach

We now propose another algorithm, a general version of FRACOE where the
fairness constraints are satisfied at each allocation round: Fair Round-Robin
Algorithm for Clustering FRAC (described in Algorithm 3). FRAC runs a
fair assignment problem at each iteration of a vanilla clustering algorithm.

It is theoretically hard to analyze FRAC as it is an in-processing algorithm
and each round’s allocation depends upon previous rounds, i.e., the rounds are
not independent of each other. Thus, we experimentally show the convergence of
both FRAC and FRACOE on real-world datasets. We also show that FRAC

achieves the best objective cost amongst all the available algorithms in the
literature. Since both FRACOE and FRAC solve the fair assignment problem
on the top of the vanilla clustering problem. Thus, one can use them to find
fair clustering for center-based approaches, i.e., k-means and k-median.

7 Experimental Result and Discussion

We validate the performance of proposed algorithms across many benchmark
datasets and compare it against the SOTA approaches. We observe in Section
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Algorithm 3: τ -FRAC

Input: Set of datapoints X, Number of clusters k, Fairness
requirement vector τ , Range of protected attribute m,
clustering objective norm p

Output: Cluster centers C and assignment function φ
1 Choose the random centers as C

while UntilConvergence do
2 for each xi ∈ X do
3 φ(xi) = argminm d(xi, cm)
4 end
5 (C, φ) = FairAssignment(C,X, k, τ,m, p, φ)

6 end

7.3.1 that the performance of FRAC is better than FRACOE in terms of
objective cost. It is also evident that FRAC applies the fairness constraints
after each round.

The bench marking datasets used in the study are
• Adult5 (Census)- The data set contains information of 32562 individuals
from the 1994 census, of which 21790 are males and 10771 are females.
We choose five attributes as feature set: age, fnlwgt, education num,
capital gain, hours per week; the binary-valued protected attribute is sex,
which is consistent with prior literature. The Balance in the dataset is 0.49.

• Bank6- The dataset consists of marketing campaign data of portuguese
bank. It has data of 41108 individuals, of which 24928 are married, 11568
are single, and 4612 are divorced. We choose six attributes as the feature
set: age, duration, campaign, cons.price.idx, euribor3m, nr.employed; the
ternary-valued feature martial status is chosen as the protected attribute
to be consistent with prior literature, resulting in a Balance of 0.18.

• Diabetes7- The dataset contains clinical records of 130 US hospitals
over ten years. There are 54708 and 47055 hospital records of males
and females, respectively. Consistent with the prior literature, only two
features: age, time in hospital are used for the study. Gender is treated as
the binary-valued protected attribute yielding a Balance of 0.86.

• Census II8- It is the largest dataset used in this study containing 2458285
records from of US 1990 census, out of which 1191601 are males, and
1266684 are females. We choose 24 attributes commonly used in prior
literature for this study. Sex is the binary-valued protected attribute. The
Balance in the dataset is 0.94.

The dataset characteristics are summarized in Table 1. We compare the
application of FRAC to k-means and k-median against the following baseline
and SOTA approaches

5https://archive.ics.uci.edu/ml/datasets/Adult
6https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
7https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
8https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
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Dataset

Name
#Cardinality

#Feature

Attributes

Protected

Attribute

Protected

Attribute

Cardinality

Protected Attribute

Composition

Dataset

Balance

Adult
(Census)

32562 5 gender binary
21790
males

10771
females

– 0.49

Bank 41108 6
marital
status

ternary
24928
married

11568
unmarried

4612
divorced

0.18

Diabetes 101763 2 gender binary
54708
males

47055
females

– 0.86

Census II 2458285 24 gender binary
1191601
males

1266684
females

– 0.94

Table 1: Characteristics for real-world datasets commonly used in evaluation
of fair clustering algorithms. Number of feature attributes exclude protected
attribute and for complete list of feature attributes see Section 7.

• Vanilla k-means: A Euclidean distance-based k-means algorithm that
does not incorporate fairness constraints

• Vanilla k-median: A Euclidean distance-based k-median algorithm that
does not incorporate fairness constraints.

• Bera et al. (2019): The approach solves the fair clustering problem
through an LP formulation. The fairness is added as an additional con-
straint in LP by bounding the minimum (minority protection see Definition
3 ) and maximum (restricted dominance see Definition 4) fraction of points
belonging to the particular protected group in each cluster. Due to the
high computational complexity of the k-median version of the approach,
we restrict the comparison to the k-means version. Furthermore, the algo-
rithm fails to converge in a reasonable time when the number of clusters
is greater than 10 for larger datasets.

• Ziko et al. (2021): This approach formulates a regularized optimization
function incorporating clustering objective and fairness error. It does not
allow the user to give an arbitrary fairness guarantee but computes the
optimal trade-off by tuning a hyper-parameter λ. We compare against
both the k-means and k-median version of the algorithm. We observed
that the hyper-parameter λ is extremely sensitive to the datasets and
the number of clusters. Tuning this hyper-parameter is computationally
expensive. We were able to tune value of λ in a reasonable amount of
time only for adult and bank datasets for k-means clustering for varying
number of clusters. Due to the added complexity of k-medians, we were
able to fine tune λ only for the adult dataset. For the other cases, we have
used the hyper-parameter value reported by Ziko et al. We have used the
same value across varying number of cluster centers. The paper does not
report any results for diabetes dataset; we have chosen the best λ value
over a single run of fine-tuning. This value is used across all experiments
related to diabetes dataset.

• Backurs et al. (2019): This approach computes the fair clusters using
fairlets in an efficient manner and is the extension to that of Chierichetti
et al. (2017). This approach could only be integrated with k-median
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clustering. Further, we could not compare against k-median version of
Chierichetti et al. (2017) due to high computational (O(n2)) and space
complexities. We offset this comparison using Backurs et al. (2019) that
has shown to result in better performance than Chierichetti et al. (2017).

We use the following popular metrics in the literature for measuring the
performance of the different approaches.

• Objective Cost: We use the squared euclidean distance (p = 2) as the
objective cost to estimate the cluster’s compactness (see Definition 1).

• Balance: The Balance is calculated using Definition 2
• Fairness Error This notion of fairness constraints is introduced by Ziko
et al. (2021). It is the Kullback-Leibler (KL) divergence between the
required protected group proportion τ and achieved proportion within the
clusters:

FE(C) =
∑

C∈C

∑

ℓ∈[m]

(

−τℓ log

(

qℓ
τℓ

))

where qℓ =

(

∑

xi∈C I(ρi = ℓ)
∑

xi∈X I(ρi = ℓ)

)

(9)

The τ vector in fairness error captures the target proportion in each cluster
for different protected groups ℓ ∈ [m]. It can be any arbitrary ℓ dimensional
vector. In the experimental setting with τ = 1/k, target reduces to dataset
proportion for different groups to evaluate all baselines. In a generalized setting,
when τ < 1/k, it is the same as the input vector τ for FRAC and FRACOE

algorithms that achieve τ -ratio fairness constraints. Similarly, in Bera et al.
(2019), the target vector is δ (refer Section 7.3.3 for details on the parameter
δ). We report the average and standard deviation of the performance measures
across 10 independent trials for every approach. The code for all the experiments
is publicly available9. We begin the empirical analysis of various approaches
under both k-means and k-median settings for a fixed value of k (=10) in line
with the previous literature. The top and bottom row in Fig. 6 summarize the
results obtained for the k-means and k-median settings respectively. The plots
for k-means clustering clearly reveal the ability of FRAC and FRACOE to
maintain the perfect Balance and zero fairness error. While Bera et al. (2019)
is also able to achieve similar fairness performance, FRAC, FRACOE has
significantly lower objective cost. Though Ziko et al. (2021) returns tighter
clusters ie., the objective cost is lower than FRAC, FRACOE and Bera et al.
(2019), the lower objective comes at the cost of poor performance on both the
fairness measures. It is also observed that the cost of fairness is relatively high
in the Census-II dataset, which has the largest number of points and features
among all datasets. It may be due to the shifting of an increased number of
points compared to vanilla clustering for satisfying the hard constraint.

In the k-median setting, it can been observed from the plots that Backurs
et al. (2019) results in fair clusters with high objective cost. On the other hand

9https://github.com/shivi98g/Fair-k-means-Clustering-via-Algorithmic-Fairness
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Fig. 6: The plot in the first row shows the variation in evaluation metrics for
k=10 clusters.The objective cost is scaled against vanilla objective cost. For
Ziko et al. the λ values for k-means and k-median are taken to be same as in
their paper. The second row comprises of plots for k-median setting on same k
value. It should be noted that Backur et al. does not work for bank dataset
which has ternary valued protected group. The target Balance of each dataset
is evident from the axes of the plot. (Best viewed in color)

Ziko et al. achieves better objective costs trading off for fairness. The k-median
version of FRAC, FRACOE obtains the least fairness error and a Balance

that is equal to the required dataset ratio (τℓ =
1
k ) while having comparable

objective cost.

7.1 Comparison across varying number of clusters (k)

In this experiment, we measure the performance of the k-means version of the
different approaches across all the datasets as the number of clusters increased
from 2 to 40. Fig. 7 summarises the results obtained for 2, 5, 10, 15, 20, 30, and
40 number of clusters on all datasets. It can be observed for all datasets that
Bera et al. (2019) maintain fairness constraints but with a much higher objective
cost and standard deviation. For the largest dataset, Census-II, results are
obtained for only k = 5 and k = 10 due to the large time complexity of solving
the LP problem. Another interesting observation is that the LP-solver fails to
return any solution for k = 2. When we allow fine tuning of hyperparameter
λ, it can be observed that the trend in the objective cost value for Ziko et al.
with increasing the number of clusters follows closely to that of the vanilla
k-means objective cost on the Adult and Bank datasets. However, there is a
significant deterioration in the Balance and fairness error measures. The results
of Ziko et al. when using the λ value reported in the paper for a particular k
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Fig. 7: The line plot shows variation of evaluation metrics over varying number
of cluster center for k-means setting. The hyper-tuned variation of Ziko et al.
is available only for adult and bank dataset due to expensive computational
requirements. For other datasets the hyper-parameter λ is taken same as that
is reported in Ziko et al. paper ie. λ=9000, 6000, 6000, 500000 for Adult, Bank,
Diabetes and Census II dataset respectively. On the similar reasons Bera et al.
results for Census-II are evaluated for k=5 and k=10. (Best viewed in color)

for all the number of clusters show higher objective costs as well as fairness
error. This indicates the sensitivity of the approach to the hyper-parameter λ.
The proposed approach FRAC gives the best result maintaining a relatively
low objective cost without compromising fairness. Similarly, FRACOE has
marginal cost difference from FRAC with same fairness guarantees over most
of the datasets showing efficacy of the approach.
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Fig. 8: The line plot shows variation of evaluation metrics over varying data set
size for k(=10)-means setting. The hyper-parameter λ=500000 is taken same
as that is reported in Ziko et al. paper for Census-II data set due to expensive
computational requirements. On the similar reasons Bera et al. results for
Census-II are evaluated up to 50 × 104. The target balance for Census-II is
evident from plot axes and complete data set size is 245.82× 104. (Best viewed
in color)

7.2 Comparison across varying data set sizes

In this experiment, we measure the performance of k(=10)-means version of
different approaches as number of points in data set increases in largest data
set – Census-II. Fig. 8. plots the results for evaluation metrics on data set
size increasing from 10000 to complete size of 2458285 points. The plot clearly
reveals that FRAC, FRACOE , and Bera et al. (2019) are able to maintain
strict fairness constraints. But Bera et al. (2019) is able to achieve fairness
guarantees at higher objective cost. Due to high computation requirements for
Bera et al. (2019) (refer Section 7.4), we limit the results up to 500, 000 number
of points. For Ziko et al. (2021), owning to high tuning time (refer run time
analysis section 7.4) we use the hyper-parameter value for Census-II same as
that reported in Ziko et al. (2021) ie. λ=500000 for complete data set. Though
initially Ziko et al. (2021) is having performance close to other approaches but
objective cost increases as data set size increases. One reason for this can be
the hyper-parameter value used for approach. It may also be noted that, as
the data set size reaches to completion, the objective cost improves to that of
vanilla clustering but this comes at significant deterioration in fairness metrics.
Both Balance and fairness error is quite far from the required target of 0.94
and 0.0 respectively. On the other hand our proposed algorithms FRAC and
FRACOE achieves strict fairness guarantees with slight increase in objective
cost from vanilla clustering. Among FRAC and FRACOE , both have marginal
difference in objective cost.

7.3 Additional Analysis on Proposed Algorithms

In this section we perform additional study on FRAC and FRACOE to
illustrate their effectiveness.
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7.3.1 FRAC vs FRACOE

While FRAC uses round-robin allocation after every clustering iteration,
FRACOE applies the round-robin allocation only at the end of clustering.
Both the approaches will result in a fair allocation, but might exhibit different
objective costs. We conduct an experiment under the k-means setting with
k = 10 to study the difference in the objective costs for the two approaches.
Like other experiments, we conduct this experiment over ten independent
runs and plot the mean objective cost (line) and standard deviation (shaded
region) at each iteration over different runs. The plots in Fig. 9 indicates that
FRAC has a lower objective cost at convergence than FRACOE . The plot
for FRACOE follows the same cost variation as that of vanilla k-means in
the initial phase, but at the end there is a sudden jump that overshoots the
cost of FRAC (to accommodate fairness constraints). Thus, applying fairness
constraints after every iteration is better than applying it only once at the end.
The plot also helps us experimentally visualize the convergence of both FRAC

and FRACOE algorithms. It may be observed that the change in objective
cost becomes negligible after a certain number of iterations.

Fig. 9: The cost variation over the iterations for different approaches in k-mean
setting is plotted for k=10.

7.3.2 Impact of order in which the centers pick the data
points

FRAC assumes an arbitrary order of the centers for allocating data points
at every iteration. We verify if the order in which the centers pick the data
points impacts the clustering objective cost. We vary the order of the centers
picking the data points for the k-mean clustering version with k = 10. We
report the objective cost variance computed across 100 permutations of the ten



Springer Nature 2021 LATEX template

Efficient Algorithms For Fair Clustering with a New Fairness Notion 31

(a) (b)

Fig. 10: (a) Bar plot shows the variance in objective cost over different 100
random permutations of converged centers returned by standard unfair k-
means clustering in FRACOE . (b) k-means runtime analysis of different SOTA
approaches on Adult dataset for k=10.

centers. Applying the permutations at every iteration in FRAC is an expensive
proposition. Hence we restrict the experiment to the FRACOE version. The
variance of the 100 final converged clustering objective costs (averaged over ten
trials) is presented in Fig. 10 (a). It is evident from the plot that the variance is
consistently extremely small for all datasets. Thus, we conclude that FRACOE

(and FRAC by extension) is invariant to the order in which the centers pick
the data points.

7.3.3 Comparison for τ -ratio on fixed number of clusters(k)

All the experiments till now considered the Balance to be same as the dataset
ratio (τℓ =

1
k ). But FRAC and FRACOE can be used to obtain any desired τ -

ratio fairness constraints other than dataset proportion. The results for other τ
vector values on k=10 number of clusters are reported in Table 2. We compare
the performance of the proposed approach against Bera et al. that also allows
for a desired τ -ratio fairness in a restrictive manner. Bera et al. reduces the
degree of freedom using δ parameter that controls the lower and upper bound
on number of points needed in each cluster belonging to a protected group.
Experimentally δ can take values only in terms of dataset proportion rℓ for
protected group ℓ ∈ [m], i.e. with lower bound as rℓ(1− δ) and upper bound
as rℓ

(1−δ) . Further δ needs to be same across all the protected groups making

it infeasible to achieve different lower bound for each protected group. Thus
Bera et al. cannot be used to have any general fairness constraints for each
protected group and can act as baseline only for certain τℓ values. In Table
2 we present results for the τ corresponding to δ=0.2, 0.8. Additionally, our
algorithms can achieve any generalized τ vectors like [0.25, 0.12], which makes
more sense in real-world applications like requiring at least 25% and 12% points
in each cluster for males and females. The objective cost obtained by FRAC
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and FRACOE is close to Bera et al. (2019) but, the work by Bera et al. (2019)
is extendible to multi-valued problem.

Dataset τ- vector
FRAC

Objective Cost

FRACOE

Objective Cost

Bera et al.

δ

Value
Objective Cost

Adult

<0.133, 0.066 > 9804.65 ± 221.05 9616.51 ± 111.49 0.8 9515.30 ± 19.94
<0.535, 0.264 > 10010.39 ± 211.27 10011.78 ± 239.73 0.2 9788.73 ± 23.32
<0.25, 0.12 > 9870.93 ± 261.24 9714.06 ± 157.45 Cannot be computed

Bank

<0.121, 0.056, 0.022 > 9210.38 ± 640.76 9043.51 ± 461.23 0.2 9588.30 ± 48.82
<0.485, 0.225, 0.089 > 10982.63 ± 1228.28 11317.61 ± 1310.32 0.8 8472.65 ± 37.30
<0.25, 0.10, 0.04 > 9548.68 ± 540.86 9465.35 ± 476.88 Cannot be computed

Table 2: k-means objective cost for τ -ratio for adult and bank dataset for
k=10 clusters.

7.4 Run-time Analysis

Finally, we compare the run-time of the different approaches for the k(=10)-
means clustering versions on the Adult dataset. The average run-time over 10
different runs is reported in Fig. 10 (b). It can be clearly seen that the run-time
of FRAC is significantly better than the fair SOTA approaches. The run-time
of Ziko et al. is quite high due to hyper-parameter tuning required to find
the best suited λ value. The run-time of Ziko et al. without hyper-parameter
tuning is comparable to vanilla clustering. However, without hyper-tuning it
has been observed from previous sections that Ziko et al.’s performance can
deteriorate significantly on the fairness constraints. FRACOE runtime has
marginal difference from vanilla clustering runtime since FRACOE applies a
single round of fair assignment following vanilla clustering. Bera et al. requires
double the time of FRAC. In general, LP formulations to fair clustering are
observed to have higher complexities. In contrast, FRAC is able to achieve
better objective costs and comparable fairness measures with significantly less
complexity.

Motivated by Kriegel et al. (2017), we further study the runtime behaviour
across varying number of datapoints and varying number of clusters. For the
scalablity study, we perform the analysis using Census-II as it is largest dataset.

7.4.1 Runtime comparison with number of cluster(k)

In this study we conduct experiment to find the variation in runtime as number
of clusters k varies from 2 to 40. We observe the results for 2, 5, 10, 15, 20, 30
and 40. From the results summarized in Fig. 11, we can observe that Bera et al.
(2019) is having significantly high execution time. Thus, we limit the results
upto k(=5, 10)-clustering. As pointed out in previous section Bera et al. (2019),
LP fails to converge for k=2.



Springer Nature 2021 LATEX template

Efficient Algorithms For Fair Clustering with a New Fairness Notion 33

Fig. 11: The line plot shows variation of runtime over varying number of
clusters(k) for k-means setting on complete dataset size. The hyper-parameter
λ=500000 is taken same as that is reported in Ziko et al. paper for Census-II
dataset due to expensive computational requirements. On the similar reasons
Bera et al. results for Census-II are evaluated for k=5 and k=10. For better
visualization the results are zoomed out for approaches other than Bera et al.
(Best viewed in color)

We can clearly see from the plots that FRACOE has runtime close to
vanilla clustering. For Ziko et al. (2021), even in untuned version (using same
hyper-parameter as reported in Ziko et al. paper) we still have runtime close to
proposed FRAC. Tuning the hyper-parameter will result in significant increase
in overall runtime for the approach as observed in Section 7.4.

7.4.2 Runtime comparison across varying data set size

We study the scalability of different approaches to increase in the data set
size. We conduct experiments using the largest data set, Census-II at k=10.
For Bera et al. (2019), plots in Fig. 12 reveal that the run time significantly
increases with 50× 104 points in the data set. So we limit the study up to this
size. The run time for untuned Ziko et al. (2021) is close to vanilla clustering.
However, the gap starts to widen after a certain number of data points. On the
contrary, our proposed FRACOE follows a similar trend close to vanilla and
does not deteriorate with the varying number of clusters showing the efficiency
of FRACOE . The FRAC being an in-processing heuristic has a run time larger
than vanilla clustering but is comparable to untuned Ziko et al. (2021). Tuning
the Ziko et al. (2021) will result in additional overhead.

8 Discussion

We proposed a novel τ -ratio fairness notion. The new notion generalizes the
existing Balance notion and admits an efficient round-robin algorithm to the
corresponding fair assignment problem. We also showed that our proposed
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Fig. 12: The line plot shows variation of runtime over varying dataset size
(upto complete dataset size of 245.82×104) for k=10-means setting. The hyper-
parameter λ=500000 is taken same as that is reported in Ziko et al. paper
for Census-II dataset due to expensive computational requirements. On the
similar reasons Bera et al. results for Census-II are evaluated for dataset size
of 10, 000, 50, 000 and 100000. (Best viewed in color)

algorithm, FRACOE , (i) achieves 2(α+ 2)-approximate solution up to three
clusters, and (ii) achieves 2k−1(α+2)-approximate guarantees to general k with
τ=1/k. Current proof techniques for k ≤ 3 requires intricate case analysis which
becomes intractable for larger k. However, our experiments show that FRAC

outperforms SOTA approaches in terms of objective cost and fairness measures
even for k >3. We also proof the cost approximation for general τ vector and
show convergence analysis for FRACOE . An immediate future direction is to
analytically prove 2(α+ 2)-approximation guarantee for general k.

It is worth noting here that the τ -ratio fairness ensures the Balance property.
However, if one is to use Balance as a constraint, one could get a better
approximation guarantee. Surprisingly, we observe from our experiments that
this is not the case. We leave the theoretical and experimental analysis of these
two notions of fairness in the presence of large data as an interesting future
work. Apart from above mentioned immediate future directions, extending the
current work to multi-valued multiple protected attributes similar to the one
proposed by Bera et al. (2019), or achieving the notion of individual fairness
along while maintaining group fairness are also interesting research problems.
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