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Abstract—The Selvester score is an effective means for esti-
mating the extent of myocardial scar in a patient from low-
cost ECG recordings. Automation of such a system is deemed to
help implementing low-cost high-volume screening mechanisms
of scar in the primary care. This article describes, for the first
time to the best of our knowledge, an automated implementation
of the updated Selvester scoring system for that purpose, where
fractionated QRS morphologies and patterns are identified and
classified using a novel Stationary Wavelet Transform (SWT)
based fractionation detection algorithm. This stage informs the
two principal steps of the updated Selvester scoring scheme -
the confounder classification and the point awarding rules. The
complete system is validated on 51 ECG records of patients
detected with ischemic heart disease. Validation has been carried
out using manually detected confounder classes and computation
of the actual score by expert cardiologists as the ground truth.
Our results show that as a stand-alone system it is able to classify
different confounders with 94.1% accuracy whereas it exhibits
94% accuracy in computing the actual score. When coupled with
our previously proposed automated ECG delineation algorithm,
that provides the input ECG parameters, the overall system
shows 90% accuracy in confounder classification and 92%
accuracy in computing the actual score and thereby showing
comparable performance to the stand-alone system proposed
here, with the added advantage of complete automated analysis
without any human intervention.

Index Terms—Stationary Wavelet Transform, Electrocardiog-
raphy, Selvester QRS Score, Automated ECG Processing, My-
ocardial Scar

I. INTRODUCTION

A
Heart attack, known as myocardial infarction (MI), can

occur following a sudden compromise in blood supply.

If blood flow is not restored promptly, healing results in

scar tissue.This scar tissue demonstrates different properties

to healthy heart tissue, and reduces the contractile efficiency

of the heart. In addition, since the scar tissue cannot propagate
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normal electrical activity, disordered conduction around an

area of scar becomes a focus for formation of dangerous heart

rhythms (arrhythmias).

Imaging techniques such as nuclear perfusion scanning

and contrast enhanced cardiac magnetic resonance imaging

(CMR) are used in clinical practice to define the presence and

magnitude of scar. Quantification of scar size helps to define

risk of arrhythmia and/or death, and therefore guide preventive

therapies. However, these imaging modalities are not available

in every hospital, nor suitable for bedside testing. On the other

hand, the electrocardiogram (ECG) is widely available and can

be also used in a bedside or mobile environment. Since the

QRS-complex of the ECG reflects the electrical activity, or

depolarisation, through ventricles, there is clinical interest in

defining features from the QRS-complex that may reflect scar.

As an example, disordered conduction may manifest as various

additional deflections in the QRS-complex - fractionated QRS

- resulting in notching, slowing or slurring of the typical ECG

trace.

The Selvester QRS score was developed to quantify left

ventricular scar and is based upon 50 manually measured

ECG criteria, including the presence of fractionated QRS

features and various QRS width and amplitude ratios [1].

The score was initially developed from computer modelling

studies of the heart’s activity and validated with post mortem

specimens, but was limited due to its application to an ECG

of normal width QRS only [2], [3]. The score was recently

(2009) updated to take account of various ECG abnormalities,

or confounders, such as left bundle branch block (LBBB) or

left ventricular hypertrophy (LVH) that may also be present

but not necessarily related to scarring. This updated version

of the Selvester score demonstrates good agreement with scar

measured on CMR [4], [5]. The criteria used to define an ECG

confounder, and to award points for the presence of scar, rely

upon the accurate detection of the delayed QRS conduction,

seen as fractionated QRS and in particular notching (reversal

in direction ≥ 90◦ and notch amplitude ≥ 0.05mV ), or

slurring/slowing (change in gradient ≤ 90◦) in the QRS trace

[6]. The manual calculation of the Selvester score is a time

consuming process, and lacks reproducibility due to the limits

of human precision, even following appropriate training, and

therefore is not currently widely used in clinical practice. An

automated tool for computing the Selvester score will remove

these limitations and enable its effective deployment in clinical

practice. Since the Selvester score provides an estimation
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Fig. 1. The three types of fractionation

of the scar size, by relying only upon the widely available

ECG signal, the cost savings compared to its detection and

quantification through costly imaging techniques, like CMR,

could be significant. Although attempts have been made to

automate the original version of the Selvester scoring model,

which does not include any confounder determination and

in some cases not even fractionated QRS, no published data

demonstrate the automation of the updated, modified score

[7]–[9], which is more relevant to the clinical practice.

The primary objective of the present work is to develop

an automated Selvester scoring system based on the updated

Selvester score, for the quantification of myocardial scar from

12-lead ECG. To our knowledge this is the first of its kind.

The most challenging part of the updated Selvester score is

the identification and characterization of fractionated QRS

segments, which is required for confounder classification and

awarding points. It is common, even for well-trained cardiol-

ogists, to misdetect or misclassify QRS fractionations, due to

the variability of fractionated QRS, when manually inspecting

the ECG trace. On the other hand the evolution of Signal

Processing methods, during the previous decade, provided

various techniques for the automated analysis of the ECG

signal [10]. In this work, we propose a novel algorithm for the

automated detection and pattern identification of fractionated

QRS segments, based on the Stationary Wavelet Transform

(SWT), which alleviates the problems of manual fractionation

detection and provides a tool for in-depth analysis of fraction-

ated ECG. In our approach, the operations of detecting frac-

tionated QRS and ascertaining its morphology, classification

of the confounders and the subsequent scoring mechanism are

all integrated under one framework, resulting in an end-to-end

realization of the automated updated Selvester scoring system

which, with no human intervention, can compute the Selvester

score in a fast and accurate manner. In our design we follow

the definitions of fractionation as provided in [6]. To evaluate

the performance of the developed system, standard 12-lead

ECG recordings were obtained from patients known to have

ischemic heart disease, enrolled in a study at the University

Hospital Southampton NHS Foundation Trust. The confounder

classification and Selvester scores were manually calculated

by expert cardiologists for all records and then were compared

with the same as calculated by the proposed automated system.

The results show that for classifying the confounders, the

automated system agrees to the manual classification in 94%

(48 out of 51 records) of the cases. Similar accuracy (47 out

of 51 records) was also observed in the computation of the

Selvester score by the automated system, within 1-point of the

manual scoring. These results show that the proposed system

exhibits clinically acceptable performance.

The rest of the paper is structured as follows: in Section II

we provide a brief background of the updated Selvester score

and the definitions of fractionations in the QRS. Section III

describes the algorithmic development of the automated up-

dated Selvester scoring system including a novel algorithm for

detecting fractionations in the QRS-complex and ascertaining

the fractionated QRS morphology and confounder class. In

Section IV we present experimental results for validating the

developed system while conclusions are drawn in Section V.

II. BACKGROUND

A. Updated Selvester Scoring System

The updated Selvester QRS score is a 50-criteria/31-point

method for approximating scarring in the left ventricle from

ECG recordings. The scoring criteria are selected according

to the conduction pattern of the ECG, in order to take account

of features which are part of common disease processes but

might be mistaken for those representing scar. Such con-

founding categories considered are left bundle branch block

(LBBB), right bundle branch block (RBBB), left anterior

fascicular block (LAFB), left ventricular hypertrophy (LVH),

RBBB+LAFB, or a normal pattern. The presence of these is

determined according to the electrical axis of the heart, various

QRS width and amplitude measurements and morphological

features, including the QRS pattern and the presence of frac-

tionations in the QRS seen as notching, slurring or slowing.

In addition, the criterion thresholds are adjusted to account for

changes on the ECG due to right atrial overload (RAO)/right

ventricular hypertrophy (RVH) (defined by a P-wave amplitude

in V 1 ≥ 0.1 mV or in aV F ≥ 0.175 mV), and for younger

men with increased voltage and older women with lower

voltage. The ECG leads considered in the scoring rules are I,

II, aVL, aVF, and V1 through V6 and points are then awarded

according to the presence of fractionations in QRS and various

durations and amplitude criteria [6]. Each Selvester score point

represents 3% of myocardial scar. The detailed description of

the scoring scheme including the confounder determination
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is described vividly in [6] and therefore is omitted here for

brevity.

B. Fractionated QRS

Fractionations in QRS result from delayed conduction and

typically are visible in three forms: notching, slurring and

slowing. Notching is defined as a reversal in the QRS trace

with an angle > 90◦ and amplitude > 0.05 mV. As an

example, Fig. 1(a) shows an R-wave where two notches are

present. Contrary to notches, slurs are segments where an

ECG signal exhibits minuscule change in amplitude between

successive samples, thereby creating a “plateau”-like segment.

Fig. 1(b) shows an example of slurring in an R-wave. The third

component of fractionation, slowing, is characterised by an

almost smooth declined rate of change in the QRS waveform.

Although it is closely similar to slurring, the major difference

is that slowing segments have a finite gradient (angle < 90◦)

compared to the “plateau”-like nature of slurring. Fig. 1(c)

shows an example of slowing in the S-wave.

It is to be noted that fractionation may occur in any of the

three waves (Q, R and S) of the QRS-complex resulting into

a number of different morphologies of fractionated QRS, e.g.

RS, RSR’, RSR’S’ etc., where by definition, the preceding

positive/negative deflection is characterised as R-/S’-peak and

the succeeding as R’-/S’-peak. Two such morphologies (RS’

and RSR’S’) are shown in Fig. 2 as an example. Successful

determination of these typical patterns is of high importance

for the Selvester scoring system as the overall fractionated

QRS patterns are used both for confounder classification as

well as for awarding points.

III. ALGORITHMIC FORMULATION

The algorithmic flow of the proposed automated Selvester

scoring system is depicted in Fig. 3. It consists of four

main parts - isoelectric line detection and QRS wave seg-

mentation, fractionated QRS detection and its morphology

characterisation, and the implementation of the actual scoring

scheme. The actual scoring can be divided into two parts, viz.

confounder classification and the point awarding procedure. In

the following subsections each of these blocks is explained in

details. In the proposed algorithm the only inputs are the ECG

signal itself (one PQRST-complex) and the temporal locations

of the P-onset and P-offset, if the P-wave appears on the ECG

signal as well as the QRS-onset and QRS-offset.

A. ECG Database

In our investigation we used 51 standard 12-lead ECG

records from patients enrolled in a study at the University

Hospital Southampton NHS Foundation Trust. All subjects

underwent examinations particularly for the detection of my-

ocardial scar through elaborate medical tests (i.e. CMR), thus

there was unambiguous knowledge on the presence and extent

of scarring which is the paramount requirement for validating

the present work as in essence, the Selvester score tries

to estimate the extent of scarring from the ECG. Such a

cohort provides a suitable database for the formulation of our

fractionation detection algorithm and the automated Selvester

scoring system. However the digital ECG recordings of the

51 subjects could not be utilized directly due to proprietary

encryption applied by the manufacturer of the acquisition

device. We therefore opted to employ the ECGScan software,

clinically validated in [11], for its ability to reconstruct a

digital ECG from printed paper ECGs, in order to manually

digitize the 51 signals used in our analysis from printed paper

ECGs at a rate of 1000 samples/s. The signal quality of the

digitized ECGs was carefully examined and uniformly en-

dorsed, from a clinical perspective, by three practicing expert

cardiologists, at the very beginning of our experimentation.

As a second level of verification, the digitized ECGs were

also used by the cardiologists in the manual calculation of the

Selvester score (see Section IV). The 1 KHz digitization rate

was chosen in order to have sufficient resolution in capturing

the abrupt changes in the direction, thus the monotonicity

of the ECG trace in fractionated QRS segments. Considering

the experience of the cardiologists, it is imperative to employ

such a high sampling frequency for detecting and classifying

fractionated QRS segments unambiguously. In addition, latest

generation 12-lead ECG machines, both hospital-based and

ambulatory, are capable of acquiring the ECG signal with such

high sampling frequencies (even higher than 1 KHz).

B. Isoelectric line detection and segmentation

The detection of the isoelectric line of the PQRST complex

is critical here since it is used as the reference for calculating

the amplitudes of ECG peaks. In principle, we follow the same

method described in [12] for its extraction, where two median

filters are used with time window of 200 and 600 ms. In

addition, we use a third median filter of time window (P-offset

- QRS-onset) only when the P-wave is present. The output

of the series of median filters is considered as the extracted

isoelectric line.

Once the isoelectric line is detected we apply it for de-

termining the different waves present in the QRS-complex by

finding out the intersection points of the isoelectric line and the

QRS-complex as it is localized by the QRS boundaries, used

as inputs. The QRS-onset and QRS-offset are considered as

the beginning instance of the first wave and the ending point of

the last wave respectively and excluded from the intersection

investigation. The process is depicted pictorially in Fig. 4 for

the two samples of Fig. 2. If two consecutive intersection

points occur within 5 ms, only the first one is considered

as the other is attributed to local fluctuation. In addition

an amplitude rule, which stipulates that the peak of each

detected wave, defined by two successive intersection points

should demonstrate higher than ±0.009mV separation from

the isoelectric line was applied, following the cardiologists

directives. If this is not satisfied, the detected interval is again

attributed to local fluctuation and the latter intersection point

is discarded. In this process although theoretically we should

have 2 intersection points, since sometimes one or two of

the waves may not be present, the occurrence of less than

2 intersection points is normal. Conversely, in the presence

of fractionated segments (see Fig. 4(b), additional intersection
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Fig. 3. Block diagram of the Automated Selvester Scoring System

points may be encountered. However, in all cases between a

pair of intersection points we follow the clinical definitions

of Q, R and S waves based on the polarity of the deflections

and their characteristic sequence of occurrence, in identifying

them individually.

C. Detection of fractionation in the QRS-complex

Over the years the time-frequency localisation property of

Discrete Wavelet Transform (DWT) with various forms of

mother wavelet has been used successfully for detecting the

temporal positions of the constituent waves of an ECG [13]–

[15]. It is in principle a cascaded structure of filters where

the transfer function of each of them is determined by the

mathematical form of the mother wavelet used. In essence, it

decomposes an input signal into different resolution scales by

computing two vectors of detailed (cD) and approximate (cA)

coefficients respectively. In our work we selected the Haar

function as the mother wavelet. According to the definition

of the Haar function, the cD coefficients generated, at each

DWT resolution scale, are proportional to the derivative of

the local averages of the input which is a filtered version of

the original signal [16]. This is the main feature of DWT that

is used in detecting the various waves in an ECG. Thus any

peak occurring in an ECG time series is manifested as a pair

of maxima-minima (sign change) and a zero-crossing or zero-

value point between them in the cD space [14], [17]. This

fundamental principle allows one to explore the monotonicity

of a given signal by applying Haar DWT. Since the three

classes of fractionations described in Section II are in essence

deviations from monotonicity, one may use the Haar DWT

for detecting QRS fractionations, through exploration of the

cD coefficients value and characterising them. In principle

other mother wavelets (e.g. quadratic spline) share the same

derivative-proportionality property as Haar, in this respect and

therefore can also be adopted for analyzing the monotonicity

of the ECG signal. However, Haar wavelet is the simplest

form of wavelets from a computational complexity point of

view. Subsequently in our work we opted to choose the

Haar function as the mother wavelet. In addition, since the

DWT maintains the temporal resolution of the input signal,

the monotonicity deviations can also be localized in time.

Nevertheless, conventional DWT suffers from the fact that

at each level of decomposition the number of input samples

is reduced to half and therefore higher decomposition scales

suffer from reduced time resolution. The Stationary Wavelet

Transform (SWT) is a class of DWT that eliminates this prob-

lem and achieves a time-invariant decomposition by removing

the subsamplers after each filtering operation and interpolating

the impulse response of the filters [18]. Therefore for detecting

the presence of fractionations in the QRS-complex we have

used the SWT with the Haar function, as the main analysis

method.

Although in our fractionation detection algorithm, we pre-

dominantly adopted the clinical definition of the different

types of QRS fractionation [6], it is possible, due to local

fluctuations, to misdetect a type of fractionation as another.

The detection of notching due to its distinct morphology is

less vulnerable to this effect, but because of the possibly

similar morphology of slurring and slowing, misclassifications

may occur in the presence of local fluctuations. To mitigate

this effect our strategy is to follow the expert decisions

of practicing cardiologists. Based on their opinion we have

empirically formulated a set of rules for distinguishing the

slowing segments, in particular from slurring. To achieve this,

three expert cardiologists first annotated the fractionations

(notching, slurring and slowing) in 10 ECG signals chosen

by them as representative examples that exhibit extreme types

of fractionations and more specifically when slurring and

slowing segments appear to be quite similar. During the

annotation they were blind to the algorithmic outcome. The

algorithmic outcomes were then validated against the manual

annotations for these 10 ECGs and were found very much

accurate particularly for notching and slurring. On the other

hand, slowing segments, because of their close similarity

to slurring, were sometimes detected as slurs. We therefore

tuned the set of rules for the detection of slowing, using

the manual annotations of the cardiologists for the 10 ECG
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signals. In the following sections we analyze in details the

rules we formulated for the detection and classification of

the three types of QRS fractionation. The practical soundness

of these rules is ultimately assessed during the evaluation

of the proposed automated updated Selvester scoring system

(in Section IV) and particularly in the system’s ability to

accurately categorize testing records in the correct confounder

group.

The isoelectric line compensated and segmented ECG signal

is first subjected to SWT analysis up to 24 resolution scale

and then we focus entirely on the cD coefficients of the

already localised QRS-complex. The coefficients of the 21

resolution scale were discarded from our analysis since it

is already established (which also agrees to our observation)

that this scale is mainly dominated by high-frequency noise

components [13]. Therefore we concentrate in analysing the

cD coefficients of the remaining resolution scales (22, 23 and

24).

1) Extraction of notching: Following the basic principle of

monotony deviation detection, presented at the beginning of

this section, in the cD space of a resolution scale, a potential

notch in a QRS-complex is represented as two local maxima-

minima pairs with a zero-crossing point between each of them.

This is because, in a notch the direction change of the trace

occurs twice (see Fig. 1(a)), hence each maxima-minima pair

corresponds to each change in direction. On the other hand,

the main peak of each one of the QRS waves is expected

to be represented by one pair of maxima-minima since the

direction change occurs only once. This distinction is crucial

as it enables one to classify notches and main peaks accurately.

We start the analysis by detecting all the zero-crossing

points in the cD space of resolution scale 22 (cD l2), thus

localising each of the maxima-minima pairs present at that

scale. For each zero-crossing point in cD l2 located between

cD coefficient number j-1 and j, we investigate whether there

exists a zero-crossing point between j-3 and j-1 cD coefficients

in resolution scale 23, (cD l3). The reason behind this process

is that it is established that the high-frequency components

(like a notch) of an input signal are mainly localised within

the scales 22 and 23. Therefore if a zero-crossing point is

detected in both of these resolution scales corresponding to

the same time-indexed position of the signal then it can be

concluded that a valid notch is present and this is not a noise

based fluctuation. The difference of the indices used for the

cD space search window, in 22 and 23 scales is related to the

inherent delay of the SWT computing process and therefore

the windows position is adjusted accordingly. The process for

detecting notches in the QRS is depicted in Fig. 5. To eliminate

potential notches present on the isoelectric line (which are of

no clinical significance), we measure the amplitude of each

of the detected notches with respect to the isoelectric line and

those with amplitudes within ±0.015mV of the isoelectric line

are disregarded as they are considered to be isoelectric line

fluctuations. The rest of the detections are retained as valid

notches.
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2) Extraction of slurring: As mentioned in Section II,

slurring is characterised by a “plateau”-like segment in the

QRS-complex. Therefore according to the principle described

earlier for cD coefficient computation, a slurring segment in

the QRS-complex manifests itself as a sequence of consecutive

zeros in the cD space. The analysis for detecting consecutive

zeros is carried out in the cD l2 space. If a sequence of two
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or more consecutive zeros is detected in the cD l2 space a

slurring segment is identified with its beginning and ending (in

time) coinciding with the first and last zero of the sequence in

the cD l2 space. However, in practice we observed that even

within a clinically accepted slurring segment (as identified

by expert cardiologists) local fluctuations may occur which

may result in a little deviation from a strict “plateau”-like

morphology. This phenomenon is reflected in the cD l2 space

as two or more sequences of consecutive zeros with finite

values of cD l2, in between them. Since they are still clinically

considered as part of the same slurring segment, during the

analysis we adopted the strategy that if two or more sequences

of consecutive zeros occur within 8 ms of each other then they

are considered as part of the same slurring segment. This time

window is selected both by observation and in consultation

with the expert cardiologists. In this case, the time position

corresponding to the first zero of the first sequence in cD l2

space is considered as the beginning of the slurring segment

and the last zero in the last sequence is considered as the end

point of it.An example of this procedure is shown in Fig. 6

where two sequences of more than two consecutive zeros

occur within the same slurring segment. However since their

separation is less than 8 ms, they can altogether characterise

the beginning and the end of a single slurring segment.

Similar to the notching fractionation, once a slurring segment

is detected, its amplitude with respect to the isoelectric line

is measured and if it is found within ±0.015mV of the

isoelectric line value, it is disregarded and attributed as part of

the isoelectric line itself. This process eliminates any slurring-

like segments towards the end of a QRS-complex when the

ECG trace gradually returns to the isoelectric line-a typical

phenomenon observed in a number of leads.
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Fig. 6. Detection of slurs in the signal of Fig. 1(b)

3) Extraction of slowing: Unlike the notching and slurring

segments where due to their specific morphologies a one-to-

one mapping exists between the cD space and time series

data, no one-to-one mapping of that kind exists for slowing

segments. This is due to the fact that slowing is defined as a

change of the rate of the ECG trace that is neither a sudden

change in direction of ≥ 90◦ (like notch) nor a “plateau”

(like slurring). Therefore we have employed an empirical

method based on experimental observation for detecting the

slowing segments as described in the following. We have

experimentally observed over 51 ECG records from ischemic

patients, that when a clinically identified slowing segment is

present, the corresponding cD coefficients show at least 3

local extrema between two consecutive zero-crossing points

(or zero-value points) at the 24 resolution scale (cD l4). This

directly implies that in the gradient space of cD l4, at least

3 zero-crossing points (each one corresponding to an extrema

in cD l4) will exist. Having detected all the zero-crossing and

zero-value points as part of the extraction of notching and

slurring, we translate the intervals between them to the cD l4

space by appropriately shifting them and consequently define a

search window within which the gradient (gradcD l4) of cD l4

is computed. This enables us to compute the number of zero-

crossings, in gradcD l4 within each of those intervals. The

gradcD l4 is approximated by calculating the forward difference

on the two edges and the centred difference in the interior

points of each window. Let us consider, as an example (as

shown in Fig. 7) that we have two zero-crossing (or zero-

value) points in cD l4 at positions z1 and z2 and the gradient

of cD l4 exhibits at least 3 zero-crossing points (according

to our observed criterion) within that interval at positions

q1, q2, q3. We then first extract the cD l4 coefficient with

maximum absolute value (M) within [z1, z2]. Since z1, z2 are

sequential zero crossings the value of cD l4 will not change

sign between these two points. Following we check the sign

of the gradient in [q1, q2] and if found positive/negative we

extract the maximum/minimum value of gradcD l4 in [q1, q2]

and the minimum/maximum value of gradcD l4 in [q2, q3]

denoted as A1,A2 in Fig. 7 respectively. If there are more

than three zero-crossing points in gradcD l4 (as it is the case in

Fig.7), we consider only an odd number of zero crossings

and extract either the maximum or the minimum value of

gradcD l4 in each subsequent window defined by the number

of zero-crossing points, based on the sign of the gradcD l4

within that window. If there are more than three zero-crossing

points in gradcD l4 then accordingly there will be additional

pairs of maxima-minima. We then compare each of these pairs

(|A1|, |A2| and |A3|, |A4|), starting with the one with highest

absolute sum of amplitudes (|A1| + |A2| > |A3| + |A4|), to

the absolute value of M according to the relations stated in

Eq. 1 and if both of these are satisfied a slowing fractionation

is detected and localised in the middle zero-crossing point (q2
in our example), from the three (q1, q2, q3) zero crossings used

to define the search windows of A1, A2 in gradcD l4.

|A2| > 0.01M

|A1|+ |A2| > 0.075M
(1)

D. Extraction of the QRS morphology pattern

Based on the presence of fractionation in the QRS-complex,

as detected by the methods described in the foregoing sub-

sections, one needs to determine the overall fractionated
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morphology of the QRS-complex in order to proceed for

confounder classification and point awarding as mentioned in

Section II-B. Note that the fractionation detection algorithms

used here, in essence detect the deviation from monotonicity

in an ECG trace. Therefore it is intuitive that within the pool

of “detected” fractionations even the non-fractionated (normal)

Q, R and S peaks will also exist, since morphologically at the

peaks, these waves also exhibit deviation from monotonicity.

Fig. 8 shows an example where a clinically accepted non-

fractionated R-peak is identified as a slurring segment since

the rate of change of the ECG trace at the peak point is small,

thus creating a small “plateau”-like segment. In addition, in

several cases, the same fractionation segment could be detected

as more than one type depending on their local fluctuation.

To eliminate erroneously detected fractionation segments and

thereby extract the true fractionated QRS morphology a set of

empirical rules based on clinical observations and definitions

has been applied and described as follows:

• If 2 fractionations are detected within 10 ms of each other,

they are considered as one and the latter type is retained

• If 3 or more fractionations are detected in a wave in-

terval, then the normal wave peak is considered present

alongside one or more fractionation segments

• Detected fractionations within 6 ms of the QRS bound-

aries are ignored

• Of all the detected fractionations within a wave interval

(Q, R and S etc..) the one which exhibits highest separa-

tion from the isoelectric line is labeled as the actual wave

peak and in the case of only one fractionation detected,

this is classified as the main peak in that wave labeled as

Q, R or S peak

• Detection of 2 fractionations within a wave, indicates that

either slurring or slowing fractionation exists along with

the main peak in that wave

• Each notch will always be associated with 2 fractiona-

tions detected. Of the pair of points the notch is localised

based on the deflection direction of the wave. If the

wave is positive (R-wave) the maximum of the two is

used, conversely if it is negative (Q-wave, S-wave) the

minimum one is considered as the notch

• Slowing fractionations do not correspond to main wave

peaks

Based on these rules the presence of fractionation segments

will define the actual fractionated QRS morphology.
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E. Confounder classification and point awarding

Once all the fractionated segments and the final QRS mor-

phological pattern is extracted, they are applied for confounder

classification and subsequently for awarding points. The basic

rules for these purposes are shown in the flowchart of Fig. 9

which follows, without any modification the directives estab-

lished by Loring et. al. and has been reproduced from Fig.2-

Fig.4 which appear in [6]. For brevity, the specific rules for

each confounder category are not listed here, but they were

implemented exactly as they appear in Fig.5 of [6]. As can be

seen from Fig. 9, one needs to compute the electrical axis of

the heart in order to invoke the entire process.

Typically all the electrical signals (depolarizations) gener-

ated from the heart can be represented as a vector and its

orientation from the origin is considered as the electrical axis

of the heart. Deviation or changes from the normal axis values

may be indicative of pathological conditions. The conventional

way of calculating the heart’s electrical axis is to identify

the isoelectric lead - the lead whose net deflection (R ampl

- S ampl - Q ampl) is closer to the isoelectric line. The

heart’s electrical axis is then calculated as perpendicular to the

orientation of that lead. However it is also recognised that this

definition has its own shortcomings and therefore following

the directives of expert cardiologists we adopted a modified

way for identifying the electrical axis as described below [19],
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Fig. 9. Flowchart of the Automated System. Reproduced according to Fig.2-
Fig.4 from [6]

[20]. Firstly, the Area under the Curve (AUC) is computed

using trapezoid rule for the QRS-complex of the limb leads

(I, II, III, avL, avF and avR). The QRS boundaries and the

derived isoelectric line are used as reference for the AUC

computation. Finally, these AUCs are used for computing the

heart’s electrical axis from the following equations, where A#

denotes the AUC of lead #.

xaxis = AIcos(0
◦) +AIIcos(60

◦) +AIIIcos(120
◦)+

AavRcos(−150◦) +AavLcos(−30◦) +AavF cos(90
◦)

yaxis = AIsin(0
◦) +AIIsin(60

◦) +AIIIsin(120
◦)+

AavRsin(−150◦) +AavLsin(−30◦) +AavF sin(90
◦)

(2)

∠axis =























(
360◦

2π
)tan−1(

yaxis

xaxis

), AI > 0

−180◦ + (
360◦

2π
)tan−1(

yaxis

xaxis

), AI < 0, AavF > 0

180◦ + (
360◦

2π
)tan−1(

yaxis

xaxis

), AI < 0, AavF < 0























(3)

Once the electric axis of the heart is computed we follow

the rules described in Fig. 9 for confounder classification

and awarding points. The individual Selvester scoring point

rules for each confounder class are described in details in [6].

As mentioned, the developed system requires different ECG

parameters as its principal inputs including the P-onset/offset

and the QRS-onset/offset in addition to the calculated electrical

axis. For extracting these ECG features and various mea-

surements of ECG waves (like amplitudes and durations) we

have previously proposed an automated algorithm that extracts

the ECG features with high accuracy using time domain

morphology analysis principles (termed as TDMG algorithm)

[21]. Therefore this TDMG algorithm can be integrated with

the automated Selvester scoring algorithm proposed here to

develop a self-contained fully automated system, henceforth

termed as the Fully Automated Selvester Scoring system

(FASS). On the other hand, manually annotated values of

the required ECG parameters could be used as the primary

inputs of the automated Selvester scoring system proposed

here, resulting in a semi-automated Selvester scoring system

(SASS). Both these scenarios are depicted in Fig.9

IV. RESULTS AND DISCUSSION

A. Formulation of the evaluation standard

To formulate the gold standard for evaluating the per-

formance of our system, three cardiologists independently

classified the confounder group and computed the updated

Selvester score for each of the 51 ECG records in manual

fashion, following the clinical standard procedure of the

updated Selvester score calculation [6]. The manual scores

and confounding categories, from each annotator, were then

compared to each other and whenever a disagreement was

found a consensus among the three annotators was reached.

In the end of this process, a single consented confounding

category and manual score was considered for each record

which was then used as the gold standard for validating the

outcomes of the automated system. In parallel with the manual

calculation, the confounding category and the Selvester Score

were derived for each of the 51 records from the developed

automated system as explained in the following. During this

process, the cardiologists were blind to the results of the

automated system.

B. Testing strategy

We employed an integrated testing strategy for the proposed

system. This strategy involves two steps of validation - accu-

racy of the confounder classification and accuracy of the actual

scoring. In order to isolate any erroneous effects originating

from the automated ECG parameter extraction, using the

TDMG algorithm, that may affect the final performance of the

complete system we run two different validation experiments

- one with the FASS system and the other with the SASS

system, where the input ECG parameters (P-onset/offset, QRS-

onset/offset) are manually annotated by the expert cardiolo-

gists. In addition, when doing the validation experiment with

the FASS system, in 26 records (half of the total records) we

chose to calculate the Selvester score from a different heartbeat

than the ones used in the SASS system, covering a wider range

of heartbeats for the system evaluation. This enables us to

make a consistency check for the performance of the FASS

and SASS systems when: 1) the same heartbeats are used in

both cases (25 cases) and, 2) different heartbeats are used (26

cases) for the two systems.

1) Validation of the Confounder classification: Fig. 10

shows the results of the confounder classification by the SASS

(Fig. 10(a)) and the FASS (Fig. 10(b)) systems compared to

the manually inferred confounders by the cardiologist team.

Out of 51 records, the SASS system is able to classify the
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Fig. 10. Cardiologists and Automated System Confounder categorization results

confounders correctly in 48 records (94.1%) whereas the FASS

system does the same in 46 records (90%). Table I lists

the individual records that exhibited classification discordance

compared to the manual classification. Records 27, 36 and 44

were classified differently by both the FASS and SASS sys-

tems whereas records 11 and 48 are additionally misclassified

by the FASS system. In records 27, 44 and 48 the disagreement

results from the derived value of the hearts electrical axis.

Table II illustrates the differences in the axis calculations in

these three cases. In record 27 this was caused due to the

extremely irregular shape of the ECG waveform on the avR

lead which affected the calculation of the axis from Eq. (3)

resulting in a value (−23◦), for both SASS and FASS systems,

that diverges significantly from the cardiologists value (−90◦).

In record 44 the axis angle was found to be −45.4◦ (FASS)

and −57◦ (SASS) instead of −30◦ provided by cardiologists.

This was caused due to significant isoelectric line wandering

which affected its approximation from the automated systems,

thus the value of the AUC in Eq. (3) and ultimately the

axis calculation. With these axis values, both for SASS and

FASS, the LAFB criteria are satisfied, thus the record is

misclassified by the automated systems as LAFB, instead of

the no confounders class given by cardiologists. It must be

noted than the axis calculation in FASS will also be affected

by the QRS boundaries provided by the TDMG algorithm.

This was the case in record 48, where the annotators value

was −30◦ and the automated system’s value was −43◦ and

−47◦ for SASS and FASS respectively. The classification

discrepancy was present only in the case of FASS where the

axis value satisfied the LAFB criterion (axis ≤ -45◦). This

was caused due to inaccurate QRS boundaries obtained by

the TDMG algorithm.

The misclassification of record 36 is attributed to a less

accurate approximation of the baseline due to ST elevation.

This resulted into the terminal deflection (the last segment of

the QRS) to be classified as a negative deflection instead of a

positive deflection and a valid notch to be disregarded due to

the amplitude criterion, hence leading to the confounder dis-

agreement. Finally record 11 was classified differently by the

FASS system because of the QRS-onset value computed by the

TDMG algorithm, which resulted in a notching fractionation to

be disregarded. According to the manual annotation the notch

was detected 41 ms after the onset of the QRS, whereas with

TDMG the same notch was detected 39 ms after the QRS-

onset. Since the updated Selvester scoring system stipulates

that only fractionations located after 40 ms of the QRS-onset

are considered valid, the detected notch in the former case

was accepted as a valid notch, whereas it was disregarded

in the latter, even though the misdetection is only by 2 ms.

These results also provide a comprehensive way for validating

the accuracy of the algorithm proposed in Section III-C for

detecting fractionations in the QRS-complex. Ignoring the

cases of confounder misclassification due to the axis mismatch

and the less accurate QRS-onset localization, it is evident

that only in one case (record 36) the proposed fractionation

detection algorithm fails to detect a notch, thereby giving a

fractionation detection accuracy of approximately 98%.

TABLE I
CATEGORISATION DISCREPANCIES

System variant # Rec CardiologistsAutomated System Explanation

SASS
27 LAFB No Conf. Axis value
36 LAFB LBBB Undetected notch
44 No Conf. LAFB Axis value

add FASS
11 LBBB No Conf. Ignored notch
48 LAFB LBBB Axis value

TABLE II
CARDIOLOGISTS AND AUTOMATED SYSTEM AXIS VALUES FOR RECORDS

27,44 AND 48

# Rec Cardiologists Automated System

27 (−90
◦) (−23

◦-both)
44 (−30

◦) (−45.4
◦-SASS),(−57

◦-FASS)
48 (−30

◦) (−47
◦-FASS)

2) Validation of the Selvester Scoring: The comparisons of

the manually calculated Selvester score to both the SASS and

FASS systems are shown in Fig. 11 in the form of histograms

of the absolute difference in the scores of the 51 patients. For

those records where confounders were found to be different,

the final score calculation in the automated implementation

(both SASS and FASS) was performed using the confounding

categories of the cardiologists. It can be seen that the SASS
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system is able to match the manual scoring exactly in 45 out of

51 records whereas for another 3 records it calculate the score

within 1 point of the manual score. It is to be noted that in

the clinical practice the difference of 1 point is not considered

significant as it is well within the limit of human error. As a

consequence it could be concluded that the proposed algorithm

in its stand-alone form (i.e. SASS) exhibits an approximate

accuracy of 94% in computing the final score. On the other

hand the FASS system exhibits complete agreement with the

manual scoring in 42 out of 51 records and an additional 5

records are within 1-point difference, therefore attaining an

accuracy of approximately 92%. It is worth pointing out at

this stage that, while digitizing the paper ECGs, we have

observed some loss of resolution, which quite understandably

may have affected the final score values. However, despite this

fact, the accuracy exhibited by the proposed system makes it

quite promising.
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As mentioned earlier, while evaluating the performance

of the FASS system, we have used 25 records with the

same heartbeat that was used for the SASS system (manually

annotated by the cardiologists) in order to examine the de-

pendence of the FASS system on the TDMG algorithm used

for extracting the necessary ECG parameters (P-onset/offset,

QRS-onset/offset). Fig.12 shows that under this condition 23

out of 25 records are accurately scored by the SASS system

whereas the same level of accuracy is observed in 20 out of

25 records for the FASS system. The two records that are

scored differently than the cardiologists in SASS, are also

scored differently in FASS. Surprisingly, the scores produced

by SASS and FASS in these are the same. In the additional

three records scored differently only by FASS, two records

are scored within 1-point difference and one record is scored

within 2-points difference. From the above results it is evident

that not only the proposed algorithm in its stand-alone form

gives high level of accuracy for calculating the Selvester score,

but also a fully automated system integrating the proposed

algorithm with the TDMG (resulting in the FASS system)

shows comparable level of accuracy.

V. CONCLUSIONS

In this paper we have proposed a novel system for the

automated computation of the updated Selvester score that

may enable quantifying myocardial scar from less expensive
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Fig. 12. Comparison of the FASS and SASS systems against the Cardiologists
score on 25 records where the same beat was used for calculating the Selvester
score

ECG recordings in the primary care. The novel algorithm

based on SWT for detecting and classifying fractionated QRS

proposed here, as the core of the system, exhibits approx-

imately 98% accuracy. Our validation results show that the

proposed automated Selvester scoring system achieves 94%

accuracy both in classifying the confounders as well as in

computing the actual Selvester score which is well acceptable

in the clinical community. Such high level of accuracy makes

the proposed system a potential candidate for a fast and

large-volume screening tool for scar estimation in the primary

care from low-cost ECG recordings resulting in significant

economic benefits in care delivery.

REFERENCES

[1] R. H. Selvester, J. C. Solomon, and T. L. Gillespie, “Digital Computer
Model of a Total Body Electrocardiographic Surface Map: An Adult
Male-Torso Simulation with Lungs,” Circ., vol. 38, pp. 684 – 690, 1968.

[2] R. E. Ideker, G. S. Wagner, W. K. Ruth, D. R. Alonso, S. P. Bishop,
C. M. Bloor, J. T. Fallon, G. J. Gottlieb, D. B.Hackel, H. R. Phillips,
K. A. Reimer, S. F. Roark, W. J. Rogers, R. M. Savage, R. D. White,
R. H. Selvester, “Evaluation of a QRS scoring system for estimating
myocardial infarct size. II. Correlation with quantitative anatomic find-
ings for anterior infarcts.” Am J Cardiol, vol. 49(7), pp. 1604–1614,
1982.

[3] G. S. Wagner, C. J.Freye, S. T. Palmeri, S. F. Roark, N. C. Stack, R. E.
Ideker, F. E. Harrell Jr, R. H. Selvester, “Evaluation of a QRS scoring
system for estimating myocardial infarct size. I. Specificity and observer
agreement.” Circulation, vol. 65(2), pp. 342–347, 1982.

[4] D. G. Strauss, R. H. Selvester, J. A. Lima, H. Arheden, J. M. Miller,
G. Gerstenblith, E. Marbn, R. G. Weiss, G. F. Tomaselli, G. S. Wagner,
K. C. Wu, “ECG Quantification of Myocardial Scar in Cardiomyopathy
Patients with or without Conduction Defects: Correlation with Cardiac
Magnetic Resonance and Arrhythmogenesis,” Circ Arrhythm Electro-

physiol, vol. 1(5), pp. 327–336, 2008.

[5] D. G. Strauss and R. H. Selvester, “The QRS complexa biomarker that
images the heart: QRS scores to quantify myocardial scar in the presence
of normal and abnormal ventricular conduction,” J. Electrocardiol,
vol. 42, no. 1, pp. 85 – 96, 2009.

[6] Z. Loring, S. Chelliah, R. H. Selvester, G. S. Wagner, D. G. Strauss “A
detailed guide for quantification of myocardial scar with the Selvester
QRS score in the presence of electrocardiogram confounders,” J. Elec-

trocardiol, vol. 44, no. 5, pp. 544 – 554, 2011.
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