Header menu link for other important links
X
Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics
, R.J. Bemish, M. Meuwly
Published in American Chemical Society
2020
PMID: 32515959
Volume: 124
   
Issue: 31
Pages: 6255 - 6269
Abstract
The determination of thermal and vibrational relaxation rates of triatomic systems suitable for application in hypersonic model calculations is discussed. For this, potential energy surfaces for ground and electronically excited state species need to be computed and represented with high accuracy, and quasiclassical or quantum nuclear dynamics simulations provide the basis for determining the relevant rates. These include thermal reaction rates, state-to-state cross sections, and vibrational relaxation rates. For exemplary systems (i.e., [NNO], [NOO], and [CNO]), all individual steps are described, and a literature overview for them is provided. Finally, as some of these quantities involve considerable computational expense, for the example of state-to-state cross sections, the construction of an efficient model based on neural networks is discussed. All such data is required and being used in more coarse-grained computational fluid dynamics simulations. Copyright © 2020 American Chemical Society.
About the journal
JournalJournal of Physical Chemistry A
PublisherAmerican Chemical Society
ISSN10895639