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Abstract. The problem of natural convection in a (2D) semi-circular curved enclosure in the presence of a

radial magnetic field is numerically studied in this paper. The selected configuration is such that the convective

flow is driven by a mean temperature gradient also directed radially, and the effects of enclosure aspect ratio and

the strength of the applied magnetic field are considered. Numerical simulations are carried out using a (3D)

MHD code developed by our research group, first at a fixed Ra ¼ 105 and Pr ¼ 0:71 for aspect ratios A ¼
2; 4; 6; 8 and Hartmann numbers in the range Ha ¼ 0� 100. As the aspect ratio is increased, a Rayleigh–

Bénard-like convection with the convective cells formed near the symmetric central portion of the enclosure,

where the mean temperature gradient is anti-parallel to the gravity, is found to be triggered. Except at the

transition, the effect of the imposed radial magnetic field is found to decrease the fluid motion in general, and the

convective motion is completely suppressed at Ha ¼ 100 irrespective of the aspect ratio. The critical Hartmann

number for the onset of (R–B-like) convection is found to decrease with an increase in the aspect ratio.

Numerical simulations are also attempted at a fixed A ¼ 10 and Ra ¼ 8000 for Prandtl numbers Pr ¼
10; 0:1; 0:01 and Hartmann numbers Ha ¼ 0; 3; 6; 9; 12. In the absence of the applied magnetic field, the flow is

found to exhibit periodic oscillations of increased amplitude and time-period when Pr is decreased, except at

Pr ¼ 10, where a steady-state solution is found. For Pr ¼ 0:01, the oscillatory flow is observed to persist even

when the magnetic field strength is increased in the range Ha ¼ 3� 12. Moreover, the temporal frequency of

these flow oscillations is found to be nearly the same for Ha� 9.
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1. Introduction

Natural convection in the presence of an applied magnetic

field has been widely studied in simple enclosure geome-

tries [1–3]. More complex geometries such as annuli are

currently being studied, wherein an intricate flow behaviour

is observed. The different flow patterns that are produced in

these configurations result not only from the geometry

itself, but also from the action of the Lorentz force gener-

ated by the imposed magnetic field.

Joshi [4] obtained an analytical solution for the fully

developed natural convection in a vertical annulus consid-

ering uniform wall temperature. A numerical investigation

[5] of natural convection in a horizontal annulus confirmed

that the critical Rayleigh number at which convection is

initiated decreases with an increase in the annular gap, and

that when convection occurs, two counter-rotating cells

appear in the enclosure. Mizushima et al [6] theoretically

and numerically investigated the transition behaviour of the

flow field for various Rayleigh number using bifurcation

analysis.

An exact solution in the presence of a radial magnetic

field was obtained by Singh et al [7] for vertical concentric

annuli. Singh and Singh [8] numerically studied the effect

of the induced magnetic field on the natural convection in

the same configuration. Their study showed that the con-

vective flow velocity is reduced by an increase in the

Hartmann number – a measure of the strength of magnetic

field, and represents the ratio of the square root of Lorentz

force to the viscous force, while it increases with the

induced magnetic field.

Recently, Ashorynejad et al [9] numerically studied the

effect of a radial magnetic field on natural convection in a

horizontal cylindrical annulus enclosure filled with a nano-
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fluid, and determined the effect of parameters such as the

Hartmann number and the Rayleigh number on the flow

field. They found that an increase in the Hartmann number

decreases the average Nusselt number, but the latter

increases with the Rayleigh number. Natural convection in

a half annulus in the presence of a magnetic field for dif-

ferent angles of inclination was studied also by Sheik-

holeslami et al [10], who found secondary eddies at an

angle of inclination h ¼ 45�, but a single convection cell is

found at inclinations h ¼ 0� and 90�.
The present study is concerned with the effect of a purely

radial magnetic field on the natural convection of an elec-

trically conducting fluid in a 2D 180� cylindrical half-an-
nular enclosure, for various Hartman numbers. The inner

wall is kept at a higher temperature than the outer wall,

while the end(-wall)s are insulated. In such a geometric

configuration, the flow behaviour at large aspect ratios is

expected to exhibit characteristics similar to that of the

Rayleigh–Bénard flow – a problem that has been widely

studied in the case of rectangular enclosures with and

without an applied magnetic field [11–13]. Here, the

introduction of the magnetic field in the case of an elec-

trically conducting fluid delays the onset of convection

[14], and the critical Rayleigh number increases with the

Hartmann number. The orientation of the magnetic field

also plays an important role in the convection roll forma-

tion [15] and furthermore, it is found that the number of

convection rolls increase with an increase in the Hartmann

number[16]. At small aspect ratios on the other hand, the

flow in the two end arms of the enclosure where the mean

temperature gradient is nearly perpendicular to that of

gravity is expected to be similar to that of the Hadley

configuration.

The present study, which includes determination of the

effect of aspect ratio of the semi-circular enclosure, on the

formation of the convection rolls, is mainly motivated by

the geometry and problem configuration wherein, the mean

temperature gradient varies continuously from being per-

pendicular at the two arms of the enclosure, to nearly anti-

parallel near the middle section, with respect to the gravity

vector. This problem, where combined characteristics of the

Rayleigh–Bénard and Hadley flows are expected to inter-

act, therefore forms an important exercise in understanding

more complex convection flows better in general.

2. Problem statement

A schematic of the curved enclosure is shown in figure 1.

In the present case, we define the aspect ratio as

A ¼ pR0

L

where R0 ¼ ðR1 þ R2Þ=2 is the average radius of the

annulus and L ¼ ðR2 � R1Þ is the characteristic length; R2

and R1 are the outer and inner radii of the enclosure,

respectively. The semi-circular geometries considered for

the present calculations are constructed with L ¼ 1.

The enclosure is heated at the inner wall (R1) and cooled

at the outer wall (R2) while the other two walls are ther-

mally insulated. All walls of the enclosure are assumed to

be electrically perfectly conducting. The direction of

gravity, g, is along the negative Y direction. The applied

magnetic field, BR, is purely radial but complies with the

r � B ¼ 0 condition and is taken to be BR ¼ B0
R0

r
, where

R1� r\R2 and B0 ¼ 1. This radial magnetic field, because

of the resultant Lorentz force, offers a maximum resistance

to the induced flow in the azimuthal direction. The Ray-

leigh number and Hartmann number are defined as Ra ¼
gbDTL3=ma and Ha ¼ LB0

ffiffiffiffiffiffiffiffi

r=l
p

, respectively.

3. Governing equations and boundary conditions

3.1 Governing equations

The governing equations in non-dimensional form,

neglecting the induced magnetic field, Joule heating and

viscous dissipation in the energy equation, are as follows.

Continuity equation:

r � u ¼ 0: ð1Þ

Navier–Stokes equation:

ou

ot
þ u � rð Þu ¼ �rPþ 1

ffiffiffiffiffiffi

Gr
p r2uþ Ha2

ffiffiffiffiffiffi

Gr
p J� B� TŶ :

ð2Þ

Ohm’s law:

J ¼ �r/þ u� Bð Þ: ð3Þ

Current continuity equation:

r � J ¼ 0: ð4Þ

Poisson equation for the electrical potential:

r2/ ¼ r � ðu� BÞ: ð5Þ

Temperature equation:

oT

ot
þ u � rð ÞT ¼ 1

ffiffiffiffiffiffi

Gr
p

Pr
r2T : ð6Þ

Here, the Grashoff number, Gr ¼ gbDTL3=m2, gives the

ratio of buoyancy to viscous force, the Hartmann number,

Ha � LB0

ffiffi

r
l

q

, measures the strength of magnetic field and

is the ratio of the square root of Lorentz force to the viscous

force, and the Prandtl number, Pr ¼ m
a
, is the ratio of
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kinematic viscosity to thermal diffusivity. The Rayleigh

number is defined as the product Ra � GrPr.

To obtain these equations, the velocity field (u) is scaled

by the characteristic velocity u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbDTL
p

– obtained by

the balance of inertia and buoyancy force terms. Here

DT � Th � Tc, and b is the coefficient of thermal expan-

sion. The scale factors used for the non-dimensionalization

of the other variables in the equations are

X ¼x=L; Y ¼ y=L; u ¼ U=u0; v ¼ V=u0; t t=ðL=u0Þ

P ¼p=qu20 and T  T � ðTh þ TcÞ=2
ðTh � TcÞ

:

3.2 Boundary conditions

The appropriate boundary conditions for the governing

equations are as follows:

u ¼ v ¼ / ¼ 0 and T ¼ þ0:5 at R1; ð7Þ

u ¼ v ¼ / ¼ 0 and T ¼ �0:5 at R2; ð8Þ

u ¼ v ¼ / ¼ 0 and
oT

on
¼ 0 at Y ¼ 0 and

R1� jXj �R2:
ð9Þ

3.3 Code validation, grid independence study

and computational details

These equations are discretized by employing the finite-

volume methodology and are numerically solved using a

3D MHD code developed by our research group. The

solution algorithm – a variant of the PISO, its implemen-

tation and code validation with various benchmark results

are detailed in our previous paper [17] and therefore not

exposited here. All the calculations performed for the pre-

sent study are obtained by employing QUICK as the con-

vection scheme and Crank–Nicolson as the temporal

scheme. For its relevance to the present study, we report

comparison of the numerical solutions obtained using our

code to the analytical solutions of Garandet et al [2].

Numerical solutions are obtained for Gr ¼ 2:0� 104, Pr ¼
0:01 and aspect ratio A ¼ 4. A non-uniform computational

mesh of size 251� 101 (Nx � Ny) is used. The computed

normalized velocity shown in figure 2 has excellent

agreement with the corresponding analytical solutions at

different Hartmann numbers considered.

3.4 Grid independence study and computational

details

Grid independence tests are carried out at Ha ¼ 60, Pr ¼
0:71 and Ra ¼ 105 using a uniform grid spacing in both the

radial and azimuthal directions for all aspect ratios. Fig-

ure 3 shows the test result for the case A ¼ 8, where the

estimated error in using the mean grid 151� 801 is found

to be about 1.2%. Similar test runs yielded 0.26% and

0.38% as the estimated errors on grids 151� 401 and

151� 601 for A ¼ 4 and A ¼ 6, respectively (not shown).

The results presented in this paper are obtained from sub-

sequent simulations performed on these respective grids

(for each aspect ratio), where the distance of the first grid

point from the wall is kept the same at 0.0066L.

In the present paper, we report numerical results obtained

at a fixed Rayleigh number Ra ¼ 105 with Pr ¼ 0:71 for

aspect ratios A ¼ 2; 4; 6; 8 to ascertain the effect of aspect

ratio. Results at various Hartman numbers in the range

Ha ¼ 0 to Ha ¼ 100 are then presented. Lastly, results

demonstrating the effect of Prandtl number on convection

in the enclosure of aspect ratio A ¼ 10 at a fixed Ra ¼ 8000

Figure 1. Schematic diagram of curved geometry.

Figure 2. Comparison of normalized velocity (u) with analytical

solution (shown in symbols) of Garandet et al [2] as a function of

centreline vertical coordinate distance at different Hartmann

numbers, Ha ¼ 5� 20.
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are shown. The Prandtl numbers chosen in this case are

Pr ¼ 10; 0:1; 0:01 and the calculations are performed for

Hartmann numbers Ha ¼ 0; 3; 6; 9; 12. These results are

discussed in detail in the next section.

4. Results and discussion

4.1 Effect of aspect ratio

In this section, we discuss the results for different aspect

ratios obtained on the full domain. In the present case, we

have carried out numerical simulations for Ra ¼ 105 and

Pr ¼ 0:71. The effects of the radial magnetic field of dif-

ferent strengths (i.e., Hartmann number) and four different

aspect ratios, A ¼ 2; 4; 6; 8, are studied.

From figure 4, it is observed that increasing the Hart-

mann number from Ha ¼ 0 to 75 does not change the

number of convection rolls for A ¼ 2, but has a pronounced

effect for A ¼ 4, as shown in figure 5.

As the direction of the temperature gradient (DT) is anti-

parallel to the direction of gravity (g) at the middle section

of the enclosure – a configuration analogous to the R–B

system, the convective flow in that part of the enclosure is

susceptible to flow instability akin to the R–B flow. This is

precisely what is seen in the stream-function plots por-

trayed in figures 5–7 for various aspect ratios. With an

increase in the aspect ratio the region in the neighbourhood

of the central symmetric section of the enclosure where

(DT k g) is also increased, thereby resulting in the increase

in the number of R–B-like convection rolls. At the two ends

of the domain, the gravity is perpendicular to the temper-

ature gradient (similar to the Hadley convection configu-

ration) and therefore a large circulation cell is formed at the

two arms of the enclosure.

The convection rolls mainly occur due to the effect of the

Lorentz force, which acts against flow in the azimuthal

direction, thereby decreasing the velocity in that direction.

Hence, the two large convection rolls symmetrically loca-

ted on the either side of the enclosure shrink in the azi-

muthal direction, and the interstitial space in the middle

section of the enclosure is then filled by R–B mode con-

vection cells if triggered.

For aspect ratio A ¼ 2, Hadley-like flow is dominant, and

two circulation rolls form in the domain. In conventional

Hadley flow we generally see a single cell but here two

convection rolls are created by the curved geometry, one in

each arm of the enclosure. An increase in Hartmann num-

ber up to Ha ¼ 75 does not create more convection rolls,

Figure 3. Grid independence test results at A ¼ 8.
Figure 4. Streamline plots show effect of Hartmann number,

Ha ¼ 0; 30; 40; 50; 60; 75, on the formation of convection rolls for

aspect ratio A ¼ 2.

Figure 5. Streamline plots show effect of Hartmann number,

Ha ¼ 0; 30; 40; 50; 75; 100, on the formation of convection rolls

for aspect ratio A ¼ 4.
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but the magnitude of the fluid motion is increasingly sup-

pressed as the Hartmann number is increased.

Even for aspect ratio A ¼ 4 (see figure 5) rolls do not

increase up to Hartmann number Ha ¼ 30, presumably

because the Hadley mode is still dominant. However, a

further increase in Hartmann number from Ha ¼ 40 to

Ha ¼ 75 increased the number of convection rolls to 6. The

convection rolls formation seems to occur also because of

the action of the Lorentz force at increased magnetic field

strengths, triggering a Rayleigh–Bénard-type convection

mode in the middle section of the domain, which dominates

over the Hadley mode. At Ha ¼ 100 however, the fluid

motion is almost completely suppressed and the flow

reverts to two large, but weak, convection rolls.

A similar pattern of formation of convection rolls is

observed for aspect ratios A ¼ 6 and 8. Figures 6 and 7

show the streamline plots at different Hartmann numbers.

The results clearly indicate that an increase in the aspect

ratio increases the formation of the convection rolls. It is

found that at Hartmann number of Ha ¼ 40 and aspect

ratios of A ¼ 4, A ¼ 6 and A ¼ 8, the convection rolls are

found to be six, six and 10, respectively (see figures 5, 6

and 7). For all aspect ratios, we observe that the strength of

velocity gets weak for Ha[ 75 and at Ha ¼ 100 the

buoyancy force is not sufficient enough to form the con-

vection rolls.

The same interpretation can also be made from the

temperature contours shown in figures 8, 9 and 10 for dif-

ferent aspect ratios A ¼ 4, 6 and 8, respectively, wherein it

is seen that the convection motion is still present at Hart-

mann number of Ha ¼ 75, but is fully suppressed at Ha ¼
100 – isotherms nearly coinciding with r ¼ const: lines.

Figure 6. Streamlines plot shows effect of Hartmann number,

Ha ¼ 0; 20; 25; 40; 60; 100, on the formation of convection rolls

for aspect ratio A ¼ 6.

Figure 7. Streamlines plot shows effect of Hartmann number,

Ha ¼ 0; 15; 20; 40; 60; 100, on the formation of convection rolls

for aspect ratio A ¼ 8.

Figure 8. Temperature plots for different Hartmann numbers

Ha ¼ 0� 100 at Ra ¼ 105, A ¼ 4 and Pr ¼ 0:71.

Figure 9. Temperature contour plot for aspect ratio A ¼ 6 at

different Hartmann numbers Ha ¼ 0� 100 for Pr ¼ 0:71 and

Ra ¼ 105.
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4.2 Effect of Hartmann number

In order to study the effect of Hartmann number on the fluid

motion for different aspect ratios, we have chosen the

Rayleigh number Ra ¼ 105, and Prandtl number Pr ¼ 0:71.

The variation of the resultant velocity (VR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

) is

plotted along the radial direction, R, at the mid-section

(X ¼ 0) of enclosure as shown in figure 11. It was already

seen in the earlier sections that an increase of magnetic field

strength (i.e., Hartmann number) decreases the resultant

velocity. We find the same pattern of velocity decrease here

when the Hartmann number is increased. The same beha-

viour can be seen in figures 12 and 13 for A ¼ 6 and 8,

respectively.

A significant change in the velocity profile is observed at

the transition point, where a circulation cell pattern breaks

into more cells. We see that an increase in the Hartmann

number decreases the resultant velocity both up to and

beyond the transition point, but a significant increase in the

resultant velocity is observed at the transition point (see

figures 11–13) due to the onset of the R–B-type convection

roll formation as discussed earlier.

In MHD, it is usually observed that the velocity magni-

tude decreases as the Hartmann number increases. The

momentary velocity increase before decreasing again at a

higher Ha as observed in the present case can then be

Figure 10. Temperature contour plot for aspect ratio A ¼ 8 at

different Hartmann numbers Ha ¼ 0� 100 for Pr ¼ 0:71 and

Ra ¼ 105.

Figure 11. Effect of Hartmann number Ha ¼ 0� 40 on the

velocity profiles for aspect ratio A ¼ 4, at X ¼ 0.

Figure 12. Effect of Hartmann number Ha ¼ 0� 25 on the

velocity profiles at aspect ratio A ¼ 6 and X ¼ 0.

Figure 13. Effect of Hartmann number Ha ¼ 0� 20 on the

velocity profiles at the mid-section of domain, X ¼ 0, for A ¼ 8.
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attributed to the R–B-like mode that is triggered at the

transition point and persists over a range of Ha. This

apparent breaking of the cells due to the formation of newer

R–B-like convection rolls is reflected as the enhanced

convection at the transition point.

The variation of Nusselt number at the hot wall with

Hartmann number is shown in table 1. It is seen that an

increase in the Hartmann number decreases the Nusselt

number, mainly due to the increase of Lorentz force, which

suppresses the fluid motion. At large Ha ¼ 100, where the

convection motion is completely suppressed, the average

Nusselt number is close to 1, indicating that the heat-

transfer mode is predominantly conductive. The noticeable

change in the Nusselt number observed at Ha ¼ 20, as

compared with Ha ¼ 10, is due to the formation of new

convection rolls from the R–B-like mode instability as

mentioned previously, which seemingly enhanced the

convection motion at the transition point (not necessary at

Ha ¼ 20 but somewhere between Ha ¼ 10 and Ha ¼ 20.)

This transition point strongly depends on the aspect ratio.

It is found that at the higher aspect ratio A ¼ 8 it occurs at a

lower Hartmann number, Ha ¼ 20, as compared with the

lower aspect ratio A ¼ 6, where it occurs at Ha ¼ 25. In the

case of aspect ratio, A ¼ 4, an even larger value of Hart-

mann number (Ha ¼ 40) is needed for breaking of the

convection roll into multiple rolls.

We have plotted the variation of square root of the

critical Hartmann number with the aspect ratios in fig-

ure 14. The plot shows a linear variation of the square root

of the critical Hartmann number with aspect ratios. This

plot can be used to predict the quantitative behaviour of the

transition point (cells break) for different aspect ratios.

4.3 Aspect ratio A ¼ 10

In this section, we report results for the very high aspect

ratio case of A ¼ 10. The numerical computations are

carried out for different Hartmann numbers

(Ha ¼ 0; 3; 6; 9; 12), Rayleigh number Ra ¼ 8000 and

Prandtl numbers (Pr ¼ 10; 0:1; 0:01). In the first case, we

study the effect of decreasing Prandtl number in the range

10, 0.01, 0.1, on the formation of the convection rolls at a

fixed Rayleigh number Ra ¼ 8000 for Ha ¼ 0, i.e., in the

absence of an applied magnetic field.

To study the temporal behaviour of the solutions, we

monitored temperature at a fixed point at X ¼ 0 and

Y ¼ 3:1847. It is seen from the temporal evolution of

temperature, as portrayed in figure 15, that a steady-state

solution is reached for Pr ¼ 10. On decreasing the Prandtl

number to Pr ¼ 0:1 the nature of solution changes to that of
a periodic oscillatory flow – which is typical in low Pr

natural convection flows. Both the amplitude and the time

Table 1. Variation of Nusselt number with various Hartmann

numbers 0� 100 at Ra ¼ 105 and Pr ¼ 0:71 for A ¼ 8.

Hartmann number Ha Nusselt number Nu

0 9.301

10 8.167

20 8.935

30 6.674

40 6.260

50 5.110

60 4.116

75 2.990

100 1.127

Figure 14. Variation of critical (transition) Hartmann number

with aspect ratio at Ra ¼ 105 and Pr ¼ 0:71.

Figure 15. The temporal variation of temperature at Ra ¼ 8000

and Ha ¼ 0 for Pr ¼ 10; 0:1; 0:01.
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period of flow oscillations are increased when the Prandtl

number is further lowered to Pr ¼ 0:01. Interestingly, for
Pr ¼ 0:01, the flow began exhibiting more complex peri-

odicity when computations were carried out over a long

time beyond t[ 1000 (see figure 15), possibly due to the

onset of a hydrodynamic instability. This requires a further

exposition and is relegated to a future work.

The streamlines plots for different Prandtl numbers are

shown in figure 16. It is seen that the Prandtl number has a

significant effect on the rolls formation. At the Prandtl

number of Pr ¼ 10, we have a steady-state solution

wherein a single circulation cell is observed in each half of

the enclosure. As the Prandtl number is decreased, the

oscillatory flow is found to be symmetric at Pr ¼ 0:1, but
asymmetric at Pr ¼ 0:01.

For Pr ¼ 0:01, even when the magnetic field is present,

we see oscillatory flow solutions for Ha ¼ 3; 6; 9; 12, as
shown in figure 17. Unlike the case of Ha ¼ 0, where a

different temporal evolution pattern is seen beyond

t ¼ 1000, the oscillatory flow solutions at the other Hart-

mann numbers are unaltered.

The characteristic frequency of flow oscillations is found

to be strongly dependent on Pr but relatively insensitive to

the Hartmann number. For Pr ¼ 0:01, this frequency is

found to be about f � 0:0045 (in the inverse scale of the

time period s) for Ha\12. At Ha ¼ 12 however, the fre-

quency is found to be around f � 0:006. The increase in the
frequency might be related to the reduced cell length (and

hence the wave-number of the instability), when the mag-

netic field strength is increased. A decrease in the amplitude

of oscillations is also noticed as the Hartmann number is

increased from Ha ¼ 9 to Ha ¼ 12.

Figure 16. Streamline plots for different Prandtl numbers at

Ha ¼ 0 and Ra ¼ 8000. Solutions for Pr ¼ 0:1 and Pr ¼ 0:01 are

oscillatory and are shown at t ¼ 1500.

Figure 17. The temporal variation of temperature at Ra ¼ 8000

and Pr ¼ 0:01 for (a) Ha ¼ 0; 3; 6 and (b) Ha ¼ 6; 9; 12.
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5. Conclusion

A parametric study concerning the effect of the Hartmann

number, aspect ratio and Prandtl number was conducted in

the case of natural convection in a semi-circular enclosure.

At moderate Hartmann numbers, a Rayleigh–Bénard-type

flow instability resulting in multiple convective rolls is

found to occur in the middle symmetric portion of the

enclosure as the aspect ratio is increased. The critical

Hartmann number required to split these convection rolls is

strongly dependent on the aspect ratio, with the transition

Hartmann number decreasing with an increase in the aspect

ratio beyond A ¼ 2. Except at the point of transition, the

fluid motion, in general, is found to decrease and is com-

pletely suppressed at Ha ¼ 100. Simulations performed at a

fixed A ¼ 10 and Ra ¼ 8000 show a change in the nature of

flow solutions from steady state to periodic oscillations as

the Prandtl number is decreased. Moreover, in the range of

Hartmann numbers considered, the time period of these

oscillations is found to be dependent strongly on the Pr, but

is relatively insensitive to an increase in the Hartmann

number. At Pr ¼ 0:01, the observed flow pattern remains

periodic, but both the amplitude and frequency are modified

as the Hartmann number is increased from Ha ¼ 9 to

Ha ¼ 12.

Nomenclature

R1 inner radius of enclosure

R2 outer radius of enclosure

R0 average radius of annulus (R0 ¼ ðR1 þ R2Þ=2Þ
L characteristic length (L ¼ R2 � R1)

u non-dimensional velocity vector

B non-dimensional magnetic field vector

J non-dimensional current density vector

E electric field vector

/ electrical potential

g gravity vector

B0 imposed magnetic field

T non-dimensional temperature
T�ðThþTcÞ=2

Th�Tc

� �

r electrical conductivity of fluid

l viscosity of conducting fluid

k thermal conductivity

q density of fluid

m kinematic viscosity

a thermal diffusivity

b coefficient of thermal expansion

X, Y, Z non-dimensional coordinates

VX ;VY ;VZ components of the velocity field

VR resultant velocity

s time-period of oscillation

Th hot wall

Tc cold wall

Ha Hartmann number (¼ LB0

ffiffiffiffiffiffiffiffi

r=l
p

)

Pr Prandtl number (¼ m=a)
Gr Grashof number (¼ gbDTL3=m2)

Ra Rayleigh number (¼ GrPr)

Nu Nusselt number

Rm magnetic Reynolds number
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