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Abstract

The first results on next-to-leading order QCD corrections to production of direct pho-

ton pairs in hadronic collisions in the extra dimension models— ADD and RS are pre-

sented. Various kinematical distributions are obtained to order αs in QCD by taking

into account all the parton level subprocesses. Our Monte Carlo based code incorpo-

rates all the experimental cuts suitable for physics studies at the LHC. We estimate

the impact of the QCD corrections on various observables and find that they are sig-

nificant. We also show the reduction in factorisation scale uncertainity when O(αs)

effects are included.
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1 Introduction

The hierarchy problem is a long standing problem and has been the main motiva-

tion for physics beyond the SM. The hierarchy between the electroweak scale and the

Planck scale has in the past been addressed by modifying the particle content of the

theory— supersymmetry and technicolor belong to this category. A paradigm shift

in this approach was proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1],

wherein they modified only the gravity sector. Though the idea of extra dimensions

existed since the 1900s, all models assumed that gravity together with other inter-

actions could live in the full extra dimensions. Consistency with the experimental

observations, demands that these extra dimensions be very small. The ADD scenario

explored the possibility of allowing only gravity to probe all dimensions and stud-

ied the constraints on the size of the extra dimensions. It turns out that for more

then one extra dimensions, their size could be large without contradicting any known

experimental observations and consequently explain the weakness of gravity in 4-

dimensions. An alternate solution of the hierarchy problem was suggested by Ran-

dall and Sundrum [2] with a single extra dimension in an Anti-de-Sitter (AdS5) metric.

The ADD and RS models used the geometry of the extra dimensions to account for

the hierarchy between the electroweak scale and the Planck scale. In order that these

models are consistent with present experimental length scale probed at colliders, it

is essential that these extra dimensions remain hidden. Various extra dimensional

models have used different physical mechanisms to hide them. The extra dimensions

could be small and compact wherein all the SM fields are allowed to propagate, or

alternatively the brane world scenarios where the SM particles are confined to the

brane. In the brane world scenarios the extra dimensions could be of macroscopic

size (ADD) without contradiction with present experiments. ADD and RS are both

brane-world scenarios.

In the ADD case the compactified extra dimensions are flat and could be large. It

follows from Gauss Law that the effective Planck scale MP in 4-dimension is related
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to a fundamental scale MS in 4+d-dimension through the volume of the compactified

d extra spatial dimensions [1]. The hierarchy between the Planck scale and the elec-

troweak scale (MW ) is solved by assuming MS ≈ MW . A viable mechanism to hide the

extra spatial dimensions, is to introduce a 3-brane with negligible tension and localise

the SM particles on it. Only gravity is allowed to propagate in all dimensions. The

d spatial dimensions are compactified on a torus of common circumference R. The

spectrum consists of the SM fields and a tower of Kaluza-Klein (KK) modes of the

graviton fields. The number of extra spacial dimension possible is d ≥ 2 from current

experimental limits on deviation from inverse square law [3].

This was the first extra dimension model in which the compactified dimensions

could be of macroscopic size and consistent with present experiments. In this model,

new physics can appear at a mass scale of the order of a TeV. The interaction of the

KK modes h
(~n)
µν with the SM fields localised on the 3-brane is given by

L = −κ

2

∞
∑

~n=0

T µν(x) h(~n)
µν (x) , (1)

where κ =
√
16π/MP and T µν is the energy-momentum tensor of the SM fields on the

3-brane. The zero mode corresponds to the usual 4-dimensional massless graviton.

The KK modes are MP suppressed but the high multiplicity could lead to observable

effects. In a process involving a virtual exchange of KK modes from SM particles, the

sum of KK propagators D(Q2) is given by

κ2D(Q2) = κ2
∑

n

1

Q2 −m2
n + iǫ

,

=
8π

M4
S

(

Q

MS

)(d−2)
[

− iπ + 2I(Λ/Q)
]

, (2)

the integral I(Λ/Q) is a result of the summation over the non-resonant KK modes and

the term proportional to π is due to the resonant production of a single KK modes [4].

Λ is the explicit cut-off on the KK sum which is identified with the scale of the extra

dimension theory MS [4, 5]. The κ2 suppression in a virtual exchange is compensated

for by the high multiplicity, after the KK modes are summed over. The ADD scenario
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raises the exciting possibility of observing quantum gravity at the LHC. Basic collider

signals of the ADD scenario could be (a) real KK mode production resulting in miss-

ing energy in association with a SM gauge boson or a hadronic jet or (b) virtual KK

mode exchange which could lead to deviations from the SM predictions. Interesting

phenomenological consequence have been considered in [4–7].

In the RS model there is only one extra spacial dimension and the extra dimension

is compactified to a circle of circumference 2L and further orbifolded by identifying

points related by y → −y. Two brane are placed at orbifold fixed points, y = 0 with

positive tension called the Planck brane and a second brane at y = L with negative

tension called the TeV brane. For a special choice of parameters, it turns out that

the 5-dimensional Einstein equations have a warped solution for 0 < y < L with

metric gµν(x
ρ, y) = exp(−2ky) ηµν , gµy = 0 and gyy = 1. This space is not factorisable

and has a constant negative curvature— AdS5 space-time. k is the curvature of the

AdS5 space-time and ηµν is the usual 4-dimensional flat Minkowski metric. In this

model the mass scales vary with y according to the exponential warp factor. If gravity

originates on the brane at y = 0, TeV scales can be generated on the brane at y = L

for kL ∼ 10. The apparent hierarchy is generated by the exponential warp factor and

no additional large hierarchies appear. The size of the extra dimension is of the order

of M−1
P . Further it has been showed that [8] the value of kL can be stabilised without

fine tuning by minimising the potential for the modulus field which describes the

relative motion of the two branes. In the RS model graviton and the modulus field can

propagate the full 5-dimensional space time while the SM is confined to the TeV brane.

The 4-dimensional spectrum contains the KK modes, the zero mode is MP suppressed

while the excited modes are massive and are only TeV suppressed. The mass gap of

the KK modes is determined by the difference of the successive zeros of the Bessel

function J1(x) and the scale m0 = k e−πkL. As in the ADD case the phenomenology

of the RS model concerns the effect of massive KK modes of the graviton, though the

spectrum of the KK mode is quite different.
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In the RS model the massive KK modes h
(n)
µν (x) interacts with the SM fields

Lint ∼ − 1

MP

T µν h(0)
µν − 1

MP e−πkL

∞
∑

n=1

T µν h(n)
µν , (3)

where the energy-momentum tensor T µν of the SM fields lives on the 3-brane at y = L

and its coupling to the massive KK modes could be TeV suppressed if kL ∼ 10. The

masses of h
(n)
µν are given by Mn = xn k e−πkL, where xn are the zeros of the Bessel

function J1(x). In this model there are two parameters which are c0 = k/MP , the

effective coupling and m1 the mass of the first KK mode. Except for an overall warp

factor the Feynman rules of RS are the same as those of the ADD model. In the RS case

since the spectrum is massive and its spacing is determined by xn, the summation of

the propagator is given by [9]

D(Q2) =
∑

n

1

s−M2
n + iMnΓn

,

=
1

m2
0

∑

n

X2 −X2
n − i Γn

m0

Xn

(X2 −X2
n)

2 + Γ2
n

m2

0

X2
n

, (4)

where X =
√
s/m0 and Xn = Mn/m0. The summation over n is kinematically bounded.

Further the RS KK mode of mass Mn if decays only to SM particles, the decay width

Γn is fixed. The signal is now resonant enhancement over the SM predictions and is

very distinct compared to the ADD case which leads to an enhancement of the tail for

say the invariant mass distribution.

Production of photon pairs at hadronic colliders is an important process as it pro-

vides a clean channel not only to test the predictions of the SM but also of any new

physics beyond it. An extensive study of this process exists in the literature [11] in

the context of light Higgs-boson searches as a light Higgs Boson decays dominantly

to two photons. This channel has also been widely used for various beyond SM stud-

ies [12]. Recently we completed a next-to-leading order computation for this process

in the context of theories with large extra-dimension and unparticle model [16]. The

present paper aims at a full next-to-leading order computation for production of iso-

lated direct photon pairs at the LHC at
√
S = 14 TeV, and to obtain various kine-
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matical distributions with experimental cuts imposed on the photons. All the details

of the calculation are presented here which were not presented in previous publica-

tions [16, 17]. The estimate of enhancement over LO result and the improvement in

scale uncertainties in going from a LO result to a NLO result are the main motivations

for this work. In [13], QCD radiative corrections beyond LO to Drell-Yan process

in gravity mediated models were first studied and it was found to be large. Subse-

quently, they were used (see [14, 15]) to constrain the model parameters.

The NLO calculation presented here uses both analytical and Monte Carlo inte-

gration methods. It is easy to impose experimental cuts in a Monte Carlo calculation

than a fully analytical computation. Our code is based on the method of two cut-

off phase space slicing [19] to deal with various singularities appearing in the NLO

computation and to implement the numerical integrations over phase space. It has

been applied to diphoton production in [20]. This method is nicely reviewed in [21].

All the analytical results presented in this paper were evaluated using the algebraic

manipulation program FORM [18].

At the lowest order in αs ie., at α0
s, two photons in the final state are produced

in quark anti-quark annihilation subprocess qq → γγ in the SM. For low invariant

mass photon pairs gg → γγ, although of order α2
s, is comparable to qq → γγ. This

is due to the large gluon densities at small x. In light Higgs boson search studies

this subprocess plays an important role, and it is treated formally as a leading order

contribution although it is of order α2
s [11, 22] and is really a next-to-next-to leading

order contribution. However, it falls rapidly with increasing invariant mass and in

the mass range of interest for the TeV scale gravity models, it need not be included

at LO. We have demonstrated in [17] that this subprocess in the SM is few orders of

magnitude smaller than that of qq̄ when Q > 500 GeV. This subprocess amplitude can

interfere with the gluon initiated LO subprocess in ADD (also in RS) giving order αs

contribution which is included in our study. In addition order κ2 gravity mediated

Feynman diagrams fig.(1) qq → γγ and gg → γγ also appear at the leading order. The
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NLO computation involves two kinds of matrix elements.

• Virtual diagrams with loops which contribute through their interference with

the LO diagrams (see fig.(2)).

• Real emission diagrams with an additional parton in the final state (see fig.(3)).

Both the virtual and real corrections have been evaluated with 5 quark flavors and in

the limit of vanishing of quark masses. The n-point tensor integrals appearing from

integration over loop-momenta were simplified using Passarino-Veltman reduction

and computation was carried with dimensional regularization using n = 4 + ǫ, and

divergences were subtracted or factorized in MS scheme.

Photons not only arise directly in a parton subprocess but also through fragmen-

tation of a parton into a photon and a jet of hadrons collinear to it. This fragmentation

is a non-perturbative phenomenon. A parton level computation involving only di-

rect photons without including fragmentation photons is plagued with QED collinear

singularities. It is evident from the SM Feynman diagrams. This singularity can be

absorbed into fragmentation functions describing probability of a parton fragmenting

into a photon in much the same way as initial state collinear singularities are absorbed

in parton distribution functions. However, fragmentation functions are not known to

a good accuracy. An alternative is to avoid these fragmentation functions and si-

multaneously suppress final state QED singularity by using the smooth cone isolation

criterion advocated by Frixione [23].

Smooth cone isolation: The aim of this isolation criterion is to suppress the final

state QED collinear singularities and at the same time also remove the fragmentation

photons in an infrared safe manner. Let the z-axis coincide with the proton-proton

collision line and θ and φ denote the polar and azimuthal angles respectively. It is,

however, more convenient to use the pseudo-rapidity in the context of hadron col-

liders, as they are additive under boosts. The fragmentation photons are embedded

in hadronic jets and the prescription to isolate a photon from hadronic activity is to
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draw concentric circles around it in η − φ plane with the largest circle having a fixed

radius R0, which will be taken as R0 = 0.4, and demand that the sum of hadronic

transverse energy in any circle of radius R < R0 be less than some specified amount

H(R). Thus as we move closer to the photon lesser hadronic energy is allowed in its

neighborhood. In order that this criterion does not disturb cancellation of infrared

singularities H(R) is restricted to have the limit H(R → 0) = 0. Here we would use

the following choice for H(R)

H(R) = Eiso
T

(

1− cosR

1− cosR0

)n

, (5)

where Eiso
T is a fixed energy. In this paper, for our analysis, n = 2 and Eiso

T = 15 GeV

would be default choices.

The paper is organized as follows. In section-2, we outline the next-to-leading

order computation in the two cut off phase space slicing method and present all the

analytical results that go into our Monte Carlo code with the exception of 2 → 3

subprocess matrix elements 5. In section-3, the numerical results and discussion on

various kinematical distributions are presented. Finally we conclude in the section-4.

2 Outline of computation

2.1 Leading order processes

A parton level 2 → 2 process at the leading order is of the generic form

a(p1) + b(p2) → γ(p3) + γ(p4). (6)

5These can be obtained from us on request
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where a and b are either quark and anti-quark or gluons. The exact matrix elements

in n = 4 + ǫ dimensions for qq and gg initiated subprocesses are

|M (0)|2qq,sm =
e4q
N

[

u

t
+

t

u
+ ǫ

(

1 +
u

t
+

t

u

)

+
ǫ2

4

(

2 +
u

t
+

t

u

)]

(7)

|M (0)|2qq,int = − κ2ReD(s)
e2q
8N

[

4
(

t2 + u2
)

+ ǫ
(

3t2 + 3u2 + 2ut
)

]

(8)

|M (0)|2qq,gr =
κ4|D(s)|2

16N

[

ut3 + tu3 +
ǫ

4

(

3tu3 + 3t3u+ 2u2t2
)

]

, (9)

|M (0)|2gg,gr =
κ4|D(s)|2
N2 − 1

[ 81

128(3 + ǫ)2
s4 +

27

64(3 + ǫ)
s2

(

u2 + 14tu+ t2
)

+
5

2(2 + ǫ)2
s2tu− 1

16(2 + ǫ)
s2

(

7u2 + 94tu+ 7t2
)

+
1

128

(

9t4 + 28t3u+ 54t2u2 + 28tu3 + 9u4
)

]

(10)

where sm, gr, int represent contributions from SM, gravity, and interference of SM

with gravity induced process respectively, s, t, u are the usual Mandelstam invariants,

eq is the charge of a quark or anti-quark and κ is the coupling of gravity to SM fields.

The bar over the symbol M represents that the matrix elements have been averaged

over initial helicities and color, and summed over the final ones. A factor of 1/2 has

been included for identical final state photons. This expression has been evaluated

for quarks with N and gluons with N2 − 1 color degrees of freedom.

2.2 Virtual process

The order αs corrections to leading order process come from interference between

Born graphs and virtual graphs. It is to be noted that the virtual contribution here

does not contain UV singularities. The reason lies in the facts that (i) electromagnetic

coupling α does not receive any QCD corrections, (ii) and that the gravitons couple

to the energy momentum tensor of SM fields which is a conserved quantity and does

not get renormalized. The Feynman diagrams with external leg corrections are not

shown as these vanish in the dimensional regularization in the massless limit. We
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give below the order αs squared matrix element coming from virtual processes. The

SM contribution is found to be

|MV |2qq,sm = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,sm + 2
e4q
N

{

(4ζ(2)− 7)
u

t

+
(

2 + 3
u

t

)

ln
−t

s
+

(

2 +
u

t
+ 2

t

u

)

ln2 −t

s
+ t ↔ u

}

]

, (11)

the interference of SM with the gravity mediated processes are

|MV |2qq,int = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,int + κ2ReD(s)
e2q
2N

{

(17− 8ζ(2))t2

−(2tu+ 3u2) ln
−t

s
−
(

2tu+ 2t2 + u2
)

ln2 −t

s
+ t ↔ u

}

−κ2πImD(s)
e2q
2N

{

3t2 + 2tu+ 2(t2 + 2tu+ 2u2) ln
−u

s
+ t ↔ u

}

]

(12)

|MV |2gg,int = as(µ
2
R) e

2
qκ

2 1

N2 − 1

[

s ReD(s)
{

u2 + (2tu+ t2) ln
−u

s

+

(

u2 +
1

2
t2 + tu

)

ln2 −u

s

}

+ s πImD(s)
{

u2 + 2tu

+(2u2 + 2tu+ t2) ln
−u

s

}

+ t ↔ u

]

, (13)

and the pure gravity contributions are

|MV |2qq,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,gr + 4(2ζ(2)− 5)|M (0)|2qq,gr

]

(14)

|MV |2gg,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CA

[

{

−16

ǫ2
+

4

CAǫ

(

11

3
CA − 4

3
nfTf

)}

|M (0)|2gg,gr

+
1

9

(

72ζ(2) + 70
nfTf

CA
− 203

)

|M (0)|2gg,gr

]

(15)

where

Υ (ǫ) = − 16

ǫ2
+

12

ǫ
, f(ǫ, µ2

R, s) =
Γ
(

1 +
ǫ

2

)

Γ(1 + ǫ)

(

s

4πµ2
R

)
ǫ
2

(16)

9



Here µ2
R is the scale at which the theory is renormalized ; as(µ

2
R) = gs(µ

2
R)

2/16π2 is

the strong running coupling constant. Our results for the SM are in agreement with

the literature [20]. The poles in ǫ arise from loop integrals and correspond to the soft

and collinear divergences. Configurations in which a virtual gluon momentum goes

to zero give soft singularities while collinear singularities arise when two massless

partons become collinear to each other. As the soft divergences cancel completely in

any observable, the ǫ poles of order-2, get canceled when real emission contributions

are included. This cancellation will be shown in what follows.

2.3 Real emission process

A next-to-leading order 2 → 3 parton level process for production of photon pairs is

of the following generic form

a(p1) + b(p2) → γ(p3) + γ(p4) + c(p5). (17)

where a,b and c are massless partons. In fig.(3) all gravity mediated 2 → 3 Feynman

diagrams are given. Depending on the initial state partons, the final state may have

a quark or anti-quark or a gluon. To obtain an inclusive cross-section the final state

parton will be integrated over the phase-space. The 2 → 3 matrix elements when

integrated over the phase-space give soft and collinear singularities. These singular-

ities are regulated using dimensional regularization with n = 4 + ǫ and appear as

poles in ǫ. These singularities arise when the final state gluon becomes soft (a soft

fermion does not give any soft divergences) or when the final state massless parton

becomes collinear to an initial state massless parton. As was mentioned in the intro-

duction a Monte Carlo approach allows for an easy implementation of experimental

cuts on the final state photons and smooth-cone isolation criterion. This is achieved

by using the semi-numerical two cutoff phase space slicing method. This method in-

troduces two small dimensionless parameters δs and δc to deal with soft and collinear

QCD singularities. δs divides the phase-space into soft and hard regions. The part

of phase-space where the energy of the gluon in the centre of mass frame of incom-
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ing parton is less than δs
√
s/2 is defined as soft and the region complementary to it

is hard . For small values of δs the matrix elements can be simplified and integrated

over the soft region to give a δs dependent, order αs, 2-body contribution dσS(δs, ǫ).

This contains the poles in ǫ arising from the soft singularities. The hard region can be

further divided into collinear and non-collinear regions using another small dimen-

sionless slicing parameter δc. The part of phase-space in which the final state parton

is collinear to the incoming parton is defined as collinear region and gives an order

αs contribution dσHC(δs, δc, ǫ). This contains the collinear singularities. The hard non-

collinear 3-body contribution denoted by dσHC(δs, δs) is free of any singularities and

can be evaluated numerically using Monte Carlo integration. The collinear singulari-

ties appearing in dσHC(δs, δc, ǫ) will be removed by mass factorization in MS scheme

by adding counter terms to give dσHC+CT (δs, δc, ǫ). In the following subsections it will

be shown that the 2-body contribution dσV (ǫ)+dσS(δs, δc, ǫ)+dσHC+CT (δs, δc, ǫ) is free

of poles in ǫ. Although individually the 2-body and 3-body contributions depend

on the slicing parameters which were introduced artificially in the problem, the sum

should be independent of these parameters. In what follows we will show that this

sum is independent of δs and δc for a fairly wide rage of these parameters.

2.3.1 Soft

In the soft gluon limit the 2 → 3 amplitude factorizes into Born matrix element and a

term containing eikonal currents. These eikonal currents reveal the singularities when

integrated over the soft part of phase space.

dσ̂S = as(µ
2
R)f(ǫ, µ

2
R, s)

(

CF dσ̂0
qq(ǫ) + CA dσ̂0

gg(ǫ)
)

[

16

ǫ2
+

16

ǫ
ln δs + 8 ln2 δs

]

(18)

The symbol σ̂ is used to indicate that the cross-section is at parton level. The terms

linear and higher order in δs have been dropped. Note that the 1/ǫ2 pole cancels

with the virtual contribution. However the pole 1/ǫ with coefficient ln δs still remains

uncanceled and later it will be seen that this pole also cancels.
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2.3.2 Collinear

Complementary to the soft region discussed above is the hard region. In this region

collinear singularities arise when the final state massless parton (quark, anti-quark or

gluon) is collinear to the initial state parton. Let z denote the momentum fraction of

the incoming parton carried by the parton entering into hard scattering. An initial

state quark can split into a quark (and a gluon) or into a gluon (and a quark) which

enter into the hard scattering and involve Pqq and Pgq splitting functions. Similarly an

initial state gluon gives Pgg and Pqg splitting functions. If the energy of a final state

gluon is greater than δs
√
s/2 in the rest frame of incoming partons it is defined as a

hard gluon. Thus a gluon is hard if 0 ≤ z ≤ 1 − δs for Pqq and Pgg splittings. As a

soft quark does not give any soft singularities, 0 ≤ z ≤ 1 for Pgq and Pgq splittings.

As already discussed above, in the collinear limit matrix elements simplify and can

be integrated easily in n = 4+ ǫ dimensions over the collinear region. For photon pair
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production the hard collinear contribution takes the following form

dσHC =
as(µ

2
R)

ǫ
dx1dx2f(ǫ, µ

2
R, s)

×
[

dσ̂qq
0 (x1, x2, ǫ)

{

∫ 1−δs

x2

dz

z
H(z, ǫ, δc)Pqq(z, ǫ)

∑

i

fqi(x1)fq
i
(x2/z)

+

∫ 1−δs

x1

dz

z
H(z, ǫ, δc)Pqq(z, ǫ)

∑

i

fqi(x1/z)fq
i
(x2) + x1 ↔ x2

}

qq

+dσ̂qq
0 (x1, x2, ǫ)

{

∫ 1

x2

dz

z
H(z, ǫ, δc)Pqg(z, ǫ)

∑

i

fqi(x1)fg(x2/z)

+

∫ 1

x2

dz

z
H(z, ǫ, δc)Pqg(z, ǫ)

∑

i

fq
i
(x1)fg(x2/z) + x1 ↔ x2

}

qg

+dσ̂gg
0 (x1, x2, ǫ)

{

∫ 1−δs

x2

dz

z
H(z, ǫ, δc)Pgg(z, ǫ)

∑

i

fg(x1)fg(x2/z) + x1 ↔ x2

}

gg

+dσ̂gg
0 (x1, x2, ǫ)

{

∫ 1−δs

x2

dz

z
H(z, ǫ, δc)Pgq(z, ǫ)

∑

i

fg(x1)fqi(x2/z)

+

∫ 1−δs

x2

dz

z
H(z, ǫ, δc)Pgq(z, ǫ)

∑

i

fg(x1)fq
i
(x2/z) + x1 ↔ x2

}

qg

]

(19)

where x1, x2 are momentum fraction of incoming parton momenta Pij(z, ǫ) are split-

ting functions in 4 + ǫ dimensions, and

H(z, ǫ, δc) =

(

δc
1− z

z

)ǫ/2

. (20)

The collinear singularities can be removed by the method of mass factorization.

To this effect, counter terms to cancel these singularities in MS scheme are obtained

by introducing in the leading order cross-section

dσ0 = dx1dx2

(

dσ̂qq
0 (x1, x2, ǫ)

∑

i

[

fqi(x1)fq
i
(x2) + fq

i
(x1)fqi(x2)

]

+dσ̂gg
0 (x1, x2, ǫ)fg(x1)fg(x2)

)

(21)
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the following factorization scale dependent parton distribution functions in the MS

scheme.

fq(x) = fq(x, µF )−
as(µ

2
R)

ǫ

(

µ2
F

µ2
R

)

ǫ

2
∫ 1

x

dz

z

[

Pqq(z)fq(x/z) + Pqg(z)fg(x/z)
]

fg(x) = fg(x, µF )−
as(µ

2
R)

ǫ

(

µ2
F

µ2
R

)

ǫ

2
∫ 1

x

dz

z

[

Pgg(z)fg(x/z) + Pgq(z)
(

fq(x/z) + fq(x/z)
)

]

(22)

Note that the upper limits on the integrals are 1 for all the splittings. Substituting

these distribution functions in dσ0 an adding to σHC the following order as term is

obtained.

dσHC+CT = as(µ
2
R)dx1dx2f(ǫ, µ

2
R, s)

[

dσ0
qq(ǫ)

∑

i

fq
i
(x1, µF )

{

1

2
f̃qi(x2, µF )

+
(

fqi(x2, µF )Aq→q+g + fg(x2, µF )Ag→q+q

)(

− 1

ǫ
+

1

2
ln

s

µ2
F

)

}

+dσ0
gg(ǫ)fg(x1, µF )

{

1

2
f̃g(x2, µF ) +

(

fg(x2, µF )Ag→g+g

+
∑

i

fqi(x2, µF )Aq→g+q

)(

− 1

ǫ
+

1

2
ln

s

µ2
F

)

}]

+ (q ↔ q, x1 ↔ x2) (23)

The function Aa→b+c result from the mismatch in the integral limits on z−integrals

in dσHC and counter term and can be easily evaluated using the definition of plus-

prescription.

Aq→q+g = 4CF

(

2 ln δs +
3

2

)

, Aq→g+q = 0.

Ag→g+g =
22

3
CA − 4

3
nf + 8CA ln δs, Ag→q+q = 0, (24)
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The function f̃q,g are defined by

f̃q(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃qq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃qg(z)

f̃g(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃gq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃gg(z) (25)

with

P̃ij(z) = Pij(z) ln

(

δc
1− z

z

s

µ2
F

)

− P ′

ij(z) (26)

The P ′ is the order ǫ part of Pij(z, ǫ).

After mass factorization the poles still remain and do not cancel completely in

dσHC+CT and these cancel with the uncanceled simple poles in virtual and soft contri-

butions. The contribution dσHC+CT +dσS+dσV is an order as 2-body contribution free

of any singularities and can be evaluated numerically using Monte Carlo integration

with the experimental cuts on the final state photons. This, however depends on the

choice of arbitrary small parameters δs and δc used for slicing of phase space. The

3-body hard non collinear contribution also depends on slicing parameters and is free

of any singularities and can be evaluated numerically. The sum of 2-body and 3-body

contribution should be independent of the δs and δc.

3 Numerical Results

In this section various kinematical distributions for production of isolated direct pho-

ton pairs are presented to next-to-leading order accuracy in QCD both in the ADD

and RS scenarios. Both for the SM background and the SM+ADD and SM+RS signals

the following distributions are presented:

1. Invariant mass (Q) distribution of the di-photon system

2. Transverse momentum (QT ) distribution of the photon pair

3. Angular distribution cosθ∗ of the photons
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4. Rapidity (Y ) distribution of the di-photon system.

5. Rapidity yγ distribution of photon

We impose the same kinematical cuts on the two photons in our study which are used

by ATLAS and CMS collaborations [24,25]: (i) pγT > 40 (25) GeV for the harder (softer)

photons, (ii) rapidity |yγ| < 2.5 for each of the photons. (iii) The minimum separation

between the two photons in the y − φ plane is taken to be Rγγ = 0.4. As this study

does not include poorly known fragmentation functions, the final state QED singular-

ity is suppressed using the smooth cone isolation discussed in eqn.(5). In what follows

Eiso
T = 15 GeV and n = 2 with R0 = 0.4 would be our default choices. This choice al-

lows a maximum of hadronic transverse energy equal to 15 GeV in a cone of radius 0.4

in η−φ plane around a photon. As parton in the final state in our NLO computation is

a crude approximation to the jet of hadrons detected in the detectors, the dependence

of results on the choice of the parameters entering into isolation criterion needs to be

studied and it has been observed in [17] to be small. For our leading order analysis

we have used CTEQ6L, and for NLO analysis CTEQ6M [26] parton density sets re-

spectively with nf = 5 light quark flavours, and the corresponding two loop strong

running coupling constant αs(MZ) = 0.118. The fine structure constant is taken to be

α(MW ) = 1/128. Unless mentioned otherwise we have set the renormalization and

the factorization scales to µR = µF = Q in all the distributions.

Before proceeding further we present the stability of the sum of 2-body and 3-

body contributions against the variation of the slicing parameters δs and δc. In fig(4)

and fig(5) the individual 2-body and 3-body order αs contributions and their sum

are presented in invariant mass distribution in the SM and SM+ADD respectively as

a function of δs with δc fixed at 10−5. From these figures it is clear that the sum is

fairly stable against the variation of slicing parameters; this serves as a check on the

numerical implementation of the phase space slicing in our numerical code. Fig(9)

provides the corresponding test for the case of the RS model. For all further analysis,

we choose δs = 10−3 and δc = 10−5. As a further test we compared our SM results
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with those in [10]. Our SM results are in good agreement with [10] when the isolation

criterion used there is used in our code. This gives a further confidence in our code.

3.1 ADD model distributions

In this section, we study various kinematic distributions in the ADD model using

our NLO results. First, we present our results for the invariant mass distribution.

In fig.(6a), we plot LO and NLO contributions to the signal (SM+ADD) and the SM

background against Q between 300 GeV and 1 TeV. We choose the fundamental scale

MS = 2 TeV and the number of extra dimensions d = 3. As we discussed in the

introduction, we do not consider the gluon-gluon fusion process through quark loop

at LO as its contribution is significant only at small Q.

For the above choice of parameters the signal starts deviating from the SM back-

ground around Q = 500 GeV. The value of Q at which the deviation occurs depends

very much on the choice of the parameters, namely the scale MS , d and the cut-off

scale Λ for the summation of the KK modes. In fig.(6b), we show how the invariant

mass distribution depends on the choice of the fundamental scale MS when d = 3. As

expected smaller the MS , the larger the deviation one observes. The dependence on

the number of extra dimensions d is presented in fig.6c for d = 3 − 6 keeping MS = 2

TeV fixed. We find that the ADD contribution decreases with increase in d. In fig.(6d),

we present the cut-off scale Λ dependence for Λ = 0.6MS to MS . For lower values of

cut-off scale, the number of KK modes available are less and the signal will decrease

with decrease in Λ as shown in the figure. In the following, we choose MS = 2 TeV,

d = 3 and Λ = MS . For the rest of the kinematic distributions that we have consid-

ered, to reduce the SM background and to enhance the signal, we integrate over Q in

the range 600 < Q < 1100 GeV.

The rapidity of the photon pair is defined by

Y =
1

2
ln

(

P1.q

P2.q

)

(27)

where P1, P2 are the momenta of incoming hadrons and q = p3 + p4. In the left panel
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of fig.(7), we show the production cross section as a function of Y between −2.0 and

2.0 after integrating over Q in the region 600 < Q < 1100 GeV where the ADD model

shows significant contribution over the SM background. From the left panel of this

figure, we observe that the signal exceeds the background by more than an order of

magnitude at the central rapidity region Y = 0.

The transverse momentum of the photon pair is defined by QT =
√

q2x + q2y . At

LO, the photon pairs will have zero QT as incoming partons have no transverse mo-

mentum, and hence QT distribution will be proportional to δ(QT ). However, at NLO,

the photon pairs will be accompanied by a quark (anti-quark) or a gluon in the fi-

nal state resulting in a non-zero QT . The numerical results for the QT distribution is

presented in the right panel of fig.(7).

The rapidity of a photon is given by

yγ =
1

2
ln

(

E + pz
E − pz

)

(28)

where E and pz are its energy and the longitudinal momentum respectively. In fig.(8),

the left panel shows the rapidity distribution of the photons as a function of yγ in the

region −2.0 < yγ < 2.0. The SM cross sections both at LO and NLO level do not show

significant dependence on yγ unlike contribution from the ADD model. We also find

that the QCD corrections are large for the signal as compared to the SM background.

For the angular distribution of the photons, we define

cosθ∗ =
P1.(p3 − p4)

P1.(p3 + p4)
(29)

Since gravitons are spin-2 particles, the angular dependence of the cross section in

ADD model will be different from SM. It is shown in the right panel of fig.(8). Hence

these distributions have the advantage of distinguishing the signal, qualitatively, from

the background.

3.2 RS model distributions

In this section we present the kinematic distributions of the photon pairs in the RS

model at the LHC to order αs. Unlike the ADD model wherein the spectrum of the
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KK modes is uniform and almost continuous, the spectrum in the RS model is quite

non-uniform and contains heavy resonances. They can be probed via their resonance

decays at large values of Q. In fig.(11), we present the invariant mass distribution of

the di-photon in the RS model with the following choice of parameters: (i) the mass

of the first RS mode is M1 = 1.5 TeV and (ii) the effective coupling between the RS

modes and the SM fields is c0 = 0.01. This choice is consistent with the bounds ob-

tained from the Tevatron [15]. The RS modes being heavy show up as resonances in

the invariant mass distribution which can be seen in the left panel of the figure. In the

right panel, we have plotted the rapidity distribution of the photon pairs (see eqn.(27))

after integrating the invariant mass of the photon pairs around the first resonance i.e.

in the range 1100 < Q < 1600 GeV. We find that the signal has maximum contribution

at the central rapidity (Y=0) and is differing from the SM background by an order

of magnitude. The NLO QCD corrections enhance the signal and the background.

Even though, the resonance pattern in the high Q region can point to new physics,

identification of the spin of the resonance will be very important to discriminate be-

tween the various new physics scenarios. It is well known that spin information of

these resonances will be reflected in the angular distribution and we study them in

the following.

In fig.(12), rapidity yγ of the photons is plotted |yγ| ≤ 2.0 both in the SM and in

SM+ADD to order αs. This distribution is obtained after integrating over the invari-

ant mass of the photon pairs in the range 1100 ≤ Q ≤ 1600 GeV where RS resonance

shows up. The SM cross sections show very little variation with respect to yγ while

the signal peaks at the central rapidity. The cosine of the angle (see eqn.(29)) between

the final state photon and one of the incoming hadrons in the c.o.m. frame of the final

state photons is plotted in the fig.(12) in the range | cos θ∗| ≤ 0.95. Again, we have

restricted our 1100 ≤ Q ≤ 1600 GeV as in the case of yγ distribution. The distribution

coming from the SM has a minimum for the photons in the transverse direction and

becomes large for the photons close to the beam direction. However, in the RS model,
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the signal shows an oscillating behavior and differs by more than an order of mag-

nitude for the photons in the transverse direction. This is the feature unique to new

physics scenarios where spin-2 objects decay to photon pairs. We find our QCD cor-

rections enhance the cross sections. We present the QT distribution which is non-zero

only at order αs. This is obtained after integrating Q in the range 1100 ≤ Q ≤ 1600

GeV. The numerical results are shown in fig.(13). We find that the signal has a large

enhancement over the SM background for the entire range of QT considered i.e. from

100 GeV to 900 GeV.

3.3 Scale variations

In this section, we discuss the impact of NLO QCD corrections to various distribu-

tions. The uncertainity in LO computation of observables in the hadron colliders

originates from two important sources, namely, the missing higher order radiative

corrections and the choice of factorisation and renormalisation scales. The former en-

ters through parton density sets and the latter through the renormalised parameters

such as running coupling constant αs of the theory. The radiative corrections coming

from QCD in our case enhance both SM as well as ADD and RS distributions. Hence,

the K-factor (K = σNLO/σLO), that quantifies these effects is always positive for the

cases we studied in this paper. It is clear from the plots that the K-factor is differ-

ent for different distributions and also within a given distribution, it varies with the

kinematical variable, say Q or Y etc. More importantly, the numerical value of K de-

pends very much on the kinematical cuts imposed on each distribution. We find that

the K factors of the distributions reported in the paper are not large and hence our

NLO results are stable under perturbation and reliable for further study. Observables

are expected to be independent of renormalisation and factorisation scales, thanks to

renormalisation group invariance. However, any truncated perturbative expansion

does depend on the choice of these scales. This is expected to improve if higher or-

der corrections are included in the perturbative expansion. Indeed, our NLO results

of these distributions show significant improvement on the factorisation scale uncer-
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tainity entering through parton density sets at LO level. In order that the perturbative

expansion does not break down these scales should be chosen close to the scale in the

problem such as Q or QT . In the fig.(14) we show the effect of variation of µF between

Q/2 and 3Q/2. We studied this variation for Y and cos θ∗ distributions in the ADD

model. A similar analysis has been done for the RS model as well which is shown in

fig.(15) Here, we have integrated the invariant mass around the first resonance region

1100 ≤ Q ≤ 1600 GeV.

4 Conclusions

In this paper, we have presented full next to leading order QCD corrections to pro-

duction of direct photon pairs at hadron colliders in the context of extra-dimension

scenarios namely ADD and RS models. Both in ADD and RS models, photon pairs

can be produced in a collision of partons through virtual exchange of KK gravitons.

These give appreciable deviations to production rates predicted in the SM due to large

multiplicity of KK modes in the ADD and warp factor in the RS model. Only the

spin-2 gravitons are included in our analysis and they show distinct features in the

angular distributions of photon pairs. Photon pairs at hadron colliders often provide

a clean channel to probe these physics beyond the SM. In this study, only direct pho-

tons have been considered and the fragmentation photons are removed by the method

of smooth cone isolation. The isolation used also removes final state QED singular-

ities. The leading order contributions to production rate resulting from quark and

anti quark as well as gluon initiated processes depend very much on the factorisation

scale through the parton distribution functions giving significant theory uncertainity.

In order to bring down this uncertainity, we have systematically included all order αs

contributions to the process. This includes all virtual and real emission processes to

order αs both in SM as well as in ADD and RS models. To obtain various kinematic

distributions of the final state photons, we have used phase space slicing method to

deal with all the soft and collinear singularities and the resulting finite pieces are inte-
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grated with the appropriate kinematical cuts using a Monte Carlo program. We have

made several test on our NLO code by showing the independence of the results on

the slicing parameters and also comparing with the known NLO corrected SM results

available in the literature. Our numerical results including the NLO corrections show

significant enhancement over the LO predictions in all the distributions presented.

The enhancement varies with the distributions. We have estimated them through the

K-factor which quantifies the reliability of the perturbative expansion. We find the

K-factor is moderate for all the distributions and hence the results present here are

stable under perturbation. We have also shown the impact of αs corrected results on

the scale uncertainity. We find that the factorisation scale dependence gets reduced

considerably when αs contributions are included.
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Figure 1: Born contributions

Figure 2: Virtual contributions
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Figure 3: Real emission contributions
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Figure 4: Stability of the order αs contribution to the SM cross section against the
variation of the slicing parameter δs (top), with δc = 10−5 fixed, in the invariant mass
distribution of the di-photon. Below is shown the variation of the sum of 2-body and
3-body contributions over the range of δs considered and contrasted against the one
at δs = 10−3.
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Figure 6: Invariant mass distribution of the di-photon production in the ADD model
at the LHC. In (a) both SM and the signal (SM+ADD) are presented at LO and NLO
for MS = 2 TeV and d = 3. Further the dependency of the cross sections on the scale
MS in (b), on the number d of extra dimensions in (c) and on the cut-off scale Λ for the
summation over virtual KK modes in (d), has been shown to NLO in QCD.
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Figure 7: Transverse momentum rapidity dσ/dY (left) and dσ/dQT (right) distribu-
tions of the di-photon production are presented in the ADD model with MS = 2 TeV,
d = 3 and by integrating over Q in the range 600 < Q < 1100 GeV.
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Figure 8: Rapidity dσ/dyγ (left) and angular distributions dσ/d cos θ∗ (right) of the
photons are presented in the ADD model with MS = 2 and d = 3. Both of these
distributions are obtained by integrating over the invariant mass of the di-photon in
the range 600 < Q < 1100 GeV.
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Figure 9: Stability of the order αs contribution to the SM cross section against the
variation of the slicing parameter δs (top), with δc = 10−5 fixed, in the invariant mass
distribution of the di-photon. Below is shown the variation of the sum of 2-body and
3-body contributions over the range of δs considered and contrasted against the one
at δs = 10−3.
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Figure 10: Stability of the order αs contribution to the SM+RS cross section against the
variation of the slicing parameter δs (top), with δc = 10−5 fixed, in the invariant mass
distribution of the di-photon with M1 = 1.5 TeV and c0 = 0.01. Below is shown the
variation of the sum of 2-body and 3-body contributions over the range of δs consid-
ered and contrasted against the one at δs = 10−3.
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Figure 11: Invariant mass dσ/dQ (left) and rapidity dσ/dY (right) distributions of the
di-photon production in the RS model with M1 = 1.5 TeV and c0 = 0.01 at the LHC.
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Figure 12: Rapidity dσ/dyγ (left) and angular dσ/d cos θ∗ (right) distributions of the
photons in the RS model with M1 = 1.5 TeV and c0 = 0.01 at the LHC.
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Figure 13: Transverse momentum distribution of the di-photon production in the RS
model with M1 = 1.5 TeV and c0 = 0.01. Here we have integrated over Q around the
first resonance region 1100 ≤ Q ≤ 1600 GeV.
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Figure 14: Factorization scale dependency of the LO and NLO cross sections in the
ADD model with MS = 2 TeV and d = 3 for a scale variation of Q/2 < µF < 3Q/2. For
both the rapidity (left) and angular (right) distributions of the di-photon production,
we have integrated over the invariant mass in the range 600 < Q < 1100 GeV.
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Figure 15: The factorization scale dependency is shown in the rapidity distribution
dσ/dY of the di-photon for a scale variation of Q/2 ≤ µF ≤ 3Q/2. For this distribution
we have integrated over the invariant mass of the di-photon in the range 1100 ≤ Q ≤
1600 GeV.
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