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Elastic turbulence is a chaotic regime that emerges in polymer solutions at low Reynolds
numbers. A common way to ensure stability in numerical simulations of polymer solutions
is to add artificially large polymer-stress diffusion. In order to assess the accuracy of
this approach in the elastic-turbulence regime, we compare numerical simulations of the
two-dimensional Oldroyd-B and FENE-P models sustained by a cellular force with and
without artificial diffusion. We find that artificial diffusion can have a dramatic effect even
on the large-scale properties of the flow and we show some of the spurious phenomena
that may arise when artificial diffusion is used.

1. Introduction

Polymer solutions can exhibit a chaotic behaviour, even at low Reynolds numbers,
as a result of purely elastic instabilities (Groisman & Steinberg 2000, 2004). This
regime of polymer solutions, known as elastic turbulence, finds a natural application
in microfluidics, where the typical Reynolds numbers are very low and the addition of
polymers to the fluid can be employed to accelerate phenomena such as mixing (Groisman
& Steinberg 2001), emulsification (Poole et al. 2012) and heat transfer (Traore, Castelain
& Burghelea 2015; Abed et al. 2016) or to examine the dynamics of microscopic objects
in fluctuating flows (Liu & Steinberg 2014).
The numerical simulation of elastic turbulence is challenging for at least three reasons.

The first two are common to the high-Reynolds-number regime of polymer solutions.
Indeed, the available constitutive models of viscoelastic fluids are based on rather crude
approximations and disregard several, potentially relevant aspects of polymer dynamics
(Bird et al. 1987). In addition, a high spatial resolution and advanced numerical schemes
are needed to resolve the sharp gradients that form in the polymer-stress field (Jin &
Collins 2007; Plan et al. 2017). The third reason is specific to elastic turbulence and is the
requirement that the time step used for the integration of the Navier–Stokes equations
be small; this requirement is a consequence of the high viscosity of the fluid (Press et al.
2007).
Most numerical studies of elastic turbulence have therefore considered simplified flow

configurations (e.g. in two dimensions and/or with periodic boundary conditions) and
have been restricted to limited ranges of parameters. Notwithstanding, even simple
models of viscoelastic fluids in idealized settings have proved successful in capturing the
main properties of elastic turbulence. Several experimental observations are reproduced,
at least qualitatively, by the Oldroyd-B model, in which only the slowest oscillation mode
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of the polymer is retained and polymer elasticity is assumed to be linear (Berti et al.

2008; Thomases & Shelley 2009; Berti & Boffetta 2010; Thomases, Shelley & Thiffeault
2011; Grilli, Vázquez-Quesada & Ellero 2013; Plan et al. 2017; van Buel, Schaaf & Stark
2018; Garg et al. 2018). Other studies have used the FENE-P model, which improves
on the Oldroyd-B one by taking into account the finite extensibility of polymers (Liu &
Khomami 2013; Gupta & Pandit 2017), or have taken a Lagrangian approach and have
solved the dynamics of a large number of dumbbell-like polymers (Watanabe & Gotoh
2013, 2014). In fact, even a low-dimensional ‘shell model’ of viscoelastic fluid reproduces
elastic turbulence qualitatively (Ray & Vincenzi 2016).

Constitutive models such as the Oldroyd-B and the FENE-P ones consist of a coupled
system of partial differential equations for the velocity of the solution and for the
polymer stress tensor. This latter is by nature positive definite, but numerical errors
may lead to the loss of this property and hence to instabilities (Joseph 1990). A standard
way to prevent such instabilities is to include global artificial diffusivity in the model,
i.e. to add a Laplacian term to the evolution equation for the polymer stress with a
space-independent coefficient (Sureshkumar & Beris 1995). Numerical simulations of
turbulent polymer solutions that use artificial diffusivity are in qualitative agreement
with experiments (e.g. Graham 2014, and references therein). Polymer-stress diffusion
in fact has a physical origin, for it results from the diffusion of the centre of mass of
polymers due to thermal noise (El-Kareh & Leal 1989). However, the values of diffusivity
needed to achieve numerical stability are three to six orders of magnitude greater than
those appropriate for real polymers (e.g. Vaithianathan et al. 2006). For this reason,
numerical schemes have been proposed that avoid using artificial diffusivity. These
include, inter alia, schemes that only employ polymer diffusivity at those locations in
the fluid where the polymer stress loses its positive definite character (Min, Yoo & Choi
2001), methods adapted from hyperbolic solvers (Vaithianathan et al. 2006), or schemes
based on representations of the polymer stress tensor that guarantee the preservation
of its positive definiteness (Vaithianathan & Collins 2003; Fattal & Kupferman 2003;
Balci et al. 2011; Hameduddin et al. 2018). Such numerical schemes have been compared
with simulations using artificial diffusivity at high or moderate Reynolds numbers, and
quantitative discrepancies have emerged: for instance, the level of drag reduction is
diminished by artificial diffusivity, the velocity and polymer-stress fields are significantly
smeared, excessive polymer-stress diffusion leads to relaminarization (Min et al. 2001;
Vaithianathan et al. 2006; Sid, Terrapon & Dubief 2018). Thus a consensus seems to
have formed that at high or moderate Reynolds numbers alternative methods should be
preferred to the use of artificial diffusivity.
At low Reynolds numbers, several studies on elastic turbulence have employed artificial

diffusivity (Berti et al. 2008; Thomases & Shelley 2009; Berti & Boffetta 2010; Thomases
et al. 2011; Liu & Khomami 2013; Garg et al. 2018). It was shown in Thomases (2011)
that in viscoelastic creeping flows this has the effect of smoothing the polymer-stress
field and keeping it bounded. However, to the best of our knowledge, the effect of
artificial diffusivity in the elastic-turbulence regime has not been examined yet. This
is the object of the present study, in which we compare numerical simulations with and
without artificial diffusivity. As a case study, we consider the Oldroyd-B model with a
cellular forcing on a periodic square (analogous simulations of the FENE-P model are
presented in the Appendix). The cellular forcing generates distinct regions of straining
and vorticity and thus allows us to describe a flow configuration in which the effect of
artificial diffusivity is particularly adverse. Our results demonstrate that the properties
of the velocity field are strongly affected, to such an extent that also the large-scale
flow may be misrepresented. In particular, we show that some phenomena observed
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in previous simulations are due to artificial stress diffusion and are not present when
alternative integration methods are used.
The general effect of artificial diffusivity is to spread high polymer stresses over large

regions of the flow, including those where the polymer stress would be weak because
vorticity dominates and polymers should not be stretched. We shall se that, in elastic
turbulence, this fact leads to a spurious symmetry breaking analogous to that observed
in Thomases & Shelley (2009) and Thomases et al. (2011). Indeed, in low-strain regions
polymers are weakly stretched and the external force would naturally impose its spatial
structure, but if high polymer stresses artificially diffuse into those regions, they prevail
over the force and provoke a strong modification of the large-scale flow. This dynamics
is specific to elastic turbulence, because the Reynolds number is low and, in the absence
of artificial diffusivity, the original laminar flow is weakly perturbed by the addition
of polymers in vorticity-dominated regions. At high Reynolds numbers the effect of
artificial diffusivity is less dramatic, since the flow is already chaotic before the addition
of polymers and therefore artificial diffusivity does not change the large-scale flow so
strongly. Indeed, at high Reynolds numbers, the differences between simulations with
and without artificial diffusivity are essentially quantitative (Vaithianathan et al. 2006;
Sid et al. 2018). In conclusions, we show that in elastic turbulence artificial diffusivity
induces dramatic qualitative modifications of the large-scale flow, which are not observed
at high Reynolds numbers. Hence the study of the low-Reynolds-number regime requires
a separate study.

2. Viscoelastic model

The Oldroyd-B model (Oldroyd 1950) describes the deformation of polymers by means
of a space-time dependent positive-definite tensor: the polymer conformation tensor
C(x, t). In the limit of vanishing inertia, the coupled evolution of C(x, t) and the velocity
field u(x, t) that describes the motion of the solution is given by the following equations:

∇p = ν∆u+
µ

τ
∇ · C + f , ∇ · u = 0, (2.1a)

∂tC + u · ∇C = (∇u) · C + C · ∇u)⊤ − 1

τ
(C − I), (2.1b)

where p is pressure, ν is the kinematic viscosity of the solvent, τ is the polymer relaxation
time, the components of the velocity gradient are defined as (∇u)ij = ∂ui/∂xj and I

is the identity matrix. The coupling coefficient µ represents the polymer contribution
to the total kinematic viscosity of the solution and is proportional to the concentration
of polymers. The body force f(x) that sustains the motion of the solution is such that
∇ · f = 0. In the above equations, the conformation tensor is rescaled with the polymer
mean square equilibrium extension in the absence of flow.
In considering the limit of the Oldroyd-B model for vanishing inertia, we follow Fouxon

& Lebedev (2003); Thomases & Shelley (2009); Thomases et al. (2011); Balci et al. (2011),
who describe the motion of the solution by means of the Stokes equations in lieu of the
Navier–Stokes equations. However, as is discussed in § 4, our conclusions on the effect of
artificial diffusivity are unchanged if we use the Navier–Stokes equations with a Reynolds
number smaller than the critical value for the appearance of inertial instabilities.
Equations (2.1) are studied on the two-dimensional domain V = [0, 2π]2 with periodic

boundary conditions. We consider the cellular force:

f(x) = f0(− sinKy, sinKx), (2.2)
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Fig. 1. Vorticity field of the laminar solution of (2.1a) in the absence of polymer feedback,
ω(x) = −f0(cosKx+ cosKy)/νK, for K = 2, f0 = 0.02 and ν = 0.05.

where f0 is the amplitude and K the spatial frequency. Cellular-like forcings have been
widely used in experiments of chaotic mixing in two-dimensional flows (e.g. Cardoso,
Marteau & Tabeling 1994; Rothstein, Henry & Gollub 1999). As is discussed in the
conclusions, the effect of artificial diffusivity for other forcings may not be equally
dramatic; however, the cellular forcing allows us to clearly identify the fashion in which
artificial diffusivity operates in elastic turbulence and to demonstrate how strong its
effect can be in this regime.
In the absence of polymer feedback on the flow (i.e. µ = 0), (2.1a) admits the fixed-

point laminar solution: u = −f/νK2. The corresponding vorticity field ω(x, t), where
ωẑ ≡ ∇× u, is shown in figure 1 and consists of a sequence of vortices of alternate sign
separated by lines of pure strain. At time t = 0, u is the fixed-point velocity field and C

is a perturbation of the identity matrix (we use the same perturbation as in Thomases &
Shelley 2009, see their equation (3)). By using the length scale 1/K and the amplitude
f0/νK

2 of the laminar velocity, we obtain the turnover time T = νK/f0. This allows
us to define the Deborah number De ≡ τ/T , which quantifies the ability of the flow to
deform polymers.
The reason for choosing the cellular force is twofold. On the one hand, it generates a

flow structure in which the straining and vortical regions are clearly separated, similarly
to the four-roll mill force considered in Thomases & Shelley (2009) and Thomases et al.
(2011)—this feature will turn out useful in highlighting the effect of artificial diffusivity
on elastic turbulence. On the other hand, the polymer stress generated by the cellular
force is less strong than in the case of the four-roll mill force; thus even in the absence
of artificial diffusivity a moderate spatial resolution is sufficient to compute the velocity
and polymer-stress fields accurately.
In order to preserve the positive definiteness of the conformation tensor, we decompose

C according to Cholesky, i.e. we write C = LL⊤, where L is a lower triangular matrix
and the diagonal elements Lii represent the eigenvalues of C. The positivity of C is then
ensured by evolving ln Lii instead of Lii (Vaithianathan & Collins 2003; Perlekar, Mitra,
Pandit 2006). The evolution equations for ln Lii and Lij if i 6= j (see Gupta, Perlekar &
Pandit 2015) are solved on a regular grid with 10242 collocation points by using a fourth-
order finite difference scheme for the spatial derivatives and a fourth-order Runge–Kutta
scheme with time step dt = 2× 10−3 for the temporal integration. The advection terms
are treated according to the Kurganov–Tadmor hyperbolic solver (Kurganov & Tadmor
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2000). This solver was first applied to the numerical simulation of polymer solutions by
Vaithianathan et al. (2006). At locations where the original finite-difference scheme would
yield a too large gradient of Lij or ln Lii, it selects a lower-order scheme that reduces the
gradient. Numerical schemes based on the Kurganov–Tadmor solver have been employed
in studies of both turbulent polymer solutions (e.g. Vaithianathan et al. 2007; Perlekar,
Mitra, Pandit 2010; Dallas, Vassilicos & Hewitt 2010; Robert et al. 2010; Valente, da
Silva & Pinho 2014; Gupta et al. 2015; Shekar et al. 2018) and elastic turbulence (Gupta
& Pandit 2017; Plan et al. 2017). Finally, the velocity field is obtained by solving the
vorticity equation associated with (2.1a) in Fourier space.
In order to assess the effect of artificial diffusivity, we also performed simulations which

still use the Cholesky decomposition and the Kurganov–Tadmor scheme as described
above, but in which we add the term κ∆C to the right hand side of (2.1b) (or rather the
corresponding diffusion terms to the equations for ln Lii and Lij). We set κ = 5× 10−5,
so that the Schmidt number Sc ≡ ν/κ = 103 is the same as in previous numerical
simulations of elastic turbulence (Thomases & Shelley 2009; Thomases et al. 2011; Garg
et al. 2018). This value of Sc is much higher than that used in high-Reynolds-number
simulations, where typically Sc = 0.5 (e.g. Graham 2014), but is nevertheless three orders
of magnitude smaller than it would be in reality (Vaithianathan et al. 2006). However,
it is not interesting to consider values of Sc much greater than 103, because alone they
are in general not sufficient to prevent numerical instabilities.
The parameters of the simulations are K = 2, f0 = 0.02, µ = 0.01, ν = 0.05, τ = 50

and yield a Deborah number De = 10. In particular, the ratio µ/ν is comparable to that
used in previous simulations of elastic turbulence. Additional simulations with a different
choice of parameters are reported in the online supplementary material and support the
results presented in the following section.

3. Results

In this section, we compare numerical simulations of (2.1) based on the two approaches
described in § 2, i.e. using either artificial diffusivity with Sc = 103 or the Kurganov–
Tadmor scheme, for which Sc = ∞. As we shall see, the effect of artificial diffusivity is
so big that to describe it, it is sufficient to examine the qualitative properties of the flow.
Figure 2 shows the time series of the kinetic energy e(t) ≡ 1

2

∫
V
|u(x, t)|2dx. For

Sc = 103, the system remains in an almost frozen state for a long time, after which it
becomes chaotic. If the simulation is not long enough, such an initial frozen state may
lead to a wrong interpretation of the dynamics, since the flow regime may be erroneously
described as laminar. The behaviour of e(t) is analogous to that found in Thomases &
Shelley (2009) and Thomases et al. (2011) for a four-roll mill force and same value of Sc.
For Sc = ∞, in contrast, the motion of the solution becomes chaotic much more rapidly
and, in the steady state, the kinetic energy fluctuates at a frequency much higher than
when artificial diffusivity is present. Moreover, the mean kinetic energy is greater.
The time series of the trace of C averaged over V show behaviours analogous to those

of e(t), with 〈trC〉V displaying much slower oscillations when Sc = 103 and this only
after a long, initial, almost frozen state (figure 3).
The snaphots of the vorticity field also indicate a striking difference between the two

integration methods (figures 4 and 5). With artificial diffusivity, once the system starts
fluctuating the spatial structure of the flow departs from that which would be imposed
by the force (figure 4). Only some of the vortical cells continue to exist, whilst others
break down and patches of vorticity contaminate the cellular structure of the base flow.
Furthermore, the number and the location of unbroken vortical cells vary in time (see the
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Fig. 2. Left: Time series of the kinetic energy of the polymer solution rescaled by the kinetic
energy of the fixed-point laminar flow (µ = 0), i.e. e0 ≡ f2

0 /2ν
2K4, for Sc = ∞ (red, top curve)

and for Sc = 103 (blue, bottom curve). Right: zoom of the left panel in the steady state.
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Fig. 3. Left: Time series of the trace of the polymer conformation tensor averaged over the
spatial domain V for Sc = 103 (blue, top curve) and Sc = ∞ (red, bottom curve). Right: zoom
of the left panel in the steady state.

snapshots at two different times in figure 4). This dynamics is equivalent to the symmetry-
breaking transition observed by Thomases & Shelley (2009) and Thomases et al. (2011).
Contrastingly, for Sc = ∞ the vorticity field displays fluctuations which perturb the
cellular vortices, but its large-scale structure essentially remains slaved to that of the
background force (see figure 5 for a representative snapshot). Large perturbations of the
vorticity field are concentrated on thin filaments located in the vicinity of the lines of
pure strain which separate the vortical cells. Thus, the symmetry breaking shown in
figure 4 is a spurious effect due to artificial diffusivity.
The snapshots of trC also show a strong qualitative difference in the behaviour of

the polymer stress (figures 6). The analysis of these snapshots allows us to understand
the effect of artificial diffusivity. Rather than the Schmidt number, here the relevant
dimensionless parameter is the Péclet number Pe = f0/κνK

3, which is the ratio of the
time scale associated with polymer-stress diffusion, (κK2)−1, and the time scale at which
the polymer stress is convected, T . When Sc = ∞, Pe is also infinite and the evolution of
the polymer stress is dominated by convection. In this case, highly-stretched polymers—
and hence large polymer stresses—are essentially found in strain-dominated regions of
the flow, while the polymer stress is weak in vortical regions, where polymers rapidly
contract. Thus, in the cellular flow, the vorticity field is strongly affected by polymer
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Fig. 4. Snapshot of the vorticity field for Sc = 103 at t/T = 1200 (left) and t/T = 2212 (right).

Fig. 5. Left: a representative snapshot of the vorticity field for Sc = ∞. Right: the same snapshot
as in the left panel but with a rescaled colour bar. The purpose of this rescaling is to show the
cellular structure of the flow more clearly.

stresses at the boundaries of the cells; inside the cells, the external force dominates and
imposes the cellular structure. However, when polymer-stress diffusion becomes relevant
(i.e. Sc = 103 and, with our choice of parameters, Pe = 103), large polymer stresses
spread far from the straining lines where they are created and reach the interior of the
vortices; this destabilizes the cellular structure and generates the symmetry breaking
observed at Sc = 103. Furthermore, we note that although for Sc = ∞ polymers can
locally be highly stretched (figure 6), the average polymer stretching is generally higher
for Sc = 103 than for Sc = ∞ (figure 3).
Hameduddin et al. (2018) recently proposed to quantify the deviation of the polymer

configuration from the equilibrium one by considering the geodesic distance between
C and I in the space of positive-definite tensors. The snapshots of this distance (see
the supplementary material) confirm the behaviours observed in the snapshots of trC

(figure 6).
Figures 4 and 5 also indicate that the vorticity field is much smoother for Sc = 103

than for Sc = ∞. This can be understood by noting that, in elastic turbulence, the
small scales of the flow are not activated by a cascade phenomenon but rather by the
fluctuations of the polymer feedback at the same scales, and for Sc = 103 the high-wave-
number fluctuations of the polymer stress are damped by diffusivity. The smoothness of
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Fig. 6. Snapshots of ln(trC) for Sc = 103 (left) and Sc = ∞ (right). The snapshots are taken
at the same times as in the left panel of figure 4 and in figure 5, respectively.
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the flow can be quantified by examining the spectrum of the velocity fluctuations, E(k) ≡∑
k−1/2<k′6k+1/2〈|v̂(k′, t)|2〉t, where 〈·〉t denotes the time average over the steady state

and v̂(k, t) is the Fourier transform of the velocity field minus its time average. We
find again that artificial diffusivity has a strong impact on the flow (figure 7, left). For
Sc = 103, E(k) decay very rapidly with the wave number, whereas for Sc = ∞ it behaves
as a power law: E(k) ∝ k−2.5. Thus, fluctuations are sustained at much smaller scales
when Sc = ∞. The power law is shallower than those found previously in experiments
and numerical simulations with different forcings, in which the exponent varied with
the setup but was always smaller than −3 (Groisman & Steinberg 2000, 2004; Berti
et al. 2008; Ray & Vincenzi 2016; Watanabe & Gotoh 2013, 2014; Gupta & Pandit
2017). A kinetic-energy spectrum steeper than k−3 was also predicted by Fouxon &
Lebedev (2003). This prediction, however, does not necessarily apply to the case under
consideration, because it assumes statistical homogeneity and isotropy and our flow does
not enjoy these statistical symmetries. (Note that, for the Kolmogorov force, the same
integration scheme used here yields the exponent −3.7 (Plan et al. 2017), which agrees
with the results of Berti et al. (2008); see also Berti & Boffetta (2010) and Garg et al.

(2018).)



9

To quantify the breaking of the cellular symmetry, we also consider the ratio

W =
ω(0, 0)− ω(π, 0)

ω(0, 0) + ω(π, 0)
, (3.1)

which compares the amplitute of vorticity at two positions in the flow, (x, y) = (0, 0) and
(x, y) = (π, 0). For the laminar solution (µ = 0), these two positions are the centres of two
equal-sign vortices and W = 0. Nonzero values of W therefore correspond to deviations
from the cellular symmetry. Figure 7 (right) shows that the fluctuations of W are much
bigger for Sc = 103 than for Sc = ∞ (analogous results are found for other couples
of equal-sign vortices). This confirms that the cellular structure is strongly modified by
artificial diffusivity.

4. Conclusions

In numerical simulations of constitutive models of polymer solutions the addition of
artificial diffusivity is a well-known strategy for overcoming the numerical instabilities
generated by the loss of positive definiteness of the polymer-stress tensor. We have studied
the accuracy of this approach in elastic turbulence by comparing simulations of the two-
dimensional Oldroyd-B model sustained by a cellular external force, with and without
artificial diffusivity. Our results show that artificial diffusivity has a strong impact on
the qualitative spatial and temporal properties of the flow. In particular, with artificial
diffusivity the cellular structure imposed by the external force breaks down, as also
found by Thomases & Shelley (2009) and Thomases et al. (2011) for a four-roll mill force
and the same value of Sc. Without artificial diffusivity, the flow is mainly perturbed in
strain-dominated regions but, albeit chaotic, essentially reproduces the symmetries of
the background force.
We have also performed simulations of the FENE-P model in exactly the same setting

and found similar results (see Appendix A); hence the effect of artificial diffusivity is not
modified by the nonlinearity of the elastic force.
To preserve the positive definiteness of the polymer conformation tensor and accurately

resolve its gradient, we have used a combination of the Cholesky decomposition and the
Kurganov–Tadmor hyperbolic solver. Adding artificial diffusivity to this scheme produces
the migration of high polymer stresses to regions of the flow where in principle polymers
would be weakly stretched. This generates strong differences in the large-scale flow. We
believe that this effect of artificial diffusivity is not specific to the Kurganov–Tadmor
scheme, i.e. the addition of an excessively large polymer-stress diffusion is expected to
produce analogous modifications of the large-scale flow also in other integration schemes
and, vice versa, if a scheme does not use artificial diffusivity or similar dissipation terms,
it should not produce the symmetry breaking discussed above.
We have described the motion of the fluid by means of the Stokes equations, as in

some of the previous studies on elastic turbulence. Other studies have used the Navier–
Stokes equations. Thus, we have also performed numerical simulations of (2.1b) coupled
with the Navier–Stokes equations with the same cellular force. The Reynolds number
Re = f0/ν

2K3 has been set to unity, which is below the critical value for the appearance
of inertial instabilities, Rec =

√
2 (Gotoh & Yamada 1984). The conclusions on the effect

of artificial diffusivity are exactly the same as when the Stokes equations are used.
In our study, we specifically selected the cellular force in order to illustrate the impact

of artificial diffusivity on numerical simulations of elastic turbulence. This force indeed
generates a flow in which the straining and vortical regions are distinct. Hence in the
absence of artificial diffusivity the polymer stress is chiefly located at the straining regions,
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whereas in the presence of diffusivity it spreads outside them. For other external forces
that mix strain and vorticity, the effect of artificial diffusivity may be less dramatic.
This is the case, for instance, of the Kolmogorov force, which in the absence of polymer
feedback and at low Reynolds numbers generates a sinusoidal shear. For the Kolmogorov
force, the velocity spectrum indeed behaves as a power law even for Sc = 103 (Garg et al.

2018), although of course the power law is observed on a smaller range of wave numbers
compared to simulations that do not use artificial diffusivity (Plan et al. 2017).
The effect of artificial diffusivity is more dramatic in elastic turbulence than at

high Reynolds numbers or in laminar flows. In these latter cases, indeed, artificial
diffusivity produces quantitative changes in the solution of the Oldroyd-B and FENE-
P models but does not modify the qualitative behaviour of the velocity and polymer-
conformation fields, provided of course Sc is not excessively small (see, e.g., figures 8
to 10 in Vaithianathan et al. 2006 and figures 3 and 4 in Sid et al. 2018 for the high-
Reynolds-number regime and figure 7 in Thomases 2011 for the laminar regime). In elastic
turbulence, before the addition of polymers the flow is laminar. Artificial diffusivity thus
strongly modifies the large-scale flow by bringing high polymer stresses to regions of the
fluid where the polymers would be weakly stretched and hence the flow would be weakly
chaotic. This effect is peculiar to the regime of elastic turbulence and can lead to the
spurious behaviours described above. Therefore, great caution should be taken in using
artificial diffusivity to prevent numerical instabilities in simulations of elastic turbulence.

We would like to thank T. Matsumoto for useful discussions. The computations
were performed at Centre de Calcul Interactif, Université Nice Sophia Antipolis and
Mésocentre SIGAMM, Observatoire de la Côte d’Azur.

Appendix A. Effect of artificial diffusivity in the FENE-P model

A drawback of the Oldroyd-B model is that there is not a maximum polymer extension.
Infinitely large extensions are in principle allowed, and in certain flow conditions trC

grows indefinitely. In the FENE-P model, a maximum polymer extension ℓmax is imposed
by modifying (2.1) as follows

∇p = ν∆u+
µ

τ
∇ · [h(trC)C] + f , ∇ · u = 0, (A 1a)

∂tC + u · ∇C = (∇u) · C + C · (∇u)⊤ − h(trC)C − I

τ
, (A 1b)

where

h(ζ) =
ℓ2max − 2

ℓ2max − ζ
. (A 2)

The function h(trC) diverges as trC approaches ℓ2max and hence causes trC to stay
smaller than ℓ2max.
In this Appendix, we report simulations of the FENE-P model with and without

artificial diffusion. The maximum polymer square extension is ℓ2max = 3 × 103, while
the other parameters of the FENE-P model are the same as those used for the Oldroyd-
B model in § 3. Equation (A 1b) is solved by combining the Cholesky decomposition
and the Kurganov-Tadmor hyperbolic solver as described in § 2. The effect of artificial
diffusivity is once again studied by adding the term κ∆C with κ = 5×10−5 to (A 1b), so
that Sc = 103. Figures 8 and 9 are the counterparts for the FENE-P model of figures 2
(right panel), 6 and 7 (left panel). The results show that the conclusions on the effects of
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This supplementary material consists of additional simulations of the Oldroyd-B model
on the periodic square [0, 2π]2 with a cellular forcing (see (2.1) and (2.2) in the main
text). The integration method is described in § 2 of the manuscript.
Figures 1 and 2 are the analogues of figures 2 (right panel), 6 and 8 (left panel) in the

main text for τ = 40, µ = 0.02 and same K, f0, ν as in § 2. In particular, the Deborah
number is now De = 8 and the coupling coefficient µ is doubled.
Figures 3 and 4 are the analogues of figures 2 (right panel), 6 and 8 (left panel) in the

main text for K = 4, τ = 10, f0 = 0.16 and same ν and µ as in § 2. The Deborah number
is De = 8 and the spatial frequency of the forcing is doubled compared to the main text.
These additional simulations support the validity of the conclusions reported in the

manuscript.
Finally, figure 5 shows the quantity d2(I,C) = tr log2(C), which represents the geodesic

distance between the conformation tensor and the identity tensor in the space of positive-
definite tensors [see Hameduddin et al., J. Fluid Mech. 842, 395 (2018)] for the same
parameters as in § 3 of the main text.
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Fig. 1. Time series of the rescaled kinetic energy in the steady state (left) and kinetic-energy
spectra (right) for the Oldroyd-B model with ν = 0.05, f0 = 0.02, K = 2, De = 8, µ = 0.02.

Fig. 2. Representative snapshots of ln(trC) in the steady state for the Oldroyd-B model with
ν = 0.05, f0 = 0.02, K = 2, De = 8, µ = 0.02 and Sc = 103 (left) and Sc = ∞ (right).
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Fig. 3. Time series of the rescaled kinetic energy in the steady state (left) and kinetic-energy
spectra (right) for the Oldroyd-B model with ν = 0.05, f0 = 0.16, K = 4, De = 8, µ = 0.01.

Fig. 4. Representative snapshots of ln(trC) in the steady state for the Oldroyd-B model with
ν = 0.05, f0 = 0.16, K = 4, De = 8, µ = 0.01 and Sc = 103 (left) and Sc = ∞ (right).
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Fig. 5. Snapshots of d2(I,C) for Sc = 103 (left) and Sc = ∞ (right) and the same parameters
and time instants as in figure 6 of the main text.
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