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Abstract 12 

The efficiency of steel and structural synthetic fibers on the performance improvement of 13 

prestressed concrete (PSC) beams under combined flexure-shear is studied. Results of eleven 14 

PSC beams tested at a shear span (a) to depth (d) ratio of five are presented. Discrete steel and 15 

macro synthetic structural polyolefin fibers of varying dosages of 0.35%, 0.7% and 1.0% by 16 

volume of concrete were used.  The effect of fiber addition on overall load – displacement, load- 17 

strain, and strain energy absorption capacity of PSC beams is analysed. Other parameters such 18 

as shear span to depth ratio (a/d), compressive strength of concrete, prestressing reinforcement 19 

ratio were kept constant. The test results portray that the addition of steel fibers stiffens the post 20 

cracking response, increases the strain energy absorption capacity more efficiently when 21 

compared to macro synthetic fibers (Polyolefin). The failure mode changed from less ductile 22 

flexure-shear to more ductile flexure dominant mode at 0.35% and 0.70% volumetric dosage of 23 

steel and synthetic fibers, respectively. The strain energy absorption capacity increased by more 24 

than 100% at 1.0% fiber addition for both steel and macro-synthetic fibers. 25 
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1. INTRODUCTION 28 

Fiber Reinforced Concrete (FRC) is tailored by addition of randomly oriented fibers to plain 29 

concrete. FRC has gained popularity in the recent years due to advantages like (i) ease of 30 

availability of fibers; (ii) better performance in serviceability regime; and (iii) improved 31 

mechanical properties in compression, tension, flexure, and shear when compared to the 32 

conventional concrete [1-5]. Apart from crack resistance, steel fibers can also be used to replace 33 

the conventional transverse reinforcement in the concrete [6,7].  Though steel fibers have 34 

superior mechanical properties compared to that of synthetic fibers, they decrease the 35 

workability and creates balling effect at higher dosage. On the other hand, structural synthetic 36 

fibers, being non-corrosive and malleable, have gained attention in the recent years. They are 37 

also used for reinforcing cementitious materials to control the crack propagation and improve 38 

the overall structural performance [8,9].  Polyolefin fibers comes under the category of synthetic 39 

fibers. Polyolefin fibers are categorized as micro-synthetic and macro-synthetic (structural) 40 

fibers. Micro-synthetic fibers are typically 12 mm long and 0.018 mm in diameter, whereas the 41 

macro ones are significantly larger with 40-50 mm in length and 0.3-1.5 mm in diameter.  42 

 43 

Number of previous work have focused on the behaviour of fiber reinforced concrete under 44 

flexure and shear loadings. Sahoo and Kumar [10] tested steel reinforced concrete beams and 45 

observed increase in deformability (ductility) and decrease in crack widths. Few researchers 46 

[11,12] have used fibers as secondary reinforcement for the concrete elements to improve the 47 

shear performance. Some works in the past have [13-15] focused on the influence of fibers on 48 

the fresh and hardened properties as well as on the shear capacity of prestressed beams. 49 

Yazdanbakhsh et al. [16] carried out analytical studies to predict the shear capacity of synthetic 50 

fiber reinforced concrete beams based on the model originally developed for steel fiber 51 

reinforcement. They noted that shear capacities from RILEM 162-TDF [17] recommendations 52 
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were found to be more conservative than Fib-MC2010 [18] for synthetic fiber reinforced beams. 53 

Alhozaimy et al. [19] investigated the mechanical properties and effects of pozzolanic materials 54 

on concrete reinforced with fibrillated polypropylene fibers of low volume fractions (< 0.3%). 55 

They reported that fiber content variation has no significant effect on the compressive and 56 

flexural strength of FRC but improved its toughness and impact resistance.   57 

 58 

Thomas and Ramaswamy [20] noted that addition of fibers reduced the crack width of 59 

prestressed concrete beams.  Harajli [21] noted that the presence of fibers enhanced the bond 60 

strength of rebars and reduced its bond degradation. Sahoo and Sharma [22] observed that 61 

flexural capacity did not improve significantly when more than 0.5% by volume of steel fibers 62 

were added to reinforced concrete beams with and without stirrups. Tiberti et al. [23] presented 63 

dependency of crack propagation on the concrete strength of steel fiber reinforced concrete 64 

(SFRC). They noted that steel fibers are more effective when used in high strength concrete 65 

(HSC) than in normal strength concrete (NSC). Ramzi and Omer [24] studied the flexural 66 

strength of under-reinforced and over-reinforced concrete T-beams with steel fiber. Their 67 

results indicated that presence of steel fibers improved the ultimate strength and reduced the 68 

crack width. Abbas and Khan [25] carried out pull-out tests on SFRC beams and concluded that 69 

the ultimate pull-out load depends on the fiber size and its embedment length.  70 

 71 

Yoo et al. [26] presented the effects of strength, fiber content and strain-rate on flexural response 72 

of SFRC under quasi-static and impact loads. Banthia and Sappakittipakorn [27] investigated 73 

the toughness enhancement of SFRC through fiber hybridization. They noted that flexural 74 

toughness and deflection hardening properties were improved. To account for the post peak 75 

response of different cement based materials Fantilli et al. [28] defined a unique function. Amin 76 

et al. [29] reported the material characterisation of macro synthetic fiber reinforced concrete 77 
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through a series of tension tests. The authors concluded that the degree of variability in the 78 

results is lowest in case of round panel tests compared to uniaxial tension tests. Though number 79 

of previous work have focused on fiber reinforced concrete, the effect of structural macro-80 

synthetic fiber reinforcement on the behaviour of high strength prestressed concrete beams has 81 

not been explored adequately. 82 

 83 

2.0 RESEARCH SIGNIFICANCE 84 

Most of the previous studies focused on behaviour of concrete elements reinforced with steel 85 

fibers and fibrillated or micro-synthetic fibers. Inadequate information is available on the 86 

performance of structural synthetic fibers (polyolefin) on flexure, shear and flexure-shear 87 

behaviour of prestressed concrete beams and is the focus of this investigation. Thus, this study 88 

aims at the following: (i) study the effect of different dosages of steel and synthetic fibers on 89 

flexure-shear behaviour of prestressed concrete beams, and (ii) study the crack propagation, 90 

strain reduction of prestressing strand and assess the change in failure modes at different fiber 91 

additions. 92 

 93 

3.0 EXPERIMENTAL INVESTIGATION 94 

3.1 Test specimens 95 

The experimental program includes casting and testing of full-scale prestressed concrete beams 96 

of rectangular cross section (200 mm x 300 mm) and length of 3500 mm. The beams were 97 

reinforced with two prestressing strands of 12.7 mm diameter corresponding to prestressing 98 

steel reinforcement ratio of 0.4%. Jacking force is applied to each of the strands to obtain an 99 

initial prestressing strain of 0.004 in accordance with IS 1343 [30]. The specimens were divided 100 

into three series: beams made of plain concrete (Control), beams made of steel fiber reinforced 101 

concrete (SF series) and beams made of polyolefin fiber reinforced concrete (PO Series). Each 102 
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of the SF and PO series were further categorised based on the fiber dosage. The nomenclature 103 

details of different series used in the study are presented in Table 1. 104 

 105 

Table 1: Details of concrete series 106 

  Type of fiber Dosage of fiber 

(%)   Steel Polyolefin 

Series 

Control Control 0.00 

SF35 PO35 0.35 

SF70 PO70 0.70 

SF100 PO100 1.00 

 107 

 108 

Table 2: Mix Design Details 109 

Concrete 

Quantities in kg/m3 

Aggregate 
C F W HRWR SF PO 

20 mm 10 mm CSS NRS 

Control 

754.0 355.0 415.0 313.0 428.0 22.0 165.0 2.5 

- - 

SF35 27.47 - 

SF70 54.94 - 

SF100 78.50 - 

PO35 - 3.18 

PO70 - 6.37 

PO100 - 9.10 

CSS - Crushed Stone Sand, NRS - Natural River Sand, C – Cement, F – Flyash, W – Water, 110 

HRWR – High Range Water Reducing admixture, SF – Steel Fiber, PO- Polyolefin Fiber 111 

 112 

 113 
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 114 

3.2. Material Properties 115 

Concrete mix design was developed as per IS 10262-2009 [31] with a target compressive 116 

strength of 58 MPa. Table 2  presents the mix details. Coarse aggregate blended of 10 mm and 117 

20 mm aggregate, crushed stone sand, natural river sand, flyash and high range water reducing 118 

admixture (HRWR) were used to achieve workable concrete of 58 MPa strength. Addition of 119 

fibers inversely affected the workability of concrete mix. The compressive strength of concrete 120 

cubes and cylinders tested on 28th day is reported in Error! Not a valid bookmark self-121 

reference.. The prestressing strands with seven wired low relaxation steel (12.7 mm diameter, 122 

effective area of 99.7 mm2) were used as reinforcement. Prestressing strands with a constant 123 

eccentricity (e) of 100 mm was used resulting in straight profile of the strands. Tensile strength 124 

and modulus of elasticity of the strands were measured to be 1860 MPa and 196.5 GPa, 125 

respectively from the coupon tests. The hooked end steel fibers and macro- synthetic polyolefin 126 

fibers were used in developing concrete mixes of SF and PO series respectively. The shapes 127 

and various properties of the fibers used are presented in Fig. 1 and Table 4 respectively. 128 

 129 

Table 3: Compressive strength of concrete 130 

Specimen 

Average Compressive strength 

(MPa) [SD] Specimen 

Average Compressive 

strength (MPa) [SD] 

Cube Cylinder Cube Cylinder 

Control 65[2.42] 43[1.85] Control 65[2.42] 43[1.85] 

SF35 62 [0.75] 47[2.40] PO35 67[2.82] 48[2.44] 

SF70 61[0.15] 47[4.21] PO70 74[1.33] 50[4.72] 

SF100 63 [0.30] 50[3.98] PO100 72[2.05] 46[4.30] 

[SD] – Standard Deviation 131 

  132 
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 133 
Fig. 1: Fibers (a) Steel Fiber and (b) Structural Synthetic Fibers 134 

 135 

Table 4:  Properties of Steel and Polyolefin Fibers 136 

 Fiber Type 

Properties Steel Polyolefin 

Specific gravity 7.85 0.91 

Length (mm) 30 50 

Tensile strength (MPa) 1000 618 

Modulus of elasticity (GPa) 200 10 

Diameter (mm) 0.6 0.5 

Aspect ratio 50 100 

 137 

3.3 Test Setup and Instrumentation 138 

The shear span to depth ratio (a/d) of five is considered to simulate the flexure-shear behavior. 139 

Kani [32] investigated the effect of different a/d ratios on the behaviour of RC beams. The 140 

author found that the beams had flexure dominant behaviour above a/d ratio of 6.  The author 141 

also observed that the a/d ratio of 2.5 is a transition point below which the beams are shear 142 

critical and the corresponding bending moment at failure was found to be minimum. Below the 143 

a/d ratio of 2.5, the beam is shown to develop an arch action with a considerable reserve strength 144 

beyond the first cracking point. Similarly, for a/d ratio between 2.5 and 6, the failure was due 145 

to sudden diagonal shear tension and flexure-shear mode. Therefore, a higher a/d ratio of five 146 

is considered to study the influence of steel and synthetic fibers on the flexure-shear behaviour. 147 

All the beams were tested in a four-point bending configuration. The beams were simply 148 

supported on I-beams. The horizontal movement of the support is restrained. The specimens are 149 
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not restrained as they are simply supported and the same is portrayed in the Figure 2. Support 150 

width is expected to have minimal influence on the behaviour as the specimens are tested at 151 

higher a/d ratio of 5. The effect of different a/d ratio, support conditions, cross section details 152 

and size effect on the behaviour of fiber reinforced prestressed concrete beams would be 153 

interesting and is scope for further work. Eleven beams were cast with different fiber dosages 154 

of 0.00%, 0.35%, 0.70% and 1.00% and were water-cured for a period of 28 days at room 155 

temperature. The beam schematic and loading configuration is presented in the Fig. 2. 156 

 157 
Fig. 2: Schematic Details of the Test specimen 158 

 159 

The beams were tested using a servo controlled hydraulic MTS actuator of 250 kN capacity. 160 

Load from the actuator was transferred to the specimen through spreader beam and then to the 161 

two I-beams (to obtain four-point bending). The test setup is presented in Fig. 3. Loading was 162 

applied monotonically in displacement control mode at a rate of 0.05 mm/sec. Loading was 163 

paused at every 10 kN intervals to mark the crack propagation and study the failure progression. 164 

All the specimen displacements were recorded using Linear Variable Displacement Transducers 165 

(LVDTs). LVDTs were positioned at specific locations (at mid span and at a distance of one 166 

third of the span from support) along the length of the beam to capture the entire curvature 167 

profile during testing. Strain gauges of 5 mm gauge length were instrumented on the 168 
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prestressing strands at mid-span location to capture the strain variation during testing. Data 169 

acquisition system (DAQ) was used to acquire and store the data from external instrumentation. 170 

 171 

 172 

1. 250 kN MTS Actuator; 2.HBM DAQ system; 3.Camera; 4. DAQ Controller; 5. MTS 173 

Controls system; 6. Light source; 7. Test Specimen 174 

Fig. 3: Test setup and Instrumentations 175 

 176 

 
Fig. 4: Fracture test setup 
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Fig. 5: Load-CMOD response of fiber reinforced specimen 

 177 

4.0 TEST RESULTS AND DISCUSSION 178 

4.1 Fracture behaviour of fiber reinforced concrete (FRC) 179 

As part of a companion study, fracture tests were conducted on steel and polyolefin reinforced 180 

beam samples under flexure to understand the efficiency of steel and synthetic fibers with 1% 181 

volume fraction of fibers. The test setup and results are presented in Fig. 4, 5. Load vs crack 182 

mouth opening displacement (CMOD) response of fiber-reinforced specimens with steel (SF 183 

100) and synthetic fibers (PO 100) is shown in Fig. 5.   The load vs CMOD curves indicate that 184 

steel fiber restrict the crack opening more efficiently than that of macro-synthetic fiber at same 185 

fiber dosages. The load drop after the peak load is minimum in case of steel fiber reinforced 186 

specimen due higher elastic modulus and tensile strength of steel fiber. 187 

 188 

4.2 Load-deflection behaviour 189 

The load vs mid-span displacement of beams are compared in Fig. to understand the 190 

contribution of steel and polyolefin fiber towards the load resistance. The load displacement 191 

curves presented in Fig. depicts the behaviour of the specimens with particular dosage/type of 192 

fibers to that of the control specimen (without fibers). Details such as overall behaviour of 193 
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beams in terms of cracking load, post cracking stiffness, peak load, displacement at failure and 194 

failure mode are summarized in Table 5. Though two specimens of SF100 series were cast, one 195 

of the specimens had honeycombing due to improper compaction and is discarded for further 196 

comparisons. In addition, one of the PO100 specimens had an instrumentation error and hence 197 

is not used for comparison of load-displacement curves. For the control specimens, the first 198 

crack appeared on the tension fibers near the loading point at a load of 60 kN (Table 6). After 199 

cracking, stiffness degradation was observed due to formation of multiple cracks. Finally, the 200 

specimen failed in flexure-shear mode at a peak load of 130 kN corresponding to a displacement 201 

of 52 mm. The strands just yielded before reaching peak load due to low reinforcement ratio 202 

used in the beams.  203 

 204 

Fig. 6a shows the load displacement behaviour of beams with 0.35% fiber dosage. Both the 205 

beams with steel and polyolefin exhibited similar behaviour before cracking. Post-cracking 206 

stiffness increased in fiber-reinforced beams as compared to post cracking stiffness of control 207 

specimen. This increase in stiffness is mainly due to contribution of fibers in crack bridging. 208 

However, the steel fiber specimen exhibited stiffer post-cracking response than the specimen 209 

with synthetic (polyolefin) fibers. Both the control and synthetic fiber reinforced specimens 210 

(PO-35) cracked at 60 kN while the steel fiber reinforced specimen (SF35) cracked at 69 kN. 211 

The addition of steel fiber (0.35%) improved the cracking load and post-cracking stiffness by 212 

15% and 36% respectively when compared to synthetic fibers (0.35%) (Fig. 6a). A peak load 213 

increment of 4.8% was observed in SF35 when compared to PO35. Post-peak behaviour was 214 

almost similar for both steel and synthetic fibers at 0.35% dosage. Steel fiber reinforced 215 

specimens (SF35) failed in flexure mode while the specimens reinforced with synthetic fibers 216 

(PO35) failed in flexure-shear mode. In this study, if the final failure of beam is due to shear 217 

tension cracking after the yielding of prestressing strand, it is defined as the flexure-shear mode.  218 

 219 
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The comparison of behaviour at 0.7% fiber dosage exhibited by SF70 and PO70 is depicted in 220 

Fig. 6b.  In comparison to control specimen, due to the higher modulus of steel fibers, SF 221 

specimens exhibited a higher cracking load when compared to the PO specimens (Table 5). 222 

Average post-cracking stiffness of the SF70 was found to be 12% more than that of PO70 (Fig. 223 

6b).  Though diagonal shear cracks formed in both the SF and PO specimens (0.70%), the fibers 224 

were effective in arresting the propagation of shear cracks, which resulted in the formation of 225 

flexural cracks. Due to limitation in stroke capacity of the actuator, the test was terminated when 226 

the actuator displacement reached vicinity of 100 mm (for specimens SF70 and PO70). The 227 

average peak load for SF70 and PO70 was observed to be 147 kN and 140 kN, respectively. In 228 

case of beams with 1.0% fiber dosage, the cracking load of steel fiber specimen (SF100) was 229 

70 kN (Fig. 6c). Soon-after cracking, in comparison to synthetic fibers, steel fibers contributed 230 

more efficiently to crack arresting. This is mainly due to higher modulus of elasticity of the 231 

steel fibers. The synthetic fiber specimen (PO100) reached a peak load of 135 kN. Presence of 232 

steel fibers of same volume improved the peak load by 17% and post-cracking stiffness by 46% 233 

when compared to the synthetic fiber reinforced specimen. The testing was terminated for 234 

SF100-2 and PO100-1 when the mid-span deflection reached 100 mm due to limitation in the 235 

stroke capacity of the actuator.  236 

  

(a) Beams with 0.35% dosage of fibers (b) Beams with 0.7% dosage of fibers 
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(c) Beams with 1.0% dosage of fibers 

  
(d) Beams with Steel fibers (e) Beams with synthetic fibers 

 

Fig. 6: Comparison of Load-Deflection behaviour 

 

The difference in the behaviour with steel and synthetic fibers can be clearly noticed at high fiber dosage 

of 1.0% (Fig. 6c). Steel fibers were more efficient in improving the serviceability performance. Fig. 6 

(d, e) indicates the behaviour of PSC beams with steel and synthetic fibers separately. The 

experimentally observed cracking and peak moment was verified by RILEM 162-TDF[17] 

recommendations as shown in Table 5. RILEM 162-TDF[17] approach was used for both steel and 

synthetic fiber specimens by suitably modifying the tensile stress strain curves from literature [29,33]. 

More details on the RILEM calculations of fiber reinforced prestressed concrete beams can be found 

elsewhere [29, 33,34]. 



  

14 

 

 

 
(a) Control Beam (Flexure-Shear Mode) 

 

(b) SF35 (Flexure Mode) (c) PO35 (Flexure Shear Mode) 

(d) SF70 (Flexure Mode) (e) PO70 (Flexure Mode) 

(f) SF100 (Flexure Mode) (g) PO100 (Flexure Mode) 

Fig. 7: Failure modes of PSC beam with steel and synthetic fiber 237 

 238 

4.3 Crack Distribution and Failure Modes 239 

The crack distribution and failure modes of the tested specimens is detailed below. Crack 240 

propagation of different specimens at three levels of loading is presented in Table 6. Control 241 

beam had few flexural cracks between the loading points. At higher loads, the prestressing 242 

strands reached their yielding strain, on further increase in loads, flexural crack converted to 243 

shear and propagated through aggregates leading to sudden energy release at failure. The 244 

flexure-shear failure mode of control specimen is presented in Fig. 7a and Table 6. Beams with 245 

low dosage (0.35%) of fibers exhibited multiple flexure cracks and better crack distribution. 246 
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Steel fibers arrested the propagation of shear crack and changed the failure of specimens (SF35) 247 

to flexure dominant mode (Fig. 7b, Table 6). However, PO35 specimens still failed in flexure-248 

shear mode (Fig. 7c) due to lesser efficiency of synthetic fibers in arresting the shear cracks.  249 

 250 

In the specimens with moderate dosage (0.7%) of fibers, crack bridging effect of fibers was 251 

evident in steel specimens (SF70). Steel fiber reinforced specimens exhibited flexure dominant 252 

behaviour (Fig. 7d). In synthetic fiber reinforced specimen (PO70), the propagation of shear 253 

cracks was arrested and led to flexure dominant behaviour (Fig. 7e, Table 6).  Both PO100 and 254 

SF100 specimen had numerous flexural cracks and experienced good amount of inelastic 255 

deformation. Addition of steel at high fiber dosage resulted in better distribution of flexural 256 

cracks and exhibited significant crack bridging (Fig. 7f,g). Addition of fibers improved the 257 

ductility as the fibers in the matrix formed a closed network, which hindered the formation of 258 

crack and its propagation. Even during the crack growth, the fibers in the matrix bridged the 259 

crack and prevented its further propagation. Thus, the presence of the fibers bridges the cracked 260 

surfaces and provides a restricting effect to the crack path. This increases the possibility of 261 

redistribution of stresses in the fracture process and improves the ductility of the specimen. 262 
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Table 5: Summary of test results 263 

Parameters for Comparison  
Control SF35-1 SF35-2 PO35-1 PO35-2 SF70-1 SF70-2 PO70-1 PO70-2 SF100-2 PO100-1 

0.00% 0.35% 0.70% 1.00% 

Cracking load, Pcr (kN) 60 68 70 60 60 70 67 60 60 70 60 

Deflection at Cracking load, Δcr (mm) 4.76 3.02 3.28 3.02 3.22 4.03 4.02 2.45 2.813 4.66 2.81 

Peak load, Ppl (kN) 130.0 143.0 143.5 136.6 136.8 148.6 146 141.1 139.7 159 135.1 

Increase in Ppl (%) - 10.0 10.4 5.1 5.2 14.3 12.3 8.5 7.5 22.3 3.9 

Deflection at peak load, Δpl (mm) 42.7 34.4 29.6 43.3 36.5 45.0 32.4 29.0 38.5 36.6 39.1 

Mid-span deflection at failure (Δf) (mm) 51.7 97.5 78.8 52 73.5 99.0* 97.8* 99.9* 99.2* 99.7* 96.1* 

Post cracking stiffness 

 (kN/mm) 
2.06 2.903 3.457 1.962 2.710 3.076 3.335 3.133 2.572 3.871 2.656 

Increase in post cracking stiffness (%) - 41.0 68.0 - 31.6 49.4 62.0 52.1 25.0 88.0 29.0 

Strain Energy (Joule) 5481 9309 10989 5758 8464 11534 11774 12000 11291 13239 11453 

% increase in strain energy - 69.8 100.5 5.1 54.4 110.4 114.8 118.9 106.0 141.5 109.0 Peak load Ratio (𝑆𝐹𝑃𝑂)  1.05 1.05 1.17 Post cracking stiffness ratio (𝑆𝐹𝑃𝑂)  1.36 1.12 1.46 

Cracking Moment(kN-m) (Experimental) 37.50 43.12 37.50 42.81 37.5 43.75 37.5 

Peak Moment(kN-m) (Experimental) 81.25 89.53 85.43 92.06 87.75 99.37 84.43 

Cracking Moment(kN-m) (RILEM 162-TDF) 32.00 34.60 38.92 37.00 37.75 39.50 36.68 

Peak Moment(kN-m) (RILEM 162-TDF) 81.00 86.00 82.96 90.00 85.62 95.00 88.16 

Note:   264 

 SF and PO are specimens containing steel and polyolefin fibers, respectively 265 

 * Test was terminated at 100 mm due to limitation in stroke capacity of the actuator.  266 

 267 

  268 



17 

 

Table 6: Crack Propagation at Different Load Levels 269 

 Fiber dosage at cracking at 120kN Final stage 

Control 

Speciemen 
- 

 
  

Flexure Shear Mode 

SF35 

0.35% 
  

 
Flexure Mode 

PO35 
  

 
Flexure-Shear Mode 

SF70 

0.7% 
  

 
Flexure Mode** 

PO70 

   
Flexure Mode** 

SF100 

1.0% 

  
 

Flexure Mode** 

PO100 

   
Flexure Mode** 

** Test was terminated due to limitation on actuator stroke capacity, but the specimens exhibited more of flexure dominant behaviour 270 

.271 
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4.4 Load vs. Prestressing Strand Strain Behaviour 272 

The strain in the prestressing strands was measured using strain gauges installed during the pre-273 

tensioning process. Initial prestressing strain was measured to be 4000 µm/m. The applied 274 

prestressing force was released once the concrete attained a minimum compressive strength of 275 

40 MPa. The initial loss in applied prestressing force was measured to be about 400 micro strain. 276 

The variation of strain with respect to the applied load was measured and presented in Fig. 8. 277 

As the prestressing strands do not possess a well-defined yield point, a value of 10,000 µm/m 278 

is considered as yield strain (εpy) [35]. 279 

 280 

From the Fig.8, with the increase in steel fiber dosage, the reduction of strain in strands at same 281 

load level is noticeable. This reduction in strand strain can be attributed to the increase in 282 

effective contribution of fibers in arresting the propagation of cracks with the increase in steel 283 

fiber dosage. The same phenomenon was illustrated by synthetic PO fibers at lower dosage of 284 

fibers (0.35%, 0.7%). Additionally, it can also be observed from Fig.  that at 0.35% and 0.70%, 285 

both SF and PO specimens exhibited similar strain variations in prestressing strand.  286 

 287 

At higher steel fiber dosage of 1.0%, the strain in strand reduced significantly at same load level 288 

when compared to the control specimen. In all the specimens, the strands reached their yield 289 

strain because of low reinforcement ratio of the specimens. Due to malfunctioning of the strain 290 

gauges, the complete load strain curves could not be presented in the graphs. The yielding strain 291 

of the steel strand (10,000 micro strain) was reached in all the specimens before final failure 292 

(Fig. 8).  293 
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 294 
Fig. 8: Effect of Steel Fibers on Strain Variation of Strands in PSC Beams 295 

 296 

4.5 Strain Energy Absorption capacity 297 

Strain energy absorption capacity is one of the key factors in deciding the effectiveness of 298 

different fibers and its dosage for specific application. Strain energy absorption of the test 299 

specimens is calculated from the area under load-displacement curve until maximum 300 

displacement upto failure. Addition of fibers delays the crack propagation by bridging the 301 

cracked surfaces. Therefore, the specimen with higher fiber dosage had high energy absorption 302 

before failure. The energy absorption is closely related to the size of fracture process zone 303 

(FPZ). In FRC, FPZ covers a region of crack band and only the region along the crack path is 304 

affected by the cracking. Due to well-distributed cracks in flexure, the energy absorption 305 

increased significantly due to fiber addition. The energy absorption of steel and synthetic fibers 306 

is compared in Fig. 9.  In general, the steel fiber specimens absorbed more strain energy when 307 

compared to macro synthetic fiber reinforced beams. 308 
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 309 

Fig. 9: Variation in strain energy absorption due to fiber addition 310 

 311 

5 SUMMARY AND CONCLUSIONS 312 

Prestressed concrete beams reinforced with steel and synthetic fibers were tested at a shear span 313 

to depth ratio of five to understand the efficiency of fibers in performance improvement. Based 314 

on the test results presented in this study, the following major conclusions can be drawn: 315 

i) Both the steel and synthetic fibers improved the post-cracking behaviour and ductility of the 316 

prestressed concrete beams under flexure-shear. 317 

ii) Steel fibers were more efficient in improving the post-cracking and ductility of the 318 

prestressed concrete beams at all fiber dosages. 319 

iii) Addition of fibers helped in converting the less ductile flexure-shear mode to more ductile 320 

flexure mode. At low dosage (0.35%), only steel fibers were effective in arresting the shear 321 

cracks and ensured flexure dominant behaviour. However, the beams with high fiber dosage 322 

(0.70% and 1.0%) of steel as well as structural synthetic fibers ensured ductile flexural failure 323 

mode. 324 

iv) Macro-synthetic fibers marginally increased the peak strength. However, steel fibers 325 

increased the peak strength significantly when compared to macro-synthetic fibers. The 326 
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ultimate strength increased by 17% due to steel fibers when compared to synthetic fibers at 327 

1.0% addition. 328 

v) Energy absorption capacity of prestressed concrete beams increased with increase in both 329 

steel and macro synthetic fiber dosage. At all fiber dosages, steel fibers had higher energy 330 

absorption when compared to macro synthetic fibers. 331 
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