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Abstract: Electroencephalography (EEG) based emotion 
recognition is a widely preferred technique due to its non-
invasiveness. Also, frontal region-specific EEG signals have 
been associated with emotional processing. Feature reduction-
based optimized machine learning methods can improve the 
automated analysis of frontal EEG signals. In this work, an 
attempt is made to classify emotional states using entropy-
based features and Bayesian optimized random forest. For this, 
the EEG signals of prefrontal and frontal regions (Fp1, Fp2, 
Fz, F3, and F4) are obtained from an online public database. 
The signals are decomposed into five frequency bands, namely 
delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (14-30 
Hz), and gamma (30-45 Hz). Three entropy features, namely 
Dispersion Entropy (DE), Sample Entropy (SE), and 
Permutation Entropy (PE), are extracted and are dimensionally 
reduced using Principal Component Analysis (PCA). Further, 
the reduced features are applied to the Bayesian optimized 
random forest for the classification. The results show that the 
DE in the gamma band and SE in the alpha band exhibit a 
statistically significant (p < 0.05) difference for classifying 
arousal and valence emotional states. The selected features 
from PCA yield an F-measure of 73.24% for arousal and 
46.98% for valence emotional states. Further, the combination 
of all features yields a higher F-measure of 48.13% for valence 
emotional states. The proposed method is capable of handling 
multicomponent variations of frontal region-specific EEG 
signals. Particularly the combination of selected features could 
be useful to characterize arousal and valence emotional states.  
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1 Introduction 

In advanced human-machine interaction, emotion detection is 
a crucial step toward emotional intelligence. Emotional 
abnormalities are linked with mental health disorders [1].  The 
total number of people with anxiety disorders in the world is 
estimated to be 264 million, which is equivalent to 3.6% of the 
world's population [2]. Emotional state analysis can provide 
relevant information to identify these disorders earlier and 
improve diagnosis.  

Emotions have been described using a variety of models 
like the Positive Activation – Negative Activation (PANA) 
model, the Circumplex Model of Affect (CMA), and the PAD 
(Pleasure, Arousal and Dominance) model [3]. CMA is a 
frequently used dimensional model to describe emotions. It 
describes all emotional states in two fundamental, 
independent, and orthogonal dimensions: arousal and valence. 
Arousal dimension is a measure of the strength of the reaction 
to a stimulus: neutral or dominating. Valence is a measure of 
positive or negative affect towards the stimulus.[4]  

Emotions can be studied in two traits: non-physiological 
and physiological [5]. Non-physiological trait refers to 
recognizable emotional cues such as facial expression, body 
gesture, and voice that express emotion. In contrast, the 
physiological trait refers to information provided by 
physiological signals such as Electrocardiogram, 
Electrodermal Activity, Electroencephalogram (EEG), and 
facial Electromyography [6]. EEG is a widely preferred 
emotion classification technique because of its high 
adaptability, high temporal resolution, non-invasiveness, ease 
of use, portability, and safety [7]. 

Region-specific EEG analysis is not only faster but 
provides a spatial information about the underlying cognitive 
processes. The frontal lobe has previously been linked to 
emotion identification in studies using neurophysiological and 
functional neuroimaging techniques [8]. The prefrontal cortex 
has also been studied for emotion regulation [9]. 

Characterizing EEG signals has traditionally been 
examined from a linear perspective [10]. Many metrics for 
describing EEG signals have been proposed, with the EEG 
signals considered to represent the output of a linear system.  
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Nonlinear analysis measures have recently been shown to 
perform better than conventional metrics [11].  

Entropy is a popular nonlinear metric for EEG signals, 
and it has been utilized in emotion classification [12]. An 
entropy-based analysis is used to access the irregularity, 
randomness, and complexity of the EEG signals [13].  Many 
studies have explored various entropy metrics with machine 
learning to predict emotional states from EEG [14,15]. Due to 
multiple electrodes and bands, the number of relevant features 
needs to be reduced. Feature reduction approaches such as 
Principal Component Analysis (PCA), singular value 
decomposition have been employed to reduce the extracted 
features from EEG [16,17]. PCA is an efficient statistical 
approach for feature reduction in data with many dimensions 
[18]. 

As per literature, several classification algorithms such as 
support vector machines, random forest (RF), and k-nearest 
neighborhood has been employed to classify emotional states 
[19,20]. Random forest (RF) combines the benefits of tree and 
integration models, making it ideal for processing high-
dimensional data [19].  The RF parameters can have an impact 
on the classification model's performance. Bayesian 
optimization can utilize the least cost to discover optimal 
parameters with fewer iterations and quicker optimization, 
avoiding parameter explosion [21]. 

In this work, an attempt is made to classify arousal and 
valence emotional states using existing entropy features such 
as permutation entropy (PE), sample entropy (SE), and 
dispersion entropy (DE) [11,18], and then PCA for dimension 
reduction and finally Bayesian optimized RF for classification. 

2 Methodology 

Figure 1 shows the framework of the proposed emotion 
recognition system using EEG. The channels, namely Fp1, 
Fp2, Fz, F3, and F4, are selected based on the literature. The 
signals from the selected channels are filtered using the 4th-
order Chebyshev bandpass filter into delta (1-4 Hz), theta (4-
8 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (30-45 
Hz). Features, namely SE, PE, and DE, are extracted from 
selected electrodes and frequency bands. PCA is then 

employed for the reduction of features. The reduced features 
are then put to Bayesian optimized RF for classification. 
MATLAB® 2020b software was used for the analysis of the 
signals.  

2.1 Database Description 

The DEAP has been used by many of the authors of previous 
papers, and hence the EEG signals are obtained for this study 
[22]. While watching 40 distinct one-minute video clips, the 
EEG signals are recorded. The database contains 32 
participants' pre-processed physiological signals sampled at 
128 Hz. Each recording is self-annotated using a self-
assessment mannequin (SAM). The annotation is done by 
individual subjects based on the emotions they are 
experiencing on arousal and valence dimension ranging from 
1 to 9. If a dimension's score is greater than 4.5, it is considered 
high, and if the score is less than 4.5, it is considered low. 

2.2 Feature Extraction 

SE has been frequently utilized in EEG signal feature 
extraction [23]. SE is defined as: 𝑺𝑬(𝒎, 𝒓, 𝒏) = − 𝒍𝒏 [𝑨𝒎(𝒓)𝑩𝒎(𝒓)] (1) 

where 𝑚 is the embedding dimension; 𝐵𝑚(𝑟) and 𝐴𝑚(𝑟) 
represents the probability that two sequences match for 𝑚 and 𝑚 +  1 points, and 𝑟 is the vector comparison threshold or 
similarity criterion for assessing two matches, respectively. In 
this work, 𝑚 is considered as two and  𝑟 as 0.2. 

PE was initially used in [24] to calculate the complexity of 
signals via neighboring value comparisons. Essentially, each 
time series has a probability distribution 𝑝, whose elements 𝑝(𝑗) represent the frequencies associated with j possible 
permutation patterns, where 𝑗 = 1, . . . , 𝑚!. In this work, 𝑚 is 
considered as two and  𝑟 as 0.2. The PE is defined as: 𝑷𝑬(𝒎, 𝒓) = − ∑ 𝒑(𝒋) 𝒍𝒐𝒈 𝒑 (𝒋)𝒎!

𝒋=𝟏  (2) 

DE overcomes the shortcomings of SE and PE and is used 
to quantify the regularity of the time series. It is calculated 

Figure 1: Proposed EEG emotion recognition framework 
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using the three parameters: embedding dimension (𝑚), a class 
(𝑐) – which determines the number of patterns considered for 
computation, and a time delay (𝑑). The equations for 
estimating the DE can be referred from [18]. In this work 𝑚, a 𝑐, 𝑑 is used as 2, 6, and 1, respectively. Finally, the DE can be 
calculated as:  𝑫𝑬(𝒙, 𝒎, 𝒄, 𝒅)= − ∑ 𝒑(𝝅𝒗𝟎𝒗𝟏...𝒗𝒎−𝟏). 𝒍𝒏( 𝒑(𝝅𝒗𝟎𝒗𝟏...𝒗𝒎−𝟏))𝒄𝒎

𝝅=𝟏  
(3) 

where 𝒑(𝝅𝒗𝟎𝒗𝟏...𝒗𝒎−𝟏) is the pattern probability. 

2.3 Classification 

Entropy features extracted from the respective frequency 
bands (3x5) are then subjected to Principal Component 
Analysis (PCA) for reduction of the extracted features based 
on principal components. The top 10 reduced features are 
subjected to Bayesian optimized RF with 10-fold cross-
validation [25]. The classifier is evaluated using F-measure, 
which is defined as the harmonic mean between precision and 
recall. The hyper-parameter of RF was optimized using 
Bayesian optimization. Max-Depth, N-estimators, and Min-
samples-split are essential factors that impact RF's 
performance. The maximum features that a unit decision tree 
may employ are represented by max-depth. The number of 
subtrees is represented by N-estimators, while the minimum 
number of samples required for internal node subdivision is 
characterized by Min-samples-split [26]. 

3 Results and Discussion 

Table 1 shows the p-values of the features for the classification 
of arousal states using SE, DE, and PE. It is seen that the DE 
is able to differentiate the arousal states in the gamma band (p 
< 0.05). Table 2 shows the p-values of the features for the 
classification of valence states using SE, DE, and PE features. 
It is evident that the SE can differentiate the valence states in 
the alpha band (p < 0.05).  

Table 1: p-values of the features for classification of arousal states 

Features Band 

 Delta Theta Alpha Beta Gamma 

DE 0.8517 0.7980 0.9644 0.4807 0.0437 

SE 0.5645 0.9485 0.7555 0.4314 0.5406 

PE 0.7858 0.7710 0.7278 0.4710 0.7338 

Table 2: p-values of the features for classification of valence states 

Features Band 

 Delta Theta Alpha Beta Gamma 

DE 0.5754 0.5388 0.1091 0.4315 0.3388 

SE 0.5088 0.4156 0.0197 0.4646 0.8267 

PE 0.3921 0.6249 0.3694 0.9114 0.9297 
 

Table 3: Bayesian optimized parameter for classification of 
arousal and valence states using RF 

Dim Feat 
Select f-m [%] Max. 

Depth 
Min-

sample-
split 

N- 
estimators 

A 
Yes 73.24 44.22 5.396 752.8 

No 71.08 118.9 2.212 489.9 

V 
Yes 46.98 1.333 9.643 202 

No 48.13 47.44 6.636 743.3 

 

Table 3 shows the optimized parameter for classifying arousal 
and valence emotional states with and without the reduced 
PCA features using Bayesian optimization. It is seen that for 
classifying arousal states, the PCA yields a better f-m score 
(73.24%) with a max depth of 44, min-samples-split of 5, and 
N-estimators as 753 (considering nearest integer). On the other 
hand, for valence, all the features without reduction performed 
better with f-m of 48.13% and max depth of 47, min-samples-
split of 7, and N-estimators as 743. 

4 Conclusion 
This paper attempts to classify arousal and valence emotional 
states using frontal electrodes EEG signal by employing 
entropy-based features and Bayesian optimized random forest. 
The entropy-based features, namely SE, PE, and DE, can 
account for the emotion-evoked EEG signal's complexity, and 
RF with Bayesian optimization can classify the states 
effectively. PCA's reduced features yield an f-m of 73.24% for 
arousal and 46.98% for valence emotional states. Further, the 
combination of all features yields a higher F-measure of 
48.13% for valence emotional states. The proposed method is 
capable of handling multicomponent variations of frontal 
region-specific EEG signals. Particularly the combination of 
Sample and Dispersion Entropy with the Bayesian optimized 
random forest can classify emotions effectively.  
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