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Ostwald ripening occurs near equilibrium conditions when larger clusters grow at the expense of

dissolving smaller clusters. We propose that ripening kinetics for growth and dissolution can be

represented by a general population balance equation ~PBE! for the cluster size distribution ~CSD!.
This PBE can also describe cluster growth or dissolution in the absence of ripening. The Kelvin

equation provides the effect of interfacial energy on solubility in terms of the cluster radius. The

continuity equation conventionally applied to ripening or cluster growth is obtained as a Taylor

series expansion of the governing PBE. Numerical and moment solutions of the PBE show the

evolution of the CSD. The cluster number density declines, and the average cluster mass increases.

The variance can initially increase as the CSD broadens by growth of large clusters, and then

decrease until eventually vanishing. The final state after a long time is a single large cluster in

equilibrium with the fluid solution. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1403687#

I. INTRODUCTION

Ostwald ripening is the final stage of a first-order phase

transition for condensation of a metastable phase.1 The first

stage is nucleation, either homogeneous ~a free energy bar-

rier is surmounted to form critical-sized clusters! or hetero-

geneous ~nucleation sites present in the system allow mo-

lecular, i.e., monomer, deposition!. The second stage is

cluster growth by monomer deposition, which depletes the

metastable phase of monomer and causes stable clusters to

grow regardless of their size. Due to the random deposition

of monomers from the metastable phase, this growth process

yields a size distribution of clusters, even when the critical-

sized clusters formed by homogeneous nucleation have the

same uniform mass. This was recently illustrated for vapor–

liquid nucleation and growth2 and crystal growth or

dissolution.3 The free energy of the clusters is likewise dis-

tributed, due to the effect of surface curvature of different

sized clusters on interfacial energy.4 The curvature, and

hence the interfacial free energy, is reduced by increasing the

cluster size. Smaller clusters thus are driven to dissolve and

give up their monomers to larger clusters: This final stage of

the phase transition is Ostwald ripening or coarsening, also

called isothermal recrystallization5 when the phase transition

is liquid to solid. In this paper, cluster is a generic term for

the condensed phase, whether it is a liquid droplet or solid

precipitate.

Ripening models are based on the Kelvin ~or Gibbs–

Thomson! equation,6–9 which gives the relationship for the

ratio of interfacial energy to thermal energy such that smaller

clusters are less stable than larger ones and therefore larger

clusters grow at the expense of smaller ones. The Kelvin

equation6 for a given supersaturation provides an expression

for the critical nucleus size, above which the cluster grows,

below which the cluster is unstable and dissolves unless fluc-

tuations allow homogeneous nucleation. Clusters become

more soluble as they become smaller, and eventually disap-

pear, yielding up their mass for growth of larger clusters.10

The ultimate state is reached when but one cluster remains in

equilibrium with the monomer solution. Although most pa-

pers on the theory of ripening mention the reduction in clus-

ter numbers during ripening, this effect is sometimes ne-

glected altogether. Obviously, the final equilibrium condition

of one large cluster cannot be attained unless denucleation is

considered. Some models focus instead on the mass transfer

rate for dissolution and growth. Conventional theories are

usually based on first-order differential equations for cluster

growth of the cluster size distribution.1,6,7 The growth rate is

represented by the difference between the solution concen-

tration and its equilibrium saturation value as the driving

force. When supersaturation is much greater than unity, ho-

mogeneous nucleation can occur, and all stable clusters

~larger than critical nucleus size! will grow. The goal is to

describe ripening for a distribution of clusters when super-

saturation causes larger clusters to grow while smaller clus-

ters vanish ~denucleate!. Some ripening models apply to only

a few particles,11 rather than the more interesting distribution

of particle sizes. Typically the exponential in the Kelvin

equation is approximated by the first-order linear term.6,7

An analytical asymptotic solution is usually sought that ap-

plies for long time and is independent of initial conditions.6

Most theories do not explicitly represent the evolution to a

single large cluster, which would be expressed as a Dirac d
distribution.
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Lifshitz and Slyozov ~LS!12 and Wagner ~W!13 were

among the first to study the cluster mass distribution, but

assumed the monomer concentration is constant at its equi-

librium value. Marqusee and Ross1 showed that the LSW

solution can be represented as leading terms in an expansion

of the long time solution. Venzl8 solved the governing first-

order nonlinear differential equation numerically, and as-

sumed that clusters vanished at a rate varying exponentially

or inversely with time. Bhakta and Ruckenstein7 more re-

cently based a stochastic theory of ripening on a discrete

microscopic continuity equation that generalized the LSW

differential equation with rate constants assumed indepen-

dent of cluster size.

The present objective is to formulate a new approach to

Ostwald ripening ~or isothermal recrystallization! that ac-

counts for the evolution of the cluster size distribution ~CSD!
expressed in terms of the cluster mass, rather than its radius.

The distribution-kinetics approach with single monomer ad-

dition and dissociation is reversible and is generally appli-

cable to growth, dissolution, or ripening phenomena. Based

on a rigorous mass balance, nucleation ~or denucleation! ap-

pears as a source ~or sink! term representing the nucleation

rate.6 Denucleation of unstable clusters ensures that the clus-

ter number decreases as required for a realistic model of

ripening. The reversibility ensures that a closed system re-

laxes to equilibrium, where the system is saturated. The equi-

librium is dynamic, with monomer addition and dissociation

continuing at equilibrium. For a continuous distribution-

kinetics theory, the second moment can be shown to grow

during ripening, but because of denucleation, the variance

decreases. The CSD spreads and large particles grow larger.

Smaller clusters shrink, releasing their mass to the solution.

Eventually, after a long time, only one large particle would

remain, which clearly requires an explanation based on a

discrete distribution model. The continuous distribution ki-

netics theory applies only for a very large number of clusters,

so that as the number of clusters declines, a discrete model

must eventually be implemented. A numerical solution for

discrete PBE shows ripening that continues until cluster

mass is accumulated into one large cluster, subject to conser-

vation of the mass initially available. The discussion applies

for various expressions for rate coefficients.

The present paper is organized as follows: We first

present our approach based on distribution kinetics, and for-

mulate a population balance for the reversible addition of

monomer to a cluster. Next the evolution to an equilibrium

state is described. In Sec. IV we develop the governing equa-

tions for ripening, and in Sec. V we discuss the numerical

solution to these equations. Finally, we present and discuss

the results of the calculations, and draw conclusions.

II. DISTRIBUTION KINETICS

The CSD is defined by c(x ,t)dx , which represents the

concentration of clusters at time t in the mass range (x ,x

1dx). Moments are defined as integrals over the mass,

c ~n !~ t !5E
o

`

c~x ,t !xn dx . ~2.1!

The zeroth moment c (0)(t) is the molar ~or number! concen-

tration of clusters, and the first moment c (1)(t) is the time-

dependent cluster mass concentration ~mass/volume!. The ra-

tio of the two is the average cluster mass, cavg
5c (1)/c (0).

The variance cvar
5c (2)/c (0)

2@cavg#2 and the polydispersity,

c (2)c (0)/c (1)2, are measures of the CSD broadness. The mo-

lar concentration, m(t), of solute monomer of molecular

weight xm is the zeroth moment of the monomer distribution,

m(x ,t)5m(t)d(x2xm).

The deposition or condensation process by which mono-

mers of mass x85xm are reversibly added to or dissociated

from a cluster of mass x can be written as a reactionlike

process

C~x !1M~x8! ⇋

kd~x !

kg~x !

C~x1x8!, ~2.2!

where C(x) represents the cluster of mass x and M(x8

5xm) is the monomer. This process intrinsically conserves

mass, and is most naturally represented by balance equations

in terms of mass x rather than cluster radius r. The balance

equations governing the cluster distribution, c(x ,t), and the

monomer distribution, m(x ,t)5m(t)d(x2xm), are thus

based on mass conservation:2

]c~x !/]t52kg~x !c~x !E
o

`

m~x8!dx81E
o

x

kg~x2x8!

3c~x2x8!m~x8!dx82kd~x !c~x !1E
x

`

kd~x8!

3c~x8!d~x2~x82xm!!dx82Id~x2x*! ~2.3!

and

]m~x !/]t52m~x !E
o

`

kg~x8!c~x8!dx81E
x

`

kd~x8!

3c~x8!d~x2xm!dx81Id~x2x*!x*/xm .

~2.4!

According to the molecularity of Eq. ~2.2!, addition reactions

are second-order in c(x ,t) and m(x ,t), whereas dissociation

reactions are first-order in c(x ,t). Nucleation of clusters of

mass x* at rate I are source terms or, in this case, sink terms

for denucleation. Initial conditions are c(x ,t50)5c0(x) and

m(x ,t50)5mod(x2xm). The growth and dissociation rate

coefficients, kg and kd , may in general depend upon x and

local thermodynamic conditions, and must therefore be ex-

pressed as constitutive relations. Ripening means that all

clusters are either growing or dissolving at rates depending

on their size as determined by the Kelvin equation. Power-

law expressions allow for a kinetic dependence on cluster

size, and thus we consider kg(x)5gxl and kd(x)5kxn,

where g and k in general are functions of temperature. The

coefficients g and k may depend on the deposition or disso-

ciation processes or on the mode of transport to and from the
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cluster surface. When the constitutive relations are substi-

tuted and the moment operation, defined by Eq. ~2.1!, is

applied, the general moment equations are

dc ~n !/dt5gmF2c ~l1n !
1(

j50

n

~ j
n!xm

j c ~l1n2 j !G
1kF2c ~n1n !

1(
j50

n

~ j
m!xm

j ~21 ! jc ~n1n21 !G2ix*n

~2.5!

and

dm/dt52gmc ~l !
1kc ~n !

1Ix*/xm . ~2.6!

When l5n , the equations reduce to those proposed by

McCoy.3 It follows from Eq. ~2.5! that the cluster moment

equations for n50, 1, and 2 are

dc ~0 !/dt52I , ~2.7!

dc ~1 !/dt5xmgmc ~l !
2xmkc ~n !

2Ix*, ~2.8!

dc ~2 !/dt5xmgm@2c ~l11 !
1xmc ~l !#

1kxm@22c ~n11 !
1xmc ~n !#2Ix*2. ~2.9!

Equations ~2.6! and ~2.8! demonstrate that mass is then con-

served for any values of l and n thus

xm dm/dt52dc ~1 !/dt . ~2.10!

For the initial conditions, m(t50)5mo
(0) and c (1)(t50)

5co
(1) , integration of Eq. ~2.10! gives

xm@mo
~0 !

2m~ t !#2co
~1 !

1c ~1 !~ t !, ~2.11!

so that the decrease in solute mass is balanced by an increase

in cluster mass.

III. EVOLUTION TO EQUILIBRIUM

The evolution to equilibrium can be understood by for-

mulating thermodynamic equilibrium conditions. We con-

sider that the free energy of a cluster, m, relative to the mono-

mer solution, depends upon its mass x according to a

polynomial in x,14,15

m~x !5(
j50

`

m jx
j, ~3.1!

where the coefficients m j are independent of x and t. The

system total free energy ~relative to the monomer solution!
therefore is given by

G~ t !5E
o

`

m~x !c~x ,t !dx5(
j50

`

m jc
~ j !~ t !. ~3.2!

Minimizing the free energy at equilibrium, dG/dt50, there-

fore implies that derivatives of all moments must also van-

ish, dc ( j)/dt50, j>0. Equilibrium is thus established by a

hierarchical sequence in which the moments vanish. From

Eq. ~2.7! when dc (0)/dt50, the number of clusters must be

constant with I50, when denucleation ceases. By Eq. ~2.8!

the first moment becomes constant, as well as the monomer

concentration, dm/dt50. Either Eq. ~2.6! or ~2.8! yields the

equilibrium solubility condition,

meq5kceq
~n !/gceq

~l ! . ~3.3!

The temperature and physical property effects6 ~interfa-

cial energy, particle density, particle surface curvature! are

expressed through the Kelvin equation,11

meq5m` exp~V ! ~3.4!

with

V52sn/rRT ~3.5!

in terms of the gas constant R, monomer molar volume n
5xm /r in the cluster, excess surface free energy s, radius of

an assumed spherical cluster r, and equilibrium solute con-

centration for a plane cluster surface m` . r is the mass den-

sity of the crystals. The ratio of interfacial energy, 2sn/r , to

thermal energy, RT, determines the size effect on solubility.

If a cluster has a shape other than spherical, a more involved

expression is required to account for the effect of surface

shape on free energy ~for example, for a rectangular

crystal11!. Equation ~3.4! determines that larger clusters are

more stable than smaller clusters, so that smaller clusters

tend to dissolve while larger clusters grow by deposition of

the dissolved monomer. Obviously the smaller clusters can

dissolve totally, reducing the number of clusters. The small-

est stable cluster has radius

r*52sn/~RT ln S ! ~3.6!

from which we have x*5(4/3)pr r*3 as the critical cluster

mass. By this reasoning, eventually only a single large clus-

ter will exist, of a size consistent with the mass balance, Eq.

~2.11!,

xm@mo
~0 !

2meq
~0 !#5ceq

~1 !
2co

~1 ! . ~3.7!

As the number of clusters becomes small, this evolution

to a single cluster must be expressed by a discrete population

balance theory. The continuous model shows the second mo-

ment initially increasing @Eq. ~2.9!# as larger particles get

larger and smaller particles get smaller. To aid the solution of

the PBE, Eqs. ~3.3! and ~3.4! provide an expression for k that

introduces the thermodynamic effects,

k5gm`eVceq
~l !/ceq

~n ! . ~3.8!

Driven by the cluster interfacial energy, ripening occurs

when l5n , which serves as a realistic condition for evalu-

ating the present model.

The molar concentration of solute, m(t), even though

near equilibrium, may change during ripening as the average

cluster radius r grows. Final equilibrium is reached when

m→meq and all but one cluster has diminished to vanishing

size, thus minimizing the free energy. The final cluster dis-

tribution is therefore the Dirac d distribution for a single

cluster,
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ceq~x !5d~x2ceq
avg!/NA , ~3.9!

and therefore

ceq
~n !

5~ceq
avg!n/NA , ~3.10!

where NA is Avogadro’s number and ceq
avg is a large mass

embodying the mass of dissolved clusters. According to Eq.

~3.4!, at long time when dm/dt50 the supersaturation be-

comes constant and approaches meq /m`5eVeq, by defini-

tion. For the single large cluster at this final state, Veq'0,

and therefore meq /m`5Seq'1. The cluster radius r at any

time is found from the average cluster mass, (4p/3)r3r
5cavg, thus

r5@3cavg/~4pr !#1/3 ~3.11!

and cavg
→ceq

avg at the long-time final state.

IV. EQUATIONS FOR RIPENING

We consider ripening to occur when competing growth

and dissolution processes for large and small clusters cause

denucleation which decreases the number of clusters. The

CSD changes according to Eq. ~2.3!, which becomes, when

the integrations over the Dirac distributions are

performed,2,16 the finite-difference differential equation,

]c~x ,t !/]t52kg~x !c~x !m1kg~x2xm!c~x2xm!m

2kd~x !c~x !1kd~x1xm!c~x1xm!

2Id~x2x*!. ~4.1!

The discrete PBE thus can be considered a special case of the

continuous PBE. The equation is similar to nearest-neighbor

master equations used to solve many problems of kinetics

and energetics.17 Equation ~4.1! shows that c(x ,t) increases

by addition of mass xm to the reactant of mass (x2xm) and

decreases by the loss of reactant of mass x. The dissociation

of mass xm from reactant of mass (x1xm) increases c(x ,t)

while the loss of reactant of mass x decreases c(x ,t). When

kg and kd are constant ~independent of x! and nucleation rate

is zero, Eq. ~4.1! is similar to the equation proposed for

~reversible! polymerization and depolymerization kinetics by

McCoy and Madras.16 Even when kg and kd are constant,

however, there is no known analytical solution to Eq. ~4.1!
because of the presence of time-dependent m(t) in Eq. ~2.6!
or ~2.11!. Fortunately, numerical solutions to such ordinary

differential equations are straightforward.

The conversion of master equations such as Eq. ~4.1!
into partial differential Fokker–Planck equations is well

known.17 If in Eq. ~4.1! the rate coefficients and CSDs ex-

pressed as functions of x2xm or x1xm are expanded in their

Taylor series, one obtains

]c~x !/]t52xm$]@kg~x !c~x !#/]x2~xm/2!]2@kg~x !c~x !#/]x2
1 . . .%

1xm$]@kd~x !c~x !#/]x1~xm/2!]2@kd~x !c~x !#/]x2
1 . . .%2Id~x2x*!. ~4.2!

When third- and higher-order derivative terms are neglected,

we have a convective-diffusion equation ~with denucleation

rate, I! for c(x ,t). It is obvious, therefore, why the CSD

must change both its average and variance. If second-

derivative terms are neglected, one has the approximate con-

tinuity equation in x space,

]c~x !/]t1]@V~x !c~x !#/]x52Id~x2x*!, ~4.3!

where

V~x !5xmkg~x !@m2kd~x !/kg~x !# . ~4.4!

A similar equation with x replaced by cluster radius r ~see the

Appendix! is customarily applied in ripening models.1,8,12,13

The present theory is thus a generalization of the approxi-

mate models for Ostwald ripening based on Eq. ~4.3! as the

governing differential equation. Requiring Eq. ~4.4! to satisfy

the equilibrium condition, kd(x)/kg(x)5meq5m` exp(V),

and allowing rate coefficients to be independent of x gives

V~x !5kg@m2m` exp~V !# . ~4.5!

The growth rate coefficient kg may be specific to a stirred

system, or may be related to the monomer diffusion coeffi-

cient in an unstirred system. Equation ~4.5! allows the driv-

ing force for ripening to vanish when equilibrium is attained.

In Eq. ~4.5!, V depends upon x5(4p/3)r3r through V,

which varies inversely with r @Eq. ~3.5!#.

V. NUMERICAL SOLUTION

More general than the conventional continuity equation

~4.3!, the difference-differential equation, Eq. ~4.1!, can be

solved by a finite difference method. When rate coefficients

have power-law dependence on x, Eq. ~4.1! becomes

]c~x ,t !/]t52gxlc~x !m1g~x2xm!lc~x2xm!m

2kxnc~x !1k~x1xm!nc~x1xm!

2Id~x2x*!. ~5.1!

We substitute Eq. ~3.8! into Eqs. ~2.6! and ~5.1! to eliminate

k, and then define the dimensionless quantities,

j5x/xm j*5x*/xm , u5tgm`xm
l , S5m/m` ,

C5cxm /m` , C ~n !
5c ~n !/m`xm

~n ! , J5I/gm`
2 xm

l .

~5.2!

One obtains the CSD for integer values j,
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]C/]u5S@2jlC~j !1~j21 !lC~j21 !#

1eV~j !@2jnC~j !1~j11 !nC~j11 !#

3Ceq
~l !/Ceq

~n !
2Jd~j2j*!, ~5.3!

where V(j)5a/j1/3 and j*5(a/ln S)3 in terms of a
5(4pNAr/3xm)1/32sn/RT . In this formulation, Kelvin’s re-

lation applies to each cluster rather than to the average clus-

ter; thus clusters larger than the critical size grow while

smaller clusters dissolve.18 The mass balance for monomer,

Eq. ~2.6!, becomes

dS/du52SC ~l !
1eVC ~n !Ceq

~l !/Ceq
~n !)1Jj*. ~5.4!

Here, V must be evaluated at the average-sized cluster, V
5a/(Cavg)/1/3. The dimensionless general moment equation

is

dC ~n !/du5SF2C ~l1n !
1(

j50

`

~ j
n!C ~l1n2 j !G

1eVF2C ~n1n !
1(

j50

`

~ j
n!~21 ! jC ~n1n2 j !G

3Ceq
~l !/Ceq

~n !
2Jj*n. ~5.5!

The moment equations for n50, 1, and 2, Eqs. ~5.5!, lack

closure when either l or n are different from zero or unity or

have noninteger values. As both l and n appear even in the

first moment, truncating the moment equations is not a rea-

sonable option. Moment solutions would then not be appli-

cable and numerical schemes have to be employed to solve

the equation. An important special case is when kd and kg are

independent of x(l5v50); then Eq. ~5.3! becomes

]̇C~j !/]u5S@2C~j !1C~j21 !#

1eV~j !@2C~j !1C~j11 !#2Jd~j2j*!. ~5.6!

The governing equation for S(u) follows from Eq. ~5.4!,

dS/du5C ~0 !~2S1eV!1Jj*. ~5.7!

The moment equations are

dC ~0 !/du52J~u !, ~5.8!

dC ~1 !/du5C ~0 !~S2eV!2Jj*, ~5.9!

dC ~2 !/du52C ~1 !~S2eV!1C ~0 !~S1eV!2Jj*2, ~5.10!

which can be solved along with Eq. ~5.7!. Adding Eqs. ~5.7!
and ~5.9! gives the total mass balance,

d~S1C ~1 !!/du50. ~5.11!

The integrated mass balance, So1Co
(1)

5S(u1C (1)(u), can

be used to determine the approximate number of intervals

needed to do the numerical analysis. Because C (1)

5c (1)/m`xm is scaled by the monomer mass xm , it is di-

rectly related to the number of monomers in the cluster.

Likewise, j5x/xm is the interval in the difference-

differential equation representing the number of monomers

in the cluster, and j* is the smallest number of clustered ~in
the nucleus!. The final state is when Seq5exp(Veq), so that

the final mass ~in units of number of monomers! of the larg-

est cluster is Ceq
(1)

5So1Co
(1)

2exp(Veq). If Co
(1) is very large

~.100!, then C (1) does not change much ~because S is fairly

close to 1, at least not too much greater than 10!. For smaller

clusters C (1) can change quite a bit, but still only by hun-

dreds of monomers. Note that Cavg will always change sig-

nificantly because C (0) approaches 1/NAm` . This means that

we need a calculation method that is centered near Cavg(u)

and bounded at the lower end by j*5(a/ln S)3, which in-

creases as S decreases. It is bounded ~for all time! at the

upper end by Ceq
(1) . It is therefore possible to consider a

narrow CSD with a few hundred intervals to do the numeri-

cal analysis.

Because C(j ,u) lies in the semi-infinite domain, it was

converted to a bounded range ~0,1! by the mapping function,

j2j*5yy /(12y) with 0<y<1. The grid for this mapping

is fine in the range of prevalent sizes and coarse at very high

and very low sizes. This ensures that y varies from 0 to 1

when j varies from j* to `. By choosing y to be Cavg

2j*, y is centered at 0.5, and the distribution is centered

around j5Cavg, which requires fewer intervals. The initial

distribution was assumed to be an exponential. The initial

zeroth moment, Co
(0) , is assumed to be unity.

The differential equation ~5.3! was solved by Runge–

Kutta technique with an adaptive time step. C(j ,u) is evalu-

ated at each time step sequentially. Denucleation implies that

the CSD is zero when j<j*, and requires that the cluster

concentration is calculated by integration of the nonzero

CSD from j* to `.

The mass variable ~j! was divided into 500 intervals and

the adaptive time ~u! step varied from 0.001 to 0.1. These

values ensured stability and accuracy at all values of the

parameters. At every time step, the mass balance @Eq. ~5.11!#
is verified. Ripening is slow, with power law rather than

exponential time dependence.1 Computer solutions are thus

lengthy, requiring 4 h of CPU time on a DEC-Alpha machine

for the polydispersity to reach 1.003.

We consider a gamma initial distribution with smallest

crystal mass, x*,

co~x !5@co
~0 !/G~a !b#@~x2x*!/b#a21exp@2~x2x*!/b# ,

~5.12!

which has the moments

Co
~n !

5co
~0 !(

j50

n

~ j
n!x*n2 j j!b jG~ j1a !/G~a !. ~5.13!

Thus co
avg

5ab1x* and co
var

5ab2. With a51 for an initial

exponential distribution, we choose the dimensionless zeroth

moment, Co
(0) , as unity and the supersaturation, S(55). The

parameter, a, used in computing the factor in the Kelvin

equation, V(5a/j1/3) and the critical crystal size,

j*(5(a/ln S)3) is chosen to be equal to 5. Figure 1 shows

the evolution of the crystal size distribution for Co
avg of 75.

When Co
avg is fixed, the polydispersity @defined as

Co
(2)Co

(0)/(Co
(1))2# computed from Eq. ~5.13! is 1.36. The dis-

tribution evolves from an initial exponential distribution cut-

off at a value of j530, which is the initial critical cluster

size, jo
* .
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As the number of clusters declines, the CSD area and height

decrease and the numerical calculation for ripening ends

when the one remaining cluster is in equilibrium with the

monomer phase, consistent with the mass balance based on

initial total amount of monomer. Figure 2 shows the evolu-

tion of the supersaturation S for four different Co
avg of 33, 50,

75, 100 and marked 1, 2, 3, 4 in the figure. Figure 3 is a

log–log plot that shows the decline of eV with time. Figure 4

shows the time evolution of S and eV as they gradually ap-

proach each other. The log–log plots for cluster number con-

centration ~Fig. 5! and average cluster size ~Fig. 6! show

evolution to power-law behavior with time. The polydisper-

sity PD ~Fig. 7! evolves to a delta distribution where PD

equals unity, independent of the initial condition, similar to

the asymptotic behavior described by other investigators.1,8

For the lowest curve in Fig. 7 corresponding to Co
avg of 33

and a polydispersity of 1.008, the initial CSD is a near-delta

distribution of many clusters which increases slightly before

decreasing to unity, the final CSD for a single large cluster.

The evolution to a single large cluster is an important feature

of ripening that seems to have been avoided in some prior

theories.

The ordinary differential moment equations ~5.7!–~5.10!
are readily solved with the NDSolve routine in

Mathematica® and are plotted in Figs. 2–7 and compared

with the numerical scheme. The variation of the zeroth mo-

ment with time is given by Eq. ~5.8!, dC (0)/du52J(u).

Because the number of crystals at any time is not known, the

variation of the zeroth moment is not known a priori and a

functional form for J has to be assumed. The rate of denucle-

ation, I or J, is determined by the number of clusters of size

r* @Eq. ~3.6!#, and thus requires knowledge of the CSD,

which cannot be accurately constructed unless several mo-

ments are already available. In the numerical scheme, how-

ever, the variation of the zeroth moment is directly calculated

because J is the number of clusters removed at every time

FIG. 1. Evolution of the dimensionless cluster size distribution for a55,

S55, Co
(0)

51, Co
avg

530.

FIG. 2. Time dependence of supersaturation S. The dashed line is the solu-

tion of moment equations with Co
avg

575. The parameters used in the calcu-

lations are a55, S55, and Co
(0)

51. 1: Co
avg

533; 2: Co
avg

550; 3: Co
avg

575; 4: Co
avg

5100.

FIG. 3. Log–Log plot of the variation of the Kelvin factor eV with time.

The conditions are the same as in Fig. 2.

FIG. 4. Time dependence of S and eV showing the decrease of the driving

force, S2eV. The parameters used in the calculations are a55, S55,

Co
(0)

51, and Co
avg

575.
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step of the computation when they reach the critical cluster

size, x*. Thus the moment solutions require the denucleation

rate, J, as a function of u. The variation of C (0) with u,

obtained in the numerical scheme, was fitted to a functional

form, C (0)
5@110.08(u1e)0.57#21. The factor, e, is chosen

to be 0.0001 so that the differential of C (0) exists at u50. As

shown in Figs. 2–7, the solutions of the moment technique

compare well with the solutions obtained by the numerical

scheme. The moment approach, however, has the severe dis-

advantage that it does not allow a straightforward estimation

of the denucleation rate, J, because one needs the actual CSD

to know the number of clusters at any time t. In the numeri-

cal solution of the population balance equation, J is the num-

ber of clusters removed at every time step of the computation

when they reach the critical cluster size, x*.

VI. CONCLUSION

Because ripening occurs for a distribution of particle

sizes, the governing equations must describe how such a dis-

tribution evolves with time. The thermodynamic effect of

size on solubility is the main driving force for this evolution.

As smaller, more soluble clusters dissolve and vanish, they

give up their mass to larger clusters that are growing. The

present distribution kinetics theory emphasizes the impor-

tance of particle loss in Ostwald ripening. Only when such

denucleation is accounted for can the final state of one large

particle be realized. The population balance equations of this

work are based on mass conservation, similar to the distribu-

tion kinetics of chain polymerization. Numerical solutions

show the growth and broadening of the CSD in agreement

with moment solutions for the average and variance. As

larger clusters grow while smaller clusters dissolve and even-

tually disappear, the average cluster mass steadily increases.

Finally, one cluster remains in equilibrium with the monomer

solution. By numerical integration of a discrete PBE, derived

as a special case of the continuous PBE and represented as a

difference-differential equation, the asymptotic nature of the

CSD at long time is realized. The moment solutions also

match the results obtained from numerical computations.

However, the denucleation rate has to be determined from

the numerical computation for use in the moment equations.
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APPENDIX

A moment theory for ripening in terms of the cluster

radius1,7,8,12,13,18 ~rather than mass, x! can be fashioned from

Eqs. ~4.3!–~4.5!. The conventional procedure is to consider

the particle distribution defined by p(r ,t)dr , which at time t

is the number of clusters having radii in (r ,r1dr). The mo-

ments are defined by

FIG. 5. Time evolution of the cluster number density showing asymptotic

power-law decrease with time. The dashed line is a fit to the numerical

results to allow moment calculations. See Fig. 2 for legend.

FIG. 6. Time evolution of the average cluster mass showing asymptotic

power-law increase with time. Other conditions are same as Fig. 2.

FIG. 7. Polydispersity as a function of time. Other conditions are same as in

Fig. 2.
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p ~n !~ t !5E
o

`

p~r ,t !rn dr . ~A1!

Then the zeroth moment, p (0)(t), is the number density of

particles, the first moment is related to the average radius as

pavg(t)5p (1)(t)/p (0)(t), the second moment, p (2)(t), is pro-

portional to the total particle surface area per unit volume,

and the third moment, p (3)(t), is proportional to the total

particle volume ~or mass! per unit vessel volume. The PBE is

]p~r ,t !/]t1]~r •p !/]r52I~ t !d~r2*!, ~A2!

where I(t) is the time-dependent denucleation rate of clus-

ters of radius r*. The growth ~or dissolution! rate is given by

r •
5k@m~ t !2meq# , ~A3!

where

meq5m` exp~V ! ~A4!

causes larger clusters to grow faster than smaller clusters.

This form of the growth term follows the usual expression,1,8

except that we do not linearize the exponential. We assume

here that the radius in V is the average particle radius, thus

V5a9/pavg~ t !, ~A5!

where a952sn/RT .

The moment equations for the PBE ~A2! can be found

by integration of the second term by parts,

dp ~n !/dt2nk@m~ t !2m` exp~V !#p ~n21 !
52I~ t !r*n.

~A6!

A mass balance on the solubilized monomer and cluster mass

corresponds to Eq. ~2.10!,

dm/dt52~4pr/3xm!dp ~3 !/dt ~A7!

so that a gain in cluster mass concentration by growth is

balanced by a loss of solute of MW•xm . The moment equa-

tions @Eq. ~A6! for n50, 1, 2, 3# are as follows:

dp ~0 !/dt52I~ t !, ~A8!

dp ~1 !/dt5k@m~ t !2m` exp~V !#~0 !
2I~ t !r*, ~A9!

dp ~2 !/dt52k@m~ t !2m` exp~V !#p ~1 !
2I~ t !r*2, ~A10!

dp ~3 !/dt53k@m~ t !2m` exp~V !#p ~2 !
2I~ t !r*3. ~A11!

Moments up through third order are required to achieve clo-

sure @by Eq. ~A7!#. Differential Eqs. ~A9!–~A13! are easily

solved with Eq. ~A5! depending on time through pavg(t).

Equation ~A9! shows that the number of clusters decreases

with time. At equilibrium we have I50 and dp (n)/dt50,

which yields

meq
~0 !

5mo
~0 !

2~4pr/3xm!@peq
~3 !

2po
~3 !# ~A12!

and satisfies the mass balance. As the number of particles

becomes very small, the average cluster mass increases to the

one remaining large particle. Unfortunately, this moment

theory suffers the disadvantage that there is no straightfor-

ward way to choose an expression for I(t). A moment theory

based on c(x ,t) has the same difficulty.
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