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DIVISIBILITY OF CLASS NUMBERS OF IMAGINARY QUADRATIC
FUNCTION FIELDS BY A FIXED ODD NUMBER

PRADIPTO BANERJEE AND SRINIVAS KOTYADA

ABSTRACT. In this paper we find a new lower bound on the number of imaginary qua-

dratic extensions of the function field Fq(x) whose class groups have elements of a fixed

odd order. More precisely, for q, a power of an odd prime, and g a fixed odd positive

integer ≥ 3, we show that for every ǫ > 0, there are ≫ q
L( 1

2
+ 3

2(g+1)
−ǫ)

polynomi-

als f ∈ Fq[x] with deg f = L, for which the class group of the quadratic extension

Fq(x,
√
f) has an element of order g. This sharpens the previous lower bound q

L( 1
2
+ 1

g
)

of Ram Murty. Our result is a function field analogue to a similar result of Soundararajan

for number fields.

1. INTRODUCTION

For a square-free integer D, let Cl(−D) denote the ideal class group of Q(
√
−D), and

let h(−D) = #Cl(−D) denote the class number. In his 1801 Disquisitiones Arithmeticae,

Gauss put forward the problem of finding all positive square-free D such that h(−D) is

some fixed number C. Heegner [11], Baker [3] and Stark [20] solved Gauss’s problem

completely for C = 1. Subsequently, Baker [4] and Stark [21] provided solutions to the

case C = 2. Recently, Watkins [22] extended the range of the complete solutions to

Gauss’s problem for C ≤ 100.

A related problem of interest is to determine the existence of g-torsion subgroups of

Cl(−D) for positive integers g. Gauss studied the case g = 2. Davenport and Heilbronn [8]

proved that the proportion of D with 3 ∤ h(−D) is at least 1/2. For any g the infinitude of

such fields was established by Nagell [17], Honda [13], Ankeny and Chowla [1], Hartung

[12], Yamamoto [24] and Weinberger [23].

For a positive integer g, let Ng(X) denote the number of positive square-free D ≤
X such that g|h(−D). Gauss’s genus theory (for reference see [5]) demonstrates that

2|h(−D) whenever D is a product of at least two odd prime numbers. This in particular

implies that N2(X) ∼ 6X/π2. In general it is believed that Ng(X) ∼ CgX for some

positive constant Cg . For odd primes g, Cohen and Lenstra [6] conjectured that

Cg =
6

π2

(

1−
∞
∏

i=1

(

1− 1

gi

))

.

Ankeny and Chowla [1] were among the first to achieve an estimate for Ng(X) for g ≥
3. Although they did not explicitly point this out, their method shows that for g ≥ 3,

Ng(X) ≫ X1/2. Recently, Murty [16] improved this lower bound to Ng(X) ≫ X
1
2+

1
g ,
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which was subsequently sharpened by Soundararajan [19] who showed

Ng(X) ≫
{

X
1
2+

2
g−ǫ if g ≡ 0 (mod 4)

X
1
2+

3
g+2−ǫ if g ≡ 2 (mod 4).

For q, a power of an odd prime, we define k := Fq(x) to be the function field over

the finite field Fq and A := Fq[x], its ring of integers. For a square-free f ∈ A, we will

denote the quadratic field extension k(
√
f) by K , and its ring of integers A[

√
f ] by B. The

function field analogue of the class number divisibility problem was initiated by Emil Artin

[2]. Friesen [10] constructed infinitely many polynomials f ∈ A of even degree such that

the class groups for K have an element of order g where g is not divisible by q. Friedman

and Washington [9] have studied the Cohen-Lenstra conjecture in the function field case.

In [15], Murty and Cardon proved that for q ≥ 5 there are ≫ qL( 1
2+

1
g ) polynomials f ∈ A

with deg(f) ≤ L such that the class groups for the quadratic extensionsK have an element

of order g, which is analogous to the result Ng(X) ≫ X
1
2+

1
g of Murty [16]. In [7],

Chakraborty and Mukhopadhyay have shown that there are ≫ qL/2g monic polynomials

f ∈ A of even degree with deg(f) ≤ L such that the ideal class group of the (real)

quadratic extensions K have an element of order g. This is a function field analogue of

Murty’s result [16] Ng(X) ≫ X1/2g for real quadratic number fields.

The case when deg f is odd is analogous to the case of an imaginary quadratic number

field in which the prime at infinity ramifies and the unit group has rank 0. Recently, Mer-

berg [14] used a function field analogue to the Diophantine method of Soundararajan [19]

for finding imaginary quadratic function fields whose class groups have elements of a given

order. He further proved that there are infinitely many such fields whose class numbers are

not divisible by any odd prime distinct from the characteristic.

In the present work, we sharpen the lower bound of Murty and Cardon for imaginary

quadratic extensions of k, and for odd g ≥ 3. Specifically, we prove the following

Theorem 1. Let g ≥ 3 be a fixed positive odd integer. Let q be a power of an odd

prime. For odd L, let Ng(L) denote the number of square-free polynomials f ∈ Fq[x]
with deg f ≤ L such that the class group of the quadratic extension Fq(x,

√
f) contain an

element of order g. Then, for sufficiently large L we have

Ng(L) ≫ qL( 1
2+

3
2(g+1)

−ǫ).

We will work with polynomials f with deg f = L. This, however we note that does not

affect the statement of our result. We will use ideas from [19] to achieve our result. From

our construction of the quadratic extensions of Fq(x) it will become evident that the case

when g ≡ 0 (mod 4) cannot be handled by our method. However, we remark that by a

straightforward group theoretic argument and Theorem 1, a new lower bound when g ≡ 2
(mod 4) can be achieved if one can first settle the function field analogue of Gauss’s genus

theory.

For basic function field related concepts, we refer the reader to [18]. We will denote

by F×
q the multiplicative group of non-zero elements in Fq . For an integer U , we let π(U)

count the number of irreducible monic polynomials of degree U . For a f ∈ A, define the

norm |f | of f as |f | := qdeg f , and let sgn(f) denote the leading coefficient of f . Let

the Möbius function µ(f) be 0 if f is not square-free, and (−1)t if f is a constant times

a product of t distinct irreducible monic polynomials in A. We will let d(f) denote the

number of distinct monic divisors of f (including f/sgnf ). We further define the Euler
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function φ(f) to be the order of the unit group (A/fA)× of the ring A/fA. It can be

verified that

φ(f) = |f |
∏

p|f

(

1− 1

|p|
)

,

where the product is taken over irreducible monic polynomials. For a, b in A, the symbol

(a, b) will denote the greatest common monic divisor of a and b, and
(

a
b

)

denotes the

Jacobi symbol whenever relevant. We will let. For functions F and G, we will use the

notation F ≍ G whenever F ≫≪ G. Finally, we would like to point out to the reader that

the ‘ǫ’s appearing at different places are different.

We prove our result by first giving a criteria for the existence of elements of order g in

Cl(f), the class group of K . This will be achieved in Section 2. In order to obtain the

lower bound in the theorem, we need to count the number of square-free f meeting the

divisibility criteria. We will do this in Section 3. Sections 4 and 5 provide the technical

details needed in Section 3. The last section contains the conclusion of the proof.

2. A DIVISIBILITY CRITERIA FOR THE CLASS NUMBER OF Fq(x,
√
f)

Define the normN(a) ∈ A of an element a ∈ B as N(a) = aā, where ā is the conjugate

of a. For an ideal v in B, we consider the ideal u in A generated by the set {N(a) : a ∈ v}.

Since A is a principal ideal domain, the ideal u is principal, say u = (b), where b ∈ A. We

define the norm N(v) of the ideal v as qdeg b. We note that for a principal ideal (a) in B,

N((a)) = qdegN(a).

In the following proposition, we construct quadratic extensions of k whose class groups

contain an element of order g.

Proposition 1. Let g ≥ 3 be an odd positive integer. Let f ∈ A be a square-free poly-

nomial of odd degree. If there exist nonzero m, n, t ∈ A such that t2f = n2 − mg

with (m,n) = 1 and degmg > max{degn2, deg t4}, then the class group for K has an

element of order g.

Proof. Suppose m, n and t as in the lemma exist. Rewriting t2f = n2 − mg as mg =
n2 − t2f , we see that the ideal (m)g factors in B as

(m)g = (n+ t
√

f)(n− t
√

f).

We note that any common divisor d of the ideals (n + t
√
f) and (n − t

√
f) contains 2n.

As 2 is a unit in A, we deduce that n ∈ d. On the other hand d also contains mg, but

(mg, n) = 1. Thus d = B, that is the ideals (n+ t
√
f) and (n− t

√
f) are co-prime in B.

Thus there exist ideals a and a
′ in B such that (n+ t

√
f) = a

g, and (n− t
√
f) = a

′g.

We claim that the ideal class of a has order g. Assume otherwise that there is a positive

integer r < g such that ar is principal, say a
r = (u + v

√
f) for some u, v ∈ A. It is

clear that r|g. Taking norm we have N(a)r = qdeg(u
2−v2f). We also have (n + t

√
f) =

(u + v
√
f)g/r. Since t 6= 0, it immediately follows that v 6= 0. Thus v2f 6= 0 has odd

degree, and since u2 has even degree, deg(u2 − v2f) ≥ deg f .

Therefore N(a)r = qdeg(u
2−v2f) ≥ qdeg f . On the other hand,

N(a)g = qdeg(n
2−t2f) = qdegmg

= qg degm.

Thus N(a) = qdegm.
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Now from qr degm = N(a)r ≥ qdeg f we see that

(1) r degm ≥ deg f = deg
(n2 −mg

t2
)

= g degm− 2 deg t.

The last equality above follows from our assumption that degmg > max{degn2, deg t4}.

Rearranging terms in inequality (1), we have degm ≤ 2 deg t
g−r . But from our assumption

that degmg > deg t4, it now follows that

4 deg t

g
< degm ≤ 2 deg t

g − r
,

giving rise to g
r < 2, and there by contradicting the fact that r|g since g ≥ 3. This proves

our claim and hence the proposition. �

3. COUNTING SQUARE-FREE f

In this section we shall obtain a lower bound on the number of square-free f ∈ A
meeting the criteria of Proposition 1. The bound obtained in this section will depend on

some parameter T to be determined in Section 6(see (23)).

Thus we will be interested in counting the number of square-free polynomials f ∈ A
satisfying

(2) n2 −mg = t2f, (m,n) = 1 and degmg > max{n2, t4}.
Let degm = M , degn = N , deg t = T and deg f = L. In view of Proposition 1 we

assume that

(3) T < L/2, Mg = 2T + L and N = T +
L

2
− 1.

From the above choice of M , N and T it follows that

Mg > max{2N, 4T },
that is degmg > max{n2, t4}. Thus if f admits a solution to the (2), then by Proposition

1, Cl(f) has an element of order g.

Let Ng(L, T ) count the number of square-free f with deg f = L and satisfying (2). For

a square-free polynomial f ∈ A of degree L, let R(f) denote the number of solutions in

monic m, n and t to (2). If we define the characteristic function χ(f) as

χ(f) =

{

0 if R(f) = 0

1 if R(f) 6= 0,

then we can write Ng(L, T ) as

Ng(L, T ) =
∑

deg f=L

χ(f).

By Cauchy-Schwarz inequality we have

(
∑

deg f=L

χ(f)2)(
∑

deg f=L

R(f)2) ≥ (
∑

deg f=L

χ(f)R(f))2,

which can be rewritten as

(4) Ng(L, T ) ≥ (
∑

deg f=L

R(f))2(
∑

deg f=L

R(f)2)−1.
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Thus, in order to determine a lower bound onNg(L, T ), we need to establish a lower bound

on (
∑

deg f=LR(f))2 and an upper bound on
∑

deg f=LR(f)2.

In the next section we will obtain the lower bound on (
∑

deg f=LR(f))2 by establishing

the following lemma.

Lemma 1.
∑

deg f=L R(f) ≍ qM+N−T .

By a counting argument, we will show in Section 5 that

Lemma 2.
∑

deg f=L R(f)
(

R(f)− 1
)

≪ qǫL+2M+2T .

Below we demonstrate how Lemma 1 and Lemma 2 give a lower bound on Ng(L, T ).

Observe that
∑

deg f=L

R(f)2 =
∑

deg f=L

R(f)
(

R(f)− 1
)

+
∑

deg f=L

R(f) ≪ qM+N−T + qǫL+2M+2T .

In order to achieve an upper bound on
∑

deg f=LR(f)2, we will optimally choose the

parameter T so that

(5) M +N − T ≤ ǫL+ 2M + 2T.

Thus

(6)
∑

deg f=L

R(f)2 ≪ qǫL+2M+2T .

Therefore from (4), (6) and Lemma 1 we have

Ng(L, T ) ≫
q2(M+N−T )

qǫL+2M+2T
= q2N−4T−ǫL.

Putting the value of N from (3) we get

(7) Ng(L, T ) ≫ qL−2T−2−ǫL ≫ qL−2T−ǫL.

The lower bound in Theorem 1 will be achieved by suitably choosing the parameter T in

Section 6.

4. PROOF OF LEMMA 1

Let (m,n, t) ∈ A3 be a tuple of pairwise relatively prime monic polynomials with

degm = M , deg n = N and deg t = T , where M , N and T satisfy (3), and satisfying

n2 ≡ mg (mod t2). We define sets S1, S2 and S3 of such tuples (m,n, t) ∈ A3 as

follows.

S1 = {(m,n, t) : p2 ∤
n2 −mg

t2
for all monic primes p with deg p ≤ logL},

S2 = {(m,n, t) : p2|n
2 −mg

t2
for some monic primes p with logL < deg p ≤ Q} and

S3 = {(m,n, t) : p2|n
2 −mg

t2
for some monic primes p with Q < deg p}.

Here logarithms are taken to the base q, and Q is some real parameter to be described

below.
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Let Ni = |Si| for i = 1, 2, 3. The sum we desire is N1 +O(N1 +N2). We shall show

below that by choosing Q := (L− T + 2 logL)/3, one obtains

N1 ≍ qM+N−T + o(qM+L
3 + 2T

3 ),

N2 ≪ qM+N−T /L+ o(qM+L
3 + 2T

3 ) and

N3 = o(qM+L
3 + 2T

3 ).

Observe that for L > 4T , it follows from (3) that M +N − T ≥ M + (L/3) + (2T/3),
and hence N1 ≍ qM+N−T , and N2, N3 are small. The choice of T in (23), Section 6

guarantees that L > 4T . Thus it follows that

∑

deg f=L

R(f) ≍ qM+N−T .

Estimation of N1: For fixed monic m and t with degm = M and deg t = T , we count

the number of monic polynomials n with deg n = N such that n2 ≡ mg (mod t2), and

p2 does not divide n2−mg

t2 for all irreducible monic p with deg p ≤ logL.

Let ρm(l) denote the number of solutions (mod l) to the congruencen2 ≡ mg (mod l).
It can be verified (for example see [15] or [16]) that if p ∤ m is irreducible, then for α ≥ 1,

(8) ρm(pα) = ρm(p) = 1 +
(mg

p

)

= 1 +
(m

p

)

,

as g is odd.

Set P =
∏

deg p≤logL p, where the product is taken over all irreducible monic poly-

nomials p so that
∑

l2|(f,P 2) µ(l) = 1 or 0 depending on whether p2 ∤ f for all p with

deg p ≤ logL or not. Here l is assumed to be monic. Thus in order to estimate N1, the

sum over n we seek is

(9)
∑

degn=N
n2≡mg (mod t2)

(n,m)=1

∑

l2|
(

n2−mg

t2
,P 2

)

µ(l) =
∑

l|P
(l,m)=1

µ(l)
∑

degn=N
n2≡mg (mod l2t2)

1.

If N ≥ deg l2t2 then

∑

degn=N
n2≡mg (mod l2t2)

1 =
|n|
|l2t2|ρm(l2t2) =

qN−2Tρm(l2t2)

|l2| ,

while if N ≤ deg l2t2 then

∑

degn=N
n2≡mg (mod l2t2)

1 ≤ ρm(l2t2).

Thus the sum in (9) is
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=
∑

l|P
(l,m)=1

µ(l)
|n|
|l2t2|ρm(l2t2) +O

(

∑

l|P
(l,m)=1

ρm(l2t2)
)

= qN−2Tρm(t2)
∑

l|P
(l,m)=1

µ(l)

|l|2 ρm

(

l/(l, t)
)

+O
(

∑

l|P
(l,m)=1

ρm(l2t2)
)

,

which can be written as

(10) qN−2Tρm(t2)
∏

p|P
p−monic
(p,m)=1

(

1− ρm
(

p/(p, t)
)

|p|2
)

+O
(

∑

l|P
(l,m)=1

ρm(l2t2)
)

,

where the product is taken over irreducible monic polynomials p.

It can be easily seen from ρm
(

p/(p, t)
)

= 1 +
(

m
p

)

≤ 2 that

∏

p|P
p−monic
(p,m)=1

(

1− ρm
(

p/(p, t)
)

|p|2
)

≍ 1.

Therefore the main term in (10) is ≍ qN−2Tρm(t2).

For the error term in (10), we first note from (8) that

ρm(l2t2) = ρm(lt) =
∏

p|lt

ρm(p) =
∏

p|lt

(

1 +
(m

p

))

≤
∏

p|lt

2 ≤ d(lt).

As l2t2 divides n2 −mg , we have from (3) that

2 deg l + 2deg t ≤ Mg = L+ 2T = L+ 2deg t.

Therefore deg l ≤ L/2. Also from (3) we have deg t = T < L/2. Hence deg lt ≤ L.

It can be verified that for polynomials r(x) ∈ A with deg r ≤ X , d(r) = O(qǫX).
Therefore we conclude that

ρm(l2t2) ≤ d(lt) = O(qǫL).

Thus the error term in (10) is O(d(P )qǫL). We shall obtain an upper bound for d(P ) below.

Clearly, we have

(11) d(P ) = 2π(1)+π(2)···+π(logL).

The following lemma gives us an upper bound for π(U) for U ∈ N.

Lemma 3. For U ∈ N, π(U) ≤ qU/U .

Proof. Since qU =
∑

D|U Dπ(D), we have in particular, for D = U that

Uπ(U) ≤
∑

D|U

Dπ(D) = qU ,

and hence the lemma. �
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Therefore from (11) we have

d(P ) = 2π(1)+π(2)···+π(logL) ≤ 2q+q2/2···+qlog L/L

< qL.

Thus the error term in (10) is O(qǫL).

Therefore the sum in (9) is

≍ qN−2Tρm(t2) +O(qǫL).

Now, summing over all monic m with degm = M , and monic t with deg t = T we have

(12) N1 ≍ qM+N−T
∑

degm=M
deg t=T

ρm(t2) +O
(

qǫL+M+T
)

.

We now show that the error term in (12) is o(qM+L
3 + 2T

3 ). We choose 0 < δ < 1
2 so that

qL/2 = o(qL(1−δ)). Since from (3) we have T < L/2, hence qT < qL/2 = o(qL(1−δ)).

Taking ǫ = δ
3 , we have qT/3 = o(qL/3qǫL), that is qǫL = o(qL/3q−T/3).

Thus from (12) we have

(13) N1 ≍ qN−2T
∑

degm=M
deg t=T

ρm(t2) + o(qM+L
3 + 2T

3 ).

We next show that
∑

degm=M
deg t=T

ρm(t2) ≍ qM+T .

In order to prove this result we will need a couple of lemmas.

Lemma 4. For an integer U ≥ 2, we have
∑

y−monic
deg y=U

µ(y) = 0.

Proof. For j ≥ 0, let

H(j) =
∑

y−monic
deg y=j

µ(y)

Then it follows that the Dirichlet series

(14)
∑

y−monic

µ(y)

|y|s =

∞
∑

j=0

H(j)

qjs
.

On the other hand we have from the definition of the zeta function [18] in A that

∑

y−monic

µ(y)

|y|s = ζA(s)
−1 = 1− q1−s.

Thus, using the substitution u = q−s in (14) we have

∞
∑

j=0

H(j)uj = 1− qu.

Comparing the coefficients of uj on both sides we have the result of our lemma. �



DIVISIBILITY OF CLASS NUMBERS OF IMAGINARY QUADRATIC FUNCTION FIELDS 9

The next lemma is based upon Lemma 17.10, Proposition 17.11 and Proposition 17.12

of [18] which we state without proof as follows.

Lemma 5. Suppose b /∈ F×
q is not a square in A, and let deg b = B. Then

(i) for D ≥ B,
∑

a−monic
deg a=D

( b

a

)

= 0.

(ii) For 1 ≤ D ≤ B − 1,

∑

b−monic
deg b=B

∑

a−monic
deg a=D

( b

a

)

= (q − 1)Φ(D/2,M),

where

Φ(D/2,M) =

{

(

1− 1
q

)

qM+D/2 if D ≡ 0 (mod 2)

0 if D ≡ 1 (mod 2).

We are now ready to estimate the average value of ρm(t2).

Lemma 6. Assume that m and t ∈ A are monic and relatively prime. Then we have
∑

degm=M

∑

deg t=T

ρm(t2) ≍ qM+T +O(qM/2+T ) ≍ qM+T .

Proof. We have

ρm(t2) = ρm(t) =
∏

p|t

(

1 +
(m

p

))

=
∑

d|t

µ2(d)
(m

d

)

.

We derive our result by showing that the main contribution in the above sum comes

from d = 1. For d = 1, the sum over t we are interested in is
∑

deg t=T
(t,m)=1

1 =
∑

deg t=T
s|t

∑

s|m

µ(s) =
∑

s|m

µ(s)
∑

deg t=T
s|t

1

=
∑

s|m

µ(s)
∑

l
ls=t

1 =
∑

s|m

µ(s)
∑

l
deg l=T−deg s

1

=
∑

s|m

µ(s)qT−deg s = qT
∏

p|m

(

1− 1

qdeg p

)

= qT
φ(m)

|m| = qT−Mφ(m).

Now summing over m, and using Proposition 2.7 of [18] we have

qT−M
∑

degm=M

φ(m) = qT−M · q2M
(

1− 1

q

)

.

Thus the contribution from d = 1 is indeed ≍ qM+T .
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We next demonstrate that the contribution from d 6= 1 is O(qM/2+T ). The sum we seek

to bound is
∑

degm=M

∑

deg t=T
(t,m)=1

∑

d|t
d 6=1

µ2(d)
(m

d

)

.

Let us denote deg d by Z . We split the above sum into 1 ≤ Z ≤ M , and Z ≥ M + 1,

where M = degm. The first sum (after changing the order of summation) is
∑

deg t=T
(t,m)=1

∑

d|t
Z≤M

µ2(d)
∑

degm=M

(m

d

)

.

Observe that if d is a square then µ2(d) = 0, and if d is not a square, then from quadratic

reciprocity law we have

(m

d

)( d

m

)

= (−1)
q−1
2 (degm)(deg d)sgn(m)deg d = (−1)

q−1
2 MZ .

Since d 6= 1, Lemma 5 implies

∑

degm=M

(m

d

)

= (−1)
q−1
2 MZ

∑

degm=M

( d

m

)

= 0

for deg d = Z ≤ M . So the first sum is 0.

We now consider the second sum:
∑

degm=M

∑

deg t=T
(t,m)=1

∑

d|t
M+1≤Z≤T

µ2(d)
(m

d

)

=
∑

degm=M

∑

M+1≤Z≤T

∑

deg d=Z
(d,m)=1

µ2(d)
(m

d

)

qT−Z

= qT
∑

M+1≤Z≤T

q−Z
∑

degm=M

∑

deg d=Z
(d,m)=1

µ2(d)
(m

d

)

.

Since
(

m
d

)

= 0 when (d,m) 6= 1, we can ignore the condition (d,m) = 1 in the above

summation. Let us denote the inner sum above by

S :=
∑

degm=M

∑

deg d=Z

µ2(d)
(m

d

)

.

We write d = l2s so that
(

m
d

)

=
(

m
s

)

. Further without loss of generality, we assume that

l and s are monic. Then using
∑

l2|d µ(d) = µ2(d), we have

S =
∑

degm=M

∑

deg d=Z

∑

l2|d

µ(l)
(m

s

)

=
∑

degm=M

∑

deg l≤Z
2

µ(l)
∑

deg s=Z−2 deg l

(m

s

)

If deg l = Z/2, then s = 1. For such l, the corresponding contribution in S is
∑

degm=M

∑

deg l=Z
2

µ(l).

For Z ≥ 2, the sum
∑

deg l=Z
2
µ(l) is zero by Lemma 4. Since Z ≥ M + 1 > 2, we

deduce that the contribution in S corresponding to s = 1 is 0.
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Therefore,

S =
∑

degm=M

∑

deg l<Z
2

µ(l)
∑

deg s=Z−2 deg l
s6=1

(m

s

)

=
∑

deg l<Z
2

µ(l)
∑

degm=M

∑

deg s=Z−2 deg l
s6=1

(m

s

)

,

which is

(15) ≤
∑

deg l<Z
2

|
∑

degm=M

∑

deg s=Z−2 deg l
s6=1

(m

s

)

|.

Observe that since m satisfies equation (2), and since we have assumed that deg f and g
are odd in (2), m cannot be a square in A. Also degm = M > 1 implies that m /∈ F×

q .

Thus appealing to the first part of lemma 5 we deduce that if M ≤ Z − 2 deg l, then

∑

deg s=Z−2 deg l
s/∈F

×

q

(m

s

)

= 0,

while if M ≥ Z − 2 deg l, then from the second part of Lemma 5 we have

∑

degm=M

∑

deg s=Z−2 deg l

s/∈F
×

q

(m

s

)

≤
(

1− 1

q

)

q
Z
2 −deg l+M .

Summing over l in (15) we deduce that S ≤ qM+Z
2 . Thus the contribution from d 6= 1 is

less than

qM+T
∑

Z≥M+1

q−Z/2 = qM+T q−
M+1

2

(

1− 1√
q

)−1

= O
(

qM/2+T
)

This completes the proof of the lemma. �

As an immediate consequence of Lemma 6, from (13) we have

N1 ≍ qM+N−T + o(qM+L
3 + 2T

3 ).

Estimation of N2: In order to estimate N2, once again, we fix m and t and count the

number of n with deg n = N such that n2−mg

t2 divisible by p2 for some prime p with

logL < deg(p) ≤ Q = L−T+2 logL
3 . Therefore the sum over n that we seek is

(16)
∑

logL<deg p≤Q

∑

degn=N
n2≡mg (mod p2t2)

1.

Following the same line of argument as in the estimation of N1 we deduce that the sum in

(16) is equal to

(17)
∑

logL<deg p≤Q

(qNρm(p2t2)

|p2t2| +O
(

ρm(p2t2
)

)

.
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Since ρm
(

p/(p, t)
)

≤ 2 the main term in (17) is

qN−2Tρm(t2)
∑

logL<deg p≤Q

ρm
(

p/(p, t)
)

|p|2

≤ qN−2Tρm(t2)
∑

logL≤deg p≤Q

2

|p|2 = 2qN−2Tρm(t2)

Q
∑

Y=logL

∑

deg p=Y

1

|p|2

= 2qN−2Tρm(t2)

Q
∑

Y =logL

q−2Y
∑

deg p=Y

1 = 2qN−2Tρm(t2)

Q
∑

Y=logL

q−2Y π(Y )

≤ 2qN−2Tρm(t2)

Q
∑

Y =logL

q−2Y qY /Y (by Lemma 3)

≤ 2qN−2Tρm(t2)

logL

Q
∑

Y=logL

q−Y ≤ 2qN−2Tρm(t2)

qlogL logL

(

1− 1

q

)−1

=
2qN−2Tρm(t2)

L logL

(

1− 1

q

)−1

≪ qN−2Tρm(t2)

L
.

From

ρm(p2t2
)

= ρm(t2)ρm
(

p2/(p, t)2
)

= ρm(t2)ρm
(

p/(p, t)
)

≤ 2ρm(t2),

we deduce that the remainder term in (17) is

(18) O
(

ρm(t2)
∑

logL<deg p≤Q

1
)

.

Now by Lemma 3

∑

logL<deg p≤Q

1 ≤
Q
∑

D=logL

qD

D
.

Using Euler’s summation formula it can be verified that

Q
∑

D=logL

qD

D
≪ qQ/Q.

Now,

qQ

Q
=

qL/3q−T/3q2 logL/3

L
3 − T

3 + 2 logL
3

=
3qL/3q−T/3L2/3

L(1− T
L + 2 logL

L )
.

In the end we will take T to be a constant (< 1) multiple of L. Therefore, we conclude

from above that

qQ

Q
≪ qL/3q−T/3L−1/3 = o(qL/3q−T/3).

Thus,
∑

logL<deg p≤Q

1 = o(qL/3q−T/3).

Using this estimate in (18) we deduce that the remainder term in (17) is o(qL/3q−T/3ρm(t2)).
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Therefore the sum over n in (16) is

(19)
∑

logL<deg p≤Q

∑

degn=N
n2≡mg (mod p2t2)

1 ≪ qN−2Tρm(t2)

L
+ o(qL/3q−T/3ρm(t2)).

Summing over all monic m and t in (19) with degm = M and deg t = T , and using

Lemma 6 we get

N2 ≪ qM+N−T

L
+ o(qM+ L

3 + 2T
3 ).

Estimation of N3: If (m,n, t) is a tuple counted in N3, then

(20) n2 −mg = βp2t2,

for some monic prime p with deg p > Q and some β ∈ A. Clearly, deg β < L − 2Q =
(L + 2T − 4 logL)/3. As m, n and t are monic and pairwise relatively prime, for fixed

m and β with degm = M , and deg β < L − 2Q, the number of monic n and t satisfying

(20) is bounded by the number of solutions to the equation

(21) mg = x2 − βy2

with x and y monic and co-prime. Assuming that such x and y exists, the ideal (m)g

factors in A[
√
β] as

mg = (x+ y
√

β)(x − y
√

β).

Working similarly as in Proposition 1, it can be seen that any common factor of the ideals

(x+ y
√
β) and (x− y

√
β) contains mg and x. But (mg, x) = 1 as x and y are co-prime,

hence any common factor of (x + y
√
β) and (x − y

√
β) must be the whole ring A[

√
β].

Therefore the ideals (x + y
√
β) and (x − y

√
β) are co-prime. From unique factorization

of ideals of A[
√
β] we have

(x+ y
√

β) = a
g and (x − y

√

β) = ā
g,

for some ideal a and its conjugate ā in A[
√
β]. Thus the number of solutions in x and y

to (21) is bounded by the number of factorizations of the ideal (m) into the product aā.

It can be easily verified that the number of such factorizations of the ideal (m) in A[
√
β]

is ≤ d(m). Thus for fixed m and β, the number of choices for n and t satisfying (20) is

≤ d(m). From Proposition 2.5 of [18] it follows that
∑

m−monic
degm=M

d(m) = qM (M + 1).

Therefore N3 is ≤ (number of choices of β)(
∑

m−monic
degm=M

d(m)) which is

≤ (1 + q + q2 · · ·+ qL−2Q)
∑

m−monic
degm=M

d(m)

=
(qL−2Q+1 − 1)

q − 1
qM (M + 1)

≤ qL−2Q+1qM (M + 1)

= q · q(L+2T−4 logL)/3qM (M + 1)

= qL/3q2T/3qMqL−4/3(M + 1).
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Noting from (3) that M < L, we conclude

N3 ≤ qL/3q2T/3qMqL−4/3(M + 1) ≤ qL/3q2T/3qMqL−1/3 = o(qM+L
3 + 2T

3 ),

as desired.

5. PROOF OF LEMMA 2

Let S denote the set of monic tuples (m1, n1, t1;m2, n2, t2) such that
n2
1 −mg

1

t21
=

n2
2 −mg

2

t22
with degmi = M , degni = N , deg ti = T ; (mi, ni) = (mi, ti) = 1, and

(m1, n1, t1) 6= (m2, n2, t2). It can be seen that for a square-free f , if (m1, n1, t1) and

(m2, n2, t2) are solutions to equation (2) of Section 3, then (m1, n1, t1;m2, n2, t2) ∈ S.

For a fixed square-free f , the number of such tuples is R(f)
(

R(f)− 1
)

. Thus
∑

deg f=L

R(f)
(

R(f)− 1
)

≤ |S|.

For (m1, n1, t1;m2, n2, t2) ∈ S we have

t22(n
2
1 −mg

1) = t21(n
2
2 −mg

2).

Rearranging we have

(t1n2 + t2n1)(t1n2 − t2n1) = t21m
g
2 − t22m

g
1.

Since deg(t21m
g
2 − t22m

g
1) ≤ Mg + 2T < 3L, for fixed m and t, the number of choices

for n1 and n2 is bounded by d(t21m
g
2 − t22m

g
1), provided t21m

g
2 6= t22m

g
1. However, if

t21m
g
2 = t22m

g
1, then from (mi, ti) = 1 and since g is odd, we have t1 = t2, m1 = m2, and

consequently n1 = n2, contradicting the fact that (m1, n1, t1) 6= (m2, n2, t2).

Now d(t21m
g
2 − t22m

g
1) = O(qǫL).

Thus summing over mi and ti for i = 1, 2 we have
∑

deg f=L

R(f)
(

R(f)− 1
)

≤
∑

degmi=M

∑

deg ti=T

d(t21m
g
2 − t22m

g
1)

≪ qǫL
∑

degmi=M

∑

deg ti=T

1

= qǫL+2M+2T .

6. PROOF OF THE THEOREM 1

In this section we first determine a suitable optimal value of the parameter T so that the

inequality (5) is justified.

Substituting the values of M and N from (3) in (5) and rearranging terms we obtain

(22) T/L ≥ (g − 2)

4(g + 1)
− ǫg

2(g + 1)
.

Thus in view of (22), the obvious optimal choice for T/L is

T/L =
g − 2

4(g + 1)
.
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Therefore we take

(23) T =
L(g − 2)

4(g + 1)
.

Now substituting the value of T from (23) in (7), we conclude that the number of solutions

to equation (2) is

≫ qL( 1
2+

3
2(g+1)

−ǫ).

Therefore, it follows from Proposition 1 that

Ng(L) ≫ qL( 1
2+

3
2(g+1)

−ǫ),

and this completes the proof of the Theorem 1.
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