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Droplet-based microfluidics turned out to be an efficient and adjustable platform for

digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction.

Typically, for most biomedical applications, the handling of complex, non-Newtonian

fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this

study, we investigate the problem of droplet formation occurring in a microfluidic T-

shaped junction, when the continuous phase is made of shear thinning liquids. At first,

we review in detail the breakup process, providing extensive, side-by-side comparisons

between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions

and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan

solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By

defining an effective Capillary number, a simple yet effective methodology is used to

account for the shear-dependent viscous response occurring at the breakup. The droplet

size can be predicted over a wide range of flow conditions simply by knowing the rheology

of the bulk continuous phase. Experimental results are complemented with numerical

simulations of purely shear thinning fluids using lattice Boltzmann models. The good

agreement between the experimental and numerical data confirm the validity of the proposed

rescaling with the effective Capillary number.
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I. INTRODUCTION

In the past decade, droplet-based microfluidics has been successfully applied to high-throughput

chemical and biological analysis, synthesis of advanced materials, sample pretreatment, protein

crystallization, encapsulation of cells, and digital PCR systems [1–8]. It is common to refer

to the liquid forming the droplets as the dispersed phase, which is carried by the stream of a

second, immiscible fluid identified as the continuous phase. Various approaches are adopted to

produce uniform trains of droplets, including breakup in coflowing streams, breakup in stretching

or elongational dominated flows, and breakup in cross-flowing streams [3,9].

The process of droplet formation is relatively well understood and studied in the case of two

immiscible Newtonian fluids, for example, water and oil [10–14]. More recently, these studies

have been extended to non-Newtonian liquids because of an increasing interest in non-Newtonian

multiphase microsystems [15]. These involve physiological fluids [16] such as blood (including

fibrinogen for fibrin formation [17,18]), synovial or salivary fluids [19], as well as fluid jets used

in printing and spraying technology [20,21], and food emulsions [22,23]. Most of the attention has
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FIG. 1. Images of droplet breakup at the microfluidic T-junction in the Newtonian (left, liquid N3 of Table I

is shown) and shear thinning (right, X400 of Table II is shown) continuous phase. The inlets of the junction

have the same width W and the same height; the dispersed phase enters in the junction from the top with flow

rate Qd , the continuous phase comes from the left side with flow rate Qc. The length L of the droplets is

measured by real-time image processing while they cross a rectangular window (the dashed contour) positioned

downstream of the junction. Droplets are formed in squeezing [see snapshots (a) and (f)], dripping [(c) and

(h)], or jetting [(e) and (j)] regimes. Snapshots [(b) and (g)] and [(d) and (i)] outline the emergent dripping and

jetting regimes respectively.

been so far devoted to the formation of non-Newtonian droplets carried by Newtonian continuous

phases [24,25]. For elastic polymers, the effect of the molecular weight on filament thinning has

been clarified in flow-focusing devices [26,27]. Only a few studies consider droplets carried by a

non-Newtonian medium, using either flow focusing geometries [15,28] or air bubble formation [29].

In the present study, we address the generation of droplets by shear thinning continuous phases in

T-junctions. We show how to describe this breakup in terms of an effective Capillary number, i.e., a

standard way to measure the importance of interfacial forces with respect to (shear-dependent)

viscous forces. As non-Newtonian fluids, we investigate solutions of Xanthan, a stiff rodlike

polysaccharide exhibiting a predominant shear thinning behavior and weak elastic effects [30,31].

The droplet size is analyzed as a function of the flow properties in various dynamical regimes.

Because of the shear thinning effects, the viscosity is nonhomogeneous in space and varies with

the flow rates of the two phases. By quantitatively comparing Newtonian and non-Newtonian data,

robust experimental evidence is provided that the droplet size rescales nicely with an effective

Capillary number (Ca), which reduces to the usual Capillary number (Ca) when both liquids are

Newtonian. Experiments are complemented with numerical simulations of purely thinning fluids

based on the lattice Boltzmann models (LBM), which are in good agreement with the experimental

data and confirm the proposed scaling.

The paper is organized as follows: In Sec. II, we describe the experimental (II A) and numerical

(II B) methodologies, including the liquids, the T-shaped junctions, and the definition of the effective

Capillary number. Results are shown and discussed in Sec. III, by reporting the size of the droplets

(III A), the rescaling of the size over the effective Capillary number (III B), and the distribution

of both the velocity and viscous stress in the droplet-carrying phase along the T-junction (III C).

Conclusions and final remarks are found in Sec. IV.

II. MATERIALS AND METHODS

A. Experiments

Droplets are produced by merging two immiscible liquids in a microfluidic T-junction [Fig. 1(a)],

which is composed of a main microchannel encountering perpendicularly a side channel, having

the same cross section. The chips are made in polydimethylsiloxane (PDMS, Sylgard 184, Dow

Corning) using standard photo-soft lithography [32,33] and have an overall size of 2×5 cm. The
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TABLE I. Experimental parameters of the liquids of the Newtonian systems. All quantities refer to a

temperature T = 25◦C. Surfactants and glycerol concentration are expressed in terms of weight/weight ratio.

ID Dispersed phase Newtonian continuous phase σ (mN/m) ηd(mPa s) ηc(mPa s) λ

N1 Soybean oil Water + 0.50% Triton X-100 2.55 ± 0.03 49.1 0.9 ∼50

N2 Soybean oil Glycerol/water 60% + 0.56% Triton X-100 3.59 ± 0.62 49.1 9 ∼5

N3 Glycerol/water 67% Hexadecane + 1% Span 80 3.99 ± 0.43 14.5 3 ∼5

N4 Glycerol/water 40% Hexadecane + 1% Span 80 4.17 ± 0.09 3.22 3 ∼1

N5 Water Hexadecane + 1% Span 80 5.01 ± 0.33 0.9 3 0.3

microchannels have a width W ≈ 150 µm and a height H ≈ 100 µm. Further details about the

fabrication can be found in Sec. I of the Supplemental Material (SM) [34].

The dispersed phase forming the droplets is injected by the side channel with a flow rate Qd ,

while the continuous phase carrying away the droplets is injected in the main channel with a flow rate

Qc, the flow rates being controlled by a couple of syringe pumps specifically designed for viscous

flows (PHD 2000 from Harvard Apparatus, USA). Images of the droplets are acquired and analyzed

in real time with custom software, which also controls the syringe pumps. The length L of the

droplets is measured, after breakup, in a region of interest downstream of the T-junction [Fig. 1(a)],

and is averaged over at least a hundred droplets [35]. Additional details on the experimental setup

are reported in Sec. II of the SM [34]. We address the generation of droplets both in Newtonian

continuous phases (Newtonian systems) and in shear thinning continuous phases made of polymer

solutions (non-Newtonian systems). Table I summarizes the Newtonian fluids reporting the liquid

composition, interfacial tension σ , dynamic viscosity ηd of the dispersed phase, dynamic viscosity

ηc of the continuous phase, and the viscosity ratio λ = ηd/ηc. The experiments span two decades

of λ using various combinations of either soybean oil (Alfa Aesar) or hexadecane (Sigma Aldrich),

and water solutions of glycerol (� 99.5% anhydrous, Sigma Aldrich) at different concentrations. A

surfactant is added to the continuous phase in order to improve the wetting of the channel walls.

Triton X-100 (Sigma Aldrich) is used in the water solutions while Span 80 (Sigma Aldrich) is added

to hexadecane. The values of the interfacial tension σ are measured with the pendant drop technique

[35]. The non-Newtonian systems are summarized in Table II. Soybean oil is used as the dispersed

phase while, as continuous phase, water solutions of Xanthan (molecular weight Mw ≃ 106 g/mol,

Sigma Aldrich) at different concentrations are employed. The rheology of Xanthan solutions used

in the present study is discussed in Ref. [30]. Details can be found in Fig. S2 of the SM [34]. Briefly,

at the concentrations considered, they exhibit a well-pronounced shear thinning behavior and weak

elastic effects due to the emergence of first normal stress differences at relatively high concentrations

[30,31]. The viscosity data of the Xanthan solutions are fitted according to the power-law fluid model,

similarly to that done in Refs. [30,35],

η(γ̇ ) = K γ̇ (n−1), (1)

where K and n, being the fluid consistency and the flow behavior index respectively [36], are used

as fitting parameters. Their values are listed in Table II for the concentrations of Xanthan used in

TABLE II. Experimental parameters of the liquids of the non-Newtonian systems. All quantities refer to a

temperature T = 25◦C. The concentrations are expressed in terms of weight/weight ratio.

ID Dispersed phase Shear thinning continuous phase σ (mN/m) ηd(mPa s) K(mPa sn) n

X400 Soybean oil Xanthan 400 ppm + 0.2% Triton X-100 3.42 ± 0.01 49.1 32.6 0.589

X800 Soybean oil Xanthan 800 ppm + 0.2% Triton X-100 3.00 ± 0.04 49.1 75.5 0.491

X1500 Soybean oil Xanthan 1500 ppm + 0.7% Triton X-100 2.28 ± 0.02 49.1 312.5 0.389
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this study. In the breakup process occurring in a microfluidic T-junction, the droplet size is usually

analyzed in terms of the Capillary number [5,13,37–39],

Ca =
ηcUav

σ
, (2)

where the quantities Uav and ηc refer to the average velocity and the viscosity of the continuous phase,

respectively, while σ is the interfacial tension between the two phases. In the case of a non-Newtonian

continuous phase, ηc is chosen to be the value corresponding to an effective shear rate,

γ̇eff =
3Uav

δ
, (3)

where δ is a characteristic length scale and the choice of the numerical prefactor 3 is technically

detailed in the Sec. III of the SM (see also comments below). For a rectangular microchannel, δ

should be chosen as the smallest size between H and W . However, in our study, these are of the same

order of magnitude, and the choices δ = W or δ = H in Eq. (3) are both appropriate to analyze the

droplet size as a function of the Capillary number for fixed channel geometry. We choose δ = W . To

highlight the importance of setting δ to be equal to the smallest scale between H and W , one could

perform a study by keeping the Capillary number fixed while changing the channel geometry, with

situations where W is much different from H : This is outside the scope of the present paper, but

surely deserves dedicated scrutiny in the future. Since Uav = Qc/(WH ), the value of an effective

viscosity ηc( ˙γeff) can be computed by the power-law fluid model (1) in terms of Qc. Within the

investigated range of Qc, the computed shear rates span from ≈1 s−1 to ≈2×103 s−1, which is in

the range of validity of the power-law model [30,36]. In the case of a shear thinning continuous

phase, an effective Capillary number Ca is then introduced. A balance between viscous thinning

effects and pressure gradients (see Sec. III of the SM [34]) suggests that a proper definition of Ca is

Ca = n

[

ηc(γ̇eff)Uav

σ

]

(4)

with n being the flow behavior index of the power-law fluid [see Eq. (1)]. In the case of a Newtonian

fluid, Ca reduces to the usual Ca number defined in Eq. (2) since n = 1 and ηc(γ̇eff) is a constant. A

few comments regarding the definition of the effective Capillary number in Eq. (4) and the effective

shear rate in Eq. (3) are in order.

First, we notice that the effective shear rate γ̇eff is here imposed via the geometrical length

scale δ and the average velocity Uav . This differs from the definition adopted in the analysis of

non-Newtonian sliding droplets [30,40], where a “phenomenological” length scale was introduced

only a posteriori, and whose value was derived by imposing that the non-Newtonian data match the

Newtonian ones for small Capillary numbers and small driving forces.

There are also some technical differences in the definition of the effective Capillary number, if

compared with the definition adopted in a recent study by Roumpea and coworkers [41]: First, we

use the prefactor 3 in front of the effective shear rate, while the definition in Ref. [41] has a refined

n-dependent prefactor [42], which is in principle more accurate. However, the changes in the prefactor

induced by a change in n are small if compared to the changes we have in the average flow velocity,

which spans several orders of magnitude. Second, our definition of the effective Capillary number

shows a proportionality with the flow behavior index n, while the definition in Ref. [41] does not. We

find this as a consequence of the balancing between pressure forces and viscous dissipation, as ex-

plained in Sec. III of the SM [34]. Working with power-law fluids where n does not change too much,

it is somehow difficult to further assess these differences on a more quantitative basis. More work is

needed in this direction, possibly including a more ample variety of fluids with many realizations of n.

B. Numerical simulations

Our numerical simulations rely on lattice Boltzmann models (LBM). LBM are mesoscopic

methods, tracking the evolution of the probability distribution function for particles in a discretized
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space and time domain. The hydrodynamics of Navier-Stokes (NS) equations is recovered from

the coarse-grained behavior of the system [43]. The mesoscopic nature of the methods can provide

many advantages over atomistic approaches, making the LBM especially useful for the simulation of

droplets and interfacial dynamics at the microscales. There are various LBM that have been adopted

to investigate droplet formation and dynamics in confined T-junction geometries [38,39,44–53]. In

particular, LBM have already been used for the simulation of non-Newtonian phases in microfluidic

T-junctions in Ref. [53], where it is shown that the LBM are actually able to capture sizable effects

of non-Newtonian rheology on the droplet formation process. The present numerical work follows

other studies by some of the authors [30,54–57], where a NS description based on LBM has been

coupled to constitutive equations for different polymer dynamics. Specifically, in two recent papers

[54,55], three-dimensional (3D) simulations are carried out to quantify the effects of elasticity in

the breakup processes in confined T-junctions [54] and cross-junctions [55] and to investigate the

effects of thinning [30] in open microfluidic geometries [58,59]. Here the focus is instead on thinning

effects in the T-junction geometry. We refer the interested reader to our previous papers where all the

relevant LBM technical details are discussed [30,54–56]. In Sec. VI A of the SM [34], we just briefly

recall the relevant NS macroscopic equations that are integrated with the LBM. Some numerical

benchmarks for Newtonian liquids are further illustrated and discussed in Sec. VI B of the SM.

III. RESULTS

In this section, we report the systematic results obtained for the droplet breakup in microfluidic

T-shaped junctions. Section III A shows the variation of the droplet size in the various regimes

up to jetting, either for Newtonian or shear thinning continuous phases. The identification of the

breakup regimes is obtained by constructing comprehensive breakup maps for all the liquids (see

Sec. IV of the SM). The rescaled data of all liquids in terms of the effective Capillary number

are presented in Sec. III B. This analysis is suitably complemented with quantitative results based

on numerical simulations of purely thinning fluids in the squeezing-to-dripping transition. Finally,

based on numerical simulations, we show and analyze in Sec. III C the velocity and stress profiles

developed along the channel. Time evolution of the stresses is provided in the movies of the SM [34].

A. Droplet size

In the presence of a shear thinning continuous phase, we can still identify the breakup regimes

commonly reported with Newtonian liquids [3,5,37] shown in the left snapshots of Fig. 1 at increasing

Ca. In Fig. 1(a), droplets form at the junction and fill the channel, assuming a plug shape. The

dispersed phase completely obstructs the channel, leading to an increase in the pressure upstream,

which eventually breaks up the interface into a droplet. In this “squeezing” regime, the droplet

size does not strongly depend on Ca, but only on the flow rates [13,37,60,61]. In Fig. 1(c), the

droplets are emitted before they can block the channel and their formation is due to the action of

the viscous shear stress. In this “dripping” regime, the droplet size decreases with Ca [10,37,60].

Finally, Fig. 1(e) shows that, at high Ca, the detachment point moves progressively downstream and

the breakup process signals the emergence of a “jetting” mode [37]. The snapshots in Figs. 1(b) and

1(d) show the intermediate cases right before the transition to dripping and jetting, respectively. The

right snapshots of Fig. 1 refer to oil drops in Xanthan solutions. They clearly show that, by varying

the flow rate Qc of the continuous phase, it is possible to reproduce the same regimes reported

for the Newtonian systems. Figure 2 shows the dependence of the normalized droplet length L/W

as a function of the flow rate Qc of the continuous phase (for Xanthan solutions) or both Qc and

the Capillary number Ca (for Newtonian liquids) at different flow-rate ratios ϕ = Qd/Qc and λ.

Figures 1(a)–1(e) refer to the Newtonian liquids whose details are listed in Table I, while

Figs. 1(g)–1(i) correspond to the droplets formed in shear thinning continuous phases described

in Table II. These measurements provide a significant addition to the existing literature that is

mainly focused on the dependence of the droplet size when λ � 1 and ϕ < 1 [37,60,61]. For each
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Normalized, dimensionless length L/W of the droplets formed at the microfluidic T-junction as a

function of either the flow rate of the continuous phase Qc [top axis of panels (a)–(e), bottom axis of panels

(g)–(i)] or the corresponding Capillary number Ca [bottom axis in panels (a)–(e)] for different values of the

flow-rate ratio ϕ, indicated by different symbols according to the legend reported in panel (f). Panels (a)–(e)

refer to the Newtonian fluids listed in Table I, while panels (g)–(i) correspond to the polymers listed in Table II.

Open circles mark the flow rate Q∗

c corresponding to the onset of the jetting regime, accordingly to the maps

shown in Fig. S1 of the SM [34].

ϕ, the data stops at a certain value Qc, which is found to increase as ϕ gets smaller at fixed λ.

It represents either the maximum Qc for which droplet breakup still occurs before the detection

window of Fig. 1(a), or the maximum Qc reachable by our setup. The open circles appearing in

the curves mark the flow rate Q∗
c corresponding to the onset of the jetting regime, according to the

breakup maps shown in Fig. S1 of the SM [34].

The transition to jetting displays approximately a power-law behavior with ϕ ∼ Qc
−1,

corresponding to a constant value of Qd , as reported in the literature [23]. Further, as other authors

report [62], hysteresis has been observed in the transition to jetting; i.e., after reaching the full jetting

regime [Fig. 1(e)] by increasing Qc, the jet persists even after decreasing Qc.

The size of droplets transported by a Newtonian liquid is observed to increase at increasing ϕ,

and decrease at increasing Ca [13,60]. This trend is consistent with previous studies performed in

similar conditions [60,61]. For instance, at small Ca, the droplet size is independent of the viscosity

ratio [see, for instance, the data at ϕ = 0.4 in Figs. 2(b)–2(e)] and increases with the flow-rate ratio

[compare, for instance, the data at ϕ = 0.4 and ϕ = 0.6 in Figs. 2(b)–2(e)], in agreement with the
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scaling argument valid for the squeezing regime [13]. Furthermore, the change in the slope found

at Ca ≃ 10−2 for the curve ϕ = 0.2 and λ = 1 in Fig. 2(d) (see dashed line) is very close to the

transition from squeezing to dripping calculated in phase-field numerical simulations of immiscible

fluids at Ca ≈ 0.015 for ϕ = 0.25 and λ = 1 [37]. We point out that, with our geometry, the dripping

regime is not very pronounced because the widths of the two inlet channels are the same [9,39].

The size of droplets carried by Xanthan solutions is observed to increase with ϕ and initially

decrease with Qc, just like the Newtonian counterpart. However, at high Qc the droplets become

longer in the direction of the flow. The analysis of their volume, performed by measuring the

frequency of the droplets production as done in Ref. [60] reveals that the volume of the droplets

actually decreases with increasing Qc (data not shown). The elongation of the droplets carried by a

shear thinning phase can be seen in Fig. 1(h) and it has also been recently reported in a similar study

[41]. Particle-image-velocimetry measurements performed in Ref. [41] show that the film thickness

of the continuous phase surrounding the droplets increases with increasing concentration of Xanthan

solution. More precisely, for a Newtonian system, the liquid film corresponds to approximately 3%

of the channel diameter, whereas for the 2000-ppm Xanthan gum system the film thickness is almost

10% of the channel diameter [41]. It is noteworthy that elongation takes place when the shear forces

appear to be quite consistent, and noticeably in the emergence of the jetting regime. Apart from this

elongation, the droplet production in shear thinning continuous phases is qualitatively similar to that

occurring in purely Newtonian systems.

B. Rescaling over Ca

A quantitative comparison between Newtonian and non-Newtonian systems is then performed

for selected values of the viscosity ratio λ, and of the flow-rate ratio ϕ. In the left column of

Fig. 3, the average normalized droplet length L/W is reported as a function of the continuous flow

rate Qc for chosen ϕ, covering more than one decade, from ϕ = 1/40 to ϕ = 0.4. Data taken at

Qc � 0.1 µL/min are discarded due to poor reproducibility of our syringe pumps in this range.

Similarly, droplets formed in the jetting regime are not considered because of elongation effects.

The graphs clearly show that the droplets formed in the shear thinning Xanthan solutions get smaller

as the Xanthan concentration is increased, at a given ϕ. In addition, the size difference between

droplets carried by Xanthan at 1500 ppm and the ones formed in water is about 30% for about

one decade of ϕ. However, when plotted against Ca, a remarkable degree of collapse on the same

curve is observed for all the data. With such rescaling, the droplets produced at a given ϕ display

essentially the same size either they are formed in Newtonian or non-Newtonian, shear thinning,

continuous phases. The droplet size is found to scale as a power law L/W ∼ ACa
β
, with A being a

function of ϕ [35,60,63]. The straight lines of Fig. 3 are fits to the data according to this power law

and the resulting parameters are reported in Table III for each value of ϕ. Both A and β are found

to increase with ϕ. In particular, A ∼ ϕ(0.32±0.02), the exponent being similar to those reported by

Refs. [35,63]. These observations provide a direct, experimental evidence of the validity of the Ca

number, Eqs. (3) and (4), to properly capture the shear distribution inside the microfluidic channel,

when a shear thinning fluid is flowing at a given Qc.

C. Velocity and stress distribution in the channel

To better understand the role played by the Xanthan solutions, the droplet breakup experiments

are complemented with realistic numerical simulations of purely thinning fluids, which allow us

to directly visualize the viscous stress and velocity profiles inside the microfluidic channels and

to highlight the contribution of shear thinning. Indeed, especially at high concentrations, Xanthan

solutions may be affected by normal stress effects [30,31] (see also SM [34], Sec. V), whereas the

numerical simulations here performed do not include such effects. Figures 4 and 5 report snapshots of

the droplet formation process in the squeezing-to-dripping transition, for a representative case with

fixed Qc = 1.23 lbu (lattice Boltzmann units) and flow-rate ratio ϕ = 0.5. Both Newtonian [n = 1,
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FIG. 3. Experimental (top, white panels) and numerical (bottom, orange panels) normalized droplet length

L/W as a function of the flow rate of the continuous phase Qc (left column) and the effective Capillary number

Ca defined in Eq. (4) (right column), for different values of the flow-rate ratio ϕ, which is increasing from

top to bottom. All the graphs are in log-log scale. Open symbols refer to Newtonian fluids, filled symbols of

the experimental graphs to shear thinning Xanthan solutions at different concentrations, filled symbols of the

numerical graphs to power-law fluids with different flow behavior indexes n. The line is a power-law fit to the

experimental data, with fitting parameters reported in Table III.
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TABLE III. Fitting parameters A and β used to fit the experimental value of the normalized droplet length

L/W accordingly to L/W = A(Ca)β corresponding to the values of the flow rate ratio ϕ showed in Fig. 3

(white background, right panels).

ϕ A β

0.025 0.62 ± 0.01 −0.135 ± 0.003

0.05 0.71 ± 0.02 −0.126 ± 0.005

0.1 0.97 ± 0.01 −0.086 ± 0.002

0.2 1.16 ± 0.03 −0.078 ± 0.005

0.4 1.47 ± 0.02 −0.065 ± 0.003

Figs. 4(a) and 4(b)] and non-Newtonian [n = 0.9, Figs. 4(c) and 4(d); n = 0.75, Figs. 4(e) and 4(f)]

cases are analyzed. Specifically, in Fig. 4, the density contours of the dispersed phase are overlaid

on the velocity vector field evaluated at half of the channel height. For a fixed Qc, the snapshots of

velocity vectors share qualitative features, being more intense in the center of the channel. Using the

velocity profiles, the viscous stress in the continuous phases is also computed. This is overlaid on

the density contours in Fig. 5. Overall, we observe that by decreasing the power law index n, the film

thickness between the front of the formed droplet and the walls slightly increases and droplets have

the tendency to develop a “bullet-shaped” profile, which recalls the experimental finding in Fig. 1(h)

and the experimental observations in Ref. [41]. Moreover, for the non-Newtonian fluids, the droplet

size comes out to be smaller in comparison to the Newtonian case, and the effect is more pronounced

at smaller thinning exponents. This well echoes the experimental findings reported in the left panel

of Fig. 3. We actually see in Fig. 5 that the viscous stress is more intense close to the boundaries

at decreasing n. This explains the observed discrepancies in droplet sizes, in that whenever a larger

viscous stress is present close to the wall, this results in a smaller droplet size. We point out that the

use of thinning exponents smaller than n ≈ 0.7 faces a problem of numerical instabilities associated

with the multicomponent LBM used, since the viscosity ratio achieved in different regions of the

same numerical simulation is relatively large [64]. Hence, the range of thinning exponents differs

from the experimental counterpart explored in Fig. 3; however, numerical simulations are still useful

(a) t = t0 + 9.75τshear ; n = 1.0 (b) t = t0 + 10.50τshear ; n = 1.0

(c) t = t0 + 11.25τshear ; n = 0.9 (d) t = t0 + 12.00τshear ; n = 0.9

(e) t = t0 + 10.50τshear ; n = 0.75 (f) t = t0 + 11.25τshear ; n = 0.75

FIG. 4. Snapshots of the droplet formation process in numerical simulations with LBM, reporting two

representative situations before (left column) and after (right column) the breakup process has occurred. 3D

snapshots are overlaid on the velocity vector field evaluated on a slice located at half of the channel height. The

flow-rate ratio is kept fixed to ϕ = 0.5 and the flow rate in the continuous phase to Qc = 1.23 lbu. Different

power-law exponents are used: Newtonian fluid [n = 1, panels (a) and (b)], thinning fluid with thinning exponent

n = 0.9 [panels (c) and (d)], and n = 0.75 [panels (e) and (f)]. The corresponding stress is reported in Fig. 5.

Time is made dimensionless using the shear time τshear = W/Uav .
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(a) t = t0 + 9.75τshear ; n = 1.0 (b) t = t0 + 10.50τshear ; n = 1.0

(c) t = t0 + 11.25τshear ; n = 0.9 (d) t = t0 + 12.00τshear ; n = 0.9

(e) t = t0 + 10.50τshear ; n = 0.75 (f) t = t0 + 11.25τshear ; n = 0.75

FIG. 5. Viscous stress evaluated from the velocity profiles shown in Fig. 4. Further information is provided

in the movies of the SM.

to highlight to what degree the observed results originate from a combination of hydrodynamics and

bulk thinning phases without influence of elastic effects [30,31]. This is done in the bottom (orange)

panels of Fig. 3. Although the functional dependency between the droplet size and Capillary number

looks a bit more pronounced for the ϕ analyzed in the numerics, the overall picture emerging from

Fig. 3 highlights that the proposed rescaling arguments work well for a wide range of thinning fluids

(n = 0.5–1.0) and flow-rate ratios (ϕ = 1/40–1.0). Whenever weak discrepancies emerge, they are

of the same order of magnitude for both experiments and numerical simulations; since numerical

simulations are performed with purely thinning fluids, it is unlikely to attribute such discrepancies

to the weak normal stresses of Xanthan [30,31].

IV. CONCLUSIONS

We have extensively studied droplet breakup in a microfluidic T-junction driven by either

Newtonian or non-Newtonian (shear thinning) continuous phases. The droplet size is measured

over a wide range of the viscosity ratio λ and flow-rate ratio ϕ still partly unexplored [37,50,60].

Squeezing, dripping, and jetting regimes are identified for Newtonian and non-Newtonian continuous

phases and the resulting breakup maps look quite similar. The droplet length in the squeezing and

dripping regimes is found to nicely scale with an effective Capillary number, which reduces to the

usual Capillary number when the fluid is Newtonian. At sufficiently high Qc, close to the dripping to

jetting transition, where the breakup is dominated by the shear stress, droplets generated in Xanthan

solutions are more elongated with respect to the Newtonian ones. The experiments are complemented

with numerical simulations based on lattice Boltzmann models (LBM) with purely thinning fluids in

the squeezing-to-dripping transition. The simulations help in clarifying on a more quantitative basis

the observed decrease in droplet size for the same injection flow rate. In such conditions, simulations

indeed show that the viscous stress is more intense close to the microchannel walls for a shear

thinning fluid, thus yielding smaller droplets, as typically observed in the experiments. The rescaling

with the effective Capillary number is also verified in numerical simulations, thus confirming that

the observed properties are solely ascribed to a combination of continuum hydrodynamics and

purely thinning phases. Our results provide new insights into the formation and the manipulation
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of droplets in the presence of non-Newtonian confined environments and show that LBM can be

successfully employed for the simulation of such complex microfluidic systems. Measurements are

currently in progress on the generation of oil droplets in polyacrylamide (PAA) solutions [40,65],

characterized by strong elastic effects, while showing only weak shear thinning properties, a situation

complementary to this study. Another interesting aspect for future studies could be the assessment

of the validity of the effective Capillary number to rescale and predict droplet size upon changing

the channel geometry, while keeping the same flow-rate magnitudes.
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