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Deterministic compressed sensing matrices:

Construction via Euler Squares and applications
R. Ramu Naidu, Phanindra Jampana and C. S. Sastry

Abstract—In Compressed Sensing the matrices that satisfy the
Restricted Isometry Property (RIP) play an important role. But
to date, very few results for designing such matrices are available.
For applications such as multiplier-less data compression, binary
sensing matrices are of interest. The present work constructs
deterministic and binary sensing matrices using Euler Squares.
In particular, given a positive integer m different from p, p

2 for a
prime p, we show that it is possible to construct a binary sensing
matrix of size m× c(mµ)2, where µ is the coherence parameter
of the matrix and c ∈ [1, 2). The matrices that we construct
have small density (that is, percentage of nonzero entries in the
matrix is small) with no function evaluation in their construction,
which support algorithms with low computational complexity.
Through experimental work, we show that our binary sensing
matrices can be used for such applications as content based
image retrieval. Our simulation results demonstrate that the
Euler Square based CS matrices give better performance than
their Gaussian counterparts.

Index Terms—Compressed Sensing, Coherence, RIP, Binary
sensing matrices, Euler Squares, CBIR.

I. INTRODUCTION

Compressed Sensing (CS) aims at recovering high dimen-

sional sparse vectors from considerably fewer linear mea-

surements. The problem of sparse recovery through l0 norm

minimization is not tractable. E. Candes [10], D. Donoho [14],

have made pioneering contributions reposing the problem as a

simple Linear Programming Problem (LPP). They have then

established the conditions that ensure the stated equivalence

between the original l0 problem and its reposed version. It is

known that Restricted Isometry Property (RIP) is one sufficient

condition to ensure the equivalence. Random matrices with

Gaussian or Bernoulli entries have been shown to satisfy RIP

with high probability [5].

In the recent literature on CS [3], [6], [9], the deterministic

construction of CS matrices has gained momentum. A. Amini

et. al. [2], R. Devore [13], P. Indyk [18] and S. Li et. al.

[21] have constructed deterministic binary sensing matrices

using ideas from algebra and graph theory. In the present work,

however, we attempt to construct deterministic binary sensing

matrices using Euler Squares. The advantages of the proposed

methodology are as follows:
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• Matrices of general row size (different from a prime and

its square) and small density are constructed.

• Simplicity in construction is achieved

Here, density is defined as the ratio of number of nonzero

entries to the total number of entries of the matrix. Sparse

sensing matrices may contribute to fast processing with low

computational complexity in compressed sensing [16].

In the recent past, Gaussian and ±1 Bernoulli random

matrices (which are shown to satisfy RIP [5]) have been used

to project data into lower dimension for the purpose of clas-

sification [26]. There are, however, the following advantages

of using deterministic binary matrices for the stated purpose:

• Binary matrices being sparse and possessing 0, 1 as

elements provide multiplier-less and faster dimensionality

reduction operation, which is not possible with Gaussian

matrices

• There is a nonzero probability of non-compliance with

RIP for Gaussian matrices

The problem ([12], [28]) of searching for similar images in

a large image repository based on content is called Content

Based Image Retrieval (CBIR). CBIR has several multimedia

applications like text based retrieval (such as google search)

and retrieval from medical databases. As images of large

size typically involve more complexity, one needs to project

them to lower dimensional spaces. It is demonstrated that

the proposed binary sensing matrices project data into lower

dimensional spaces in such a way that the reduced vectors

are useful for the purpose of CBIR. Moreover, the proposed

dimensionality reduction technique through binary sensing

matrices allows for reconstruction, which is important for

tele-medicine ([1], [11]). The other dimensionality reduction

techniques and even the sparsity seeking Dictionary based

methods [12] in general do not provide this advantage.

The paper is organized into several sections. In section II,

basic CS theory and the equivalence between l0 norm and

l1 norm problems are given. In section III, the deterministic

construction procedure of binary sensing matrices using Euler

Squares is presented. Section IV gives comparison with exist-

ing constructions. In section V, an application to content based

image retrieval is demonstrated. Concluding remarks are given

in section VI.

II. SPARSE RECOVERY FROM LINEAR MEASUREMENTS

As stated already, CS refers to the problem of reconstruction

of an unknown vector u ∈ R
M from linear measurements

y = (〈u, φ1〉, . . . , 〈u, φm〉) ∈ R
m with 〈u, φj〉 being the inner-

product between u and φj . The basic objective in CS is to
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design a recovery procedure based on the sparsity assumption

on u when the number of measurements m is very small

compared to M . Sparse representations have merit for various

applications [12], [15], [27], [30], [32], [33] in areas such as

image/signal processing and numerical computation.

A vector u ∈ R
M is k−sparse if it has at most k nonzero

coordinates. Let ‖v‖0 stand for |{i | vi 6= 0}|. The problem of

obtaining the sparse vector from its linear measurements may

be posed as

P0 : min
v

‖v‖0 subject to Φv = y.

This l0−minimization problem is NP-hard [14] in general.

There are greedy algorithms for solving P0 problem and

orthogonal matching pursuit (OMP) is one of the popular

methods [15]. Several researchers (for example, D. Donoho

[14] and E. Candes [10]) have established the conditions that

ensure the recovery of solution to P0 from :

P1 : min
v

‖v‖1 subject to Φv = y.

Here ‖v‖1 denotes the l1-norm of the vector v ∈ R
M . Denote

the solution to P1 by fΦ(y) and solution to P0 by u0Φ(y) ∈
R

M .

A. On the equivalence between P0 and P1 problems

The coherence µ(Φ) of a given matrix Φ is the largest

absolute inner-product between different normalized columns

of Φ. Denoting the k-th column in Φ by φk, one defines µ(Φ),

the coherence, as µ(Φ) = max
1≤ i,j≤ M, i6=j

|〈φi, φj〉|
‖φi‖2‖φj‖2

. For a

matrix of size m×M , µ satisfies: µ ≥
√

M−m
m(M−1) , called the

Welch bound. It is known [15] that for µ-coherent matrices

Φ, one has u0Φ(y) = fΦ(y) = u, provided u is k−sparse with

k < 1
2 (1 + 1

µ
).

The Restricted Isometry Property (RIP) plays an important

role [10] in CS as it establishes the equivalence between the P0

and P1 problems. An m×M matrix Φ (which we refer to a CS

matrix) is said to satisfy the Restricted Isometry Property(RIP)

of order k with constant δk if for all k−sparse vectors x ∈
R

M , we have

(1− δk) ‖x‖2l2 ≤ ‖Φx‖2l2 ≤ (1 + δk) ‖x‖2l2 . (1)

It is known [10][14] that the RIP along with some conditions

on δk imply the equivalence between the P0 and P1 problems.

One of the important problems in CS theory deals with

constructing CS matrices that satisfy RIP for the largest

possible range of k. It is known that the random constructions

satisfy the RIP for the largest possible range on sparsity, which

is k = O( m

log(M

k
)
) [5].

B. Existing deterministic constructions

To the best of our knowledge, designing good determin-

istic constructions of RIP matrices is still a very interesting

problem. R. Devore [13] has constructed deterministic binary

sensing matrices of size p2 × pr+1 with coherence r
p

, where

p is a prime power and 0 < r < p. Later on, S. Li, F. Gao

et. al. [21] have generalized the work in [13], constructing

binary sensing matrices of size |P|q × qL(G), where q is any

prime power and P is the set of all rational points on algebraic

curve X over finite field Fq . P. Indyk [18] has constructed

binary sensing matrices using hash functions and extractor

graphs with sizes r2O(log logn)O(1) × n, where r ≪ n. A.

Amini et. al. [2] have constructed binary sensing matrices

using OOC codes. In all these constructions, CS matrices are

given for specific sets of row sizes. J. Bourgain et. al. [7]

have constructed RIP matrices of order k ≥ m
1
2+ǫ, for some

ǫ > 0 and M1−ǫ ≤ m ≤ M using additive combinatorics.

It is remarkable that this construction overcomes the natural

barrier k = O(m
1
2 ) for those based on coherence. J. L.

Nelson et. al [29] have given lower and upper bounds on

maximal possible column size in terms of fixed row size m
and coherence µ. They have given a class of deterministic CS

matrices of size p × pr with coherence r−1√
p

, where p is a

prime number. R. Calderbank et.al. [8], [9] have constructed

CS matrices of size 2l × 2(r+2)l with coherence 2r−
l

2 , using

the Delsarte-Goethals codes, where l is an odd number and

0 ≤ r ≤ l−1
2 is a constant integer. M. A. Herman et.al. [17]

have constructed Gabor frame of size p × p2 with coherence
1√
p

, using Alltop sequence, where p ≥ 5 is any prime number.

The constructions, possessing sparsity k =
√
m have been

given by Calderbank et. al. in [3] based on tight frames such

as m×m2 chirp matrices and Alltop Gabor frames [4], here

m is prime or prime power. The authors in [22], [34] have

constructed matrices which achieve the square root bottleneck

asymptotically.

In the present work, binary sensing matrices are constructed

using Euler Squares. In particular, given any positive integer

m 6= p, p2 (for prime p), the procedure allows to construct

binary CS matrix of size m×M , where M is c(mµ)2, with

µ being the coherence parameter of the matrix (which is

dependent on m as explained in sub-sequent sections) and

c ∈ [1, 2). As the proposed methodology does not involve any

function evaluations and gives matrices of small density, this

method involves less complexity as compared to some of the

existing ideas stated above. The applicability of construction

is demonstrated through an application to CBIR.

III. EULER SQUARES FOR CONSTRUCTING CS MATRICES

A. Euler Squares

An Euler Square of order n, degree k and index n, k is a

square array of n2 k−ads of numbers, (aij1, aij2, . . . , aijk),
where aijr ∈ {0, 1, 2, . . . , n − 1}; r = 1, 2, . . . , k; i, j =
1, 2, . . . , n;n > k; aipr 6= aiqr and apjr 6= aqjr for p 6= q
and (aijr +1)(aijs +1) 6= (apqr +1)(apqs +1) for i 6= p and

j 6= q.

Harris F. MacNeish [24] has constructed Euler Squares for

the following cases:

1. Index p, p− 1, where p is a prime number.

2. Index pr, pr − 1, for p prime.

3. Index n, k, where n = 2rpr11 p
r2
2 . . . , prll for distinct odd

primes p1, p2, . . . , pl. Here, k + 1 equals the least of the

numbers 2r, pr11 , p
r2
2 , . . . , p

rl
l .

For example, the Euler Square of index 3, 2 is as follows:
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0, 0 1, 1 2, 2

1, 2 2, 0 0, 1

2, 1 0, 2 1, 0

Lemma 1. [24] Let k′ < k. Then the existence of the Euler

Square of index n, k implies that the Euler Square of index

n, k′ exists.

B. Deterministic constructions via Euler Squares

Using the concept of Euler Square of index n, k, deterministic

binary CS matrices Φ that possess small coherence can be

constructed. In particular, for n ≥ 3, k ≥ 2, a CS matrix of

size nk×n2, which may be treated as a block matrix consisting

of k number of n× n2 blocks can be obtained. Each column

in Φ corresponds to a k-ad in the Euler Square. The matrix Φ
is defined as follows: For 1 ≤ i ≤ nk, 1 ≤ j ≤ n2,

φij =

{

1 if (aj)⌊ i−1
n ⌋+1 ≡ i − 1(mod n)

0 otherwise,

}

, (2)

where (aj) is the jth k−ad, (aj)l is lth element in jth k−ad

and ⌊x⌋ is the largest integer not greater than x. To summarize,

for j = 1, 2, . . . , n2, the jth column φj of Φ is generated as

an nk− binary vector from the jth k-ad (aj) with 1 occurring

at the positions (l − 1)n+ ((aj)l + 1) for l = 1, 2, . . . , k.

There are exactly k ones in each column of Φ and size of

the matrix is nk×n2. For example, the 6× 9 matrix given by

the Euler Square of index 3, 2 is as follows:

















1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0

















The following lemma finds the bound on the coherence of Φ.

Lemma 2. The coherence of Φ is at most equal to 1
k

.

Proof: Suppose there exist two columns φc, φd of Φ
such that the overlap between them is at least 2. That is, if

uc, ud are the support vectors of φc, φd, then |uc ∩ ud| ≥
2, which implies that there exist two k−ads (ac) =
(aij1, aij2, . . . , aijk), (ad) = (apl1, apl2, . . . , aplk) with i =
⌊

c−1
n

⌋

+1, j = c−
⌊

c−1
n

⌋

n and p =
⌊

d−1
n

⌋

+1, l = d−
⌊

d−1
n

⌋

n
such that

aijr = aplr and aijs = apls for some 1 ≤ r, s ≤ k. (3)

Case 1: Suppose i = p and j 6= l, from (3), apjr = aplr
and aijs = ails for j 6= l, which is a contradiction from the

definition of Euler Square.

Case 2: Suppose i 6= p and j = l. From (3), ailr = aplr and

aijs = apjs for i 6= p, which is again a contradiction.

Case 3: Suppose i 6= p and j 6= l, from (3), aijr = aplr and

aijs = apls. Since, aijr , apls ∈ {0, 1, . . . , n − 1} for all 1 ≤

r, s ≤ k, we have aijr +1 = aplr +1 and aijs +1 = apls+1,

which implies that (aijr+1)(aijs+1) = (aplr+1)(apls+1) for

i 6= p and j 6= l, which is a contradiction from the definition

of Euler Square.

Hence there are no two such k−ads satisfying (3). There-

fore, the overlap between any two columns of Φ is at most 1.

Since each column in Φ contains fixed number of k ones, it

follows that the coherence of Φ, µ(Φ), is at most equal to 1
k

.

Remark 1: The maximum possible column size of any binary

matrix is
(mr )
(kr)

[2], where m is the row size, k is the number

of ones in each column and r− 1 is the overlap between any

two columns. Euler Square of index n, k results in a binary

sensing matrix of size nk × n2. In this matrix each column

contains k number of ones and coherence is at most 1
k

. The

maximum possible column size is thus
(

nk
2

)

(

k
2

) = Θ(n2)1 = Θ((mµ)2). (4)

For the Euler Square based matrix m = nk,M = n2 and

µ = 1
k

, and hence M = (mµ)2, which is in the order of

maximum possible column size. Hence the aspect ratio is also

in the maximum possible order. The density for these matrices

is 1
n

.

The following proposition [7] relates the RIP constant δk′ and

µ.

Proposition 3. Suppose that φ1, . . . , φm are the unit norm

columns of the matrix Φ possessing the coherence µ. Then Φ
satisfies the RIP of order k′ with constant δk′ = (k′ − 1)µ.

From lemma 2 and Proposition 3, it follows that the matrix Φ
so constructed satisfies RIP.

Theorem 4. The matrix Φ0 = 1√
k
Φ satisfies RIP with δk′ =

k′−1
k

for any k′ < k + 1.

Remark 2: m = nk,M = n2 and k′ < k + 1 gives

k = m
n
, n =

√
M which implies that k = m√

M
. Consequently

k′(m,M) < m√
M

+ 1.
The previous procedure can be generalized for any row

size m different from a prime and its square. The following

theorem summarizes the main result.

Theorem 5. Suppose m is any positive integer different from

p, p2 for a prime p. Then there exists a binary sensing matrix

of size m×M with coherence µ =
√
M
m

.

Proof: Case-1: If m = pi, i > 2 then m can be written

as m = pi−1p. Since i > 2, we have (pi−1 − 1) > p. From

[24], it is known that the Euler Square of index pi−1, pi−1−1
exists. Since (pi−1 − 1) > p, from lemma 1 Euler Square of

index pi−1, p exists. If we construct the binary matrix using

this Euler Square, then the row size of it becomes pi.
Case-2: Let m be any integer such that m 6= pi for i > 2.

From the fundamental theorem of arithmetic m is factorized as

m = 2rpr11 p
r2
2 . . . prll . Let k′ = min{2r, pr11 , pr22 , . . . , prll } and

1a = Θ(b) implies that, there exist two constants c1, c2 such that c1b ≤

a ≤ c2b.
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k = k′ − 1. With out loss of generality assume that k′ = 2r

(The following arguments hold true even if k′ = prss for some

s ∈ {1, 2, . . . , l}). From the construction of MacNeish [24], it

is known that the Euler Square of index m, k exists. Let m1 =
pr11 p

r2
2 . . . prll and without loss of generality assume that pr11 =

min{pr11 , pr22 , . . . , prll }. Since 2r ≤ (pr11 − 1), Euler Square of

index m1, (p
r1
1 − 1) exists, which in view of lemma 1 implies

that the Euler Square of index m1, 2
r exists. The binary CS

matrix constructed through this Euler Square has a row size

of m12
r, which is m.

Remark 3: In both the cases above M = (mµ)2, which is

in the order of maximum possible column size as stated in

Remark-1 and they allow for successful signal recovery of

sparsity k′(m,M) < m√
M

+ 1.

The afore-described construction methodology results in a

binary CS matrix of size nk×n2 from an Euler Square of index

n, k. As explained in Remark 1, the maximum possible column

size for our construction in terms of row size nk and coherence
1
k

is
(nk

2 )
(k2)

= Θ(n2). Since, n2 ≤ (nk

2 )
(k2)

< 2n2, we have c1 = 1

and c2 = 2. In Theorem 5, we give the construction for c = 1
and in the next section, when n is of the form 2rpr11 p

r2
2 . . . prll

(that is, n is not a power of single prime) we try to increase the

column size of above construction to c(n2), where c ∈ (1, 2),
leaving the row size and the coherence intact.The procedure

discussed above uses smallest factor, while in increasing the

column size, other factors are also used.

C. Column extension of CS matrices constructed from Euler

Squares

As before, let n = 2rpr11 p
r2
2 . . . , prll , k′=

min{2r, pr11 , pr22 , . . . , prll } and k = k′ − 1. Suppose

Φ(0) is the matrix of size nk × n2 that we obtain

from the Euler Square of index n, k. Without loss of

generality, assume that 2r < pr11 < pr22 < . . . < prll ,

let k1 = max{2r, pr11 , pr22 , . . . , prll } = prll . Clearly,

n1 = n
k1

= 2rpr11 p
r2
2 . . . p

rl−1

l−1 . Since the Euler Square

of index n1, k exists and using it we construct n1k × n2
1

matrix, say Φ(1), with coherence at most 1
k

. Now using these

two matrices Φ(0) and Φ(1), a new matrix Ψ(1) is obtained as

detailed below:

The matrix Φ(0) may be viewed as a block matrix possessing

k blocks with each block being of size n× n2. Since k1 > k
and n1k = n

k1
k, we have n1k < n. The suitably zero-padded

Φ(1) may be added as an additional column block to Φ(0) to

generate a matrix of size nk × (n2 + n2
1). One may obtain

k number of zero-padded column blocks by placing Φ(1) in

the corresponding row-block-locations of Φ(0). Using all these

column blocks, we obtain a new binary matrix of size nk ×
(kn2

1), say Ψ(1). From Lemma 2, the inner-product between

any two columns in Φ(0) and Ψ(1) is at most 1. Further the

inner-product between any two columns one from Φ(0) and

other from Ψ(1) is at most 1, this is because the k nonzero

entries of a column from Ψ(1) fall only in one of the blocks

of Φ(0) which has only one nonzero entry.

The elements of the matrix Ψ(1) may be generated as

follows: for t = 1, 2, . . . , k; (t − 1)n2
1 + 1 ≤ j ≤ tn2

1, 1 ≤

i ≤ (t − 1)n, ψ
(1)
ij = 0, also for (t − 1)n2

1 + 1 ≤ j ≤
tn2

1, (t− 1)n+ 1 ≤ i ≤ (t− 1)n+ n1k,

ψ
(1)
ij =















1 if (aj)⌊ i−(1+(t−1)n)
n1

⌋

+1
≡ i− (1 + (t− 1)n)

(mod n1)

0 otherwise,
(5)

and for (t − 1)n2
1 + 1 ≤ j ≤ tn2

1, (t − 1)n + n1k + 1 ≤ i ≤
nk, ψ

(1)
ij = 0, where (aj) is the jth k−ad in the Euler Square

of index n1, k.

Similarly, using k2 = max{2r, pr11 , pr22 , . . . , p
rl−1

l−1 } = p
rl−1

l−1 ,

n2 = n1

k2
, a CS matrix of size n2k × n2

2 (say Φ(2)) is

obtained. The matrix Φ(1) may be viewed as a block matrix

possessing k blocks with each block being of size n1 × n2
1.

As shown in Fig. 1, the matrix Ψ(1) contains k such Φ(1)

matrices, therefore there are k2 blocks each of size n1 × n2
1

in Ψ(1). Since k1 > k2 > k and n2k = n1

k2
k, we have

n2k < n1. The suitably zero-padded Φ(2) may be added

in these k2 blocks as additional column blocks to Ψ(1) as

shown in Fig. 1 and generate a new matrix, say Ψ(2), of

size nk × k2n2
2. Continuing this way till Euler Square of

index nl, k, a matrix, say Ψ(l), of size nk × kln2
l is obtained

at the lth stage. Finally, concatenating Φ(0),Ψ(1), . . . ,Ψ(l),

results in a matrix with coherence at most 1
k

and column size

(n2 + n2
1k + n2

2k
2 + n2

3k
3 + . . . + n2

l k
l) ≥ n2

[

1−( k

k2
1

)r+1

1−( k

k2
1
)

]

.

This methodology is explained diagrammatically in Figure 1

for l = 2, that is, n = 2rpr11 p
r2
2 .

Fig. 1: Block diagram depicting the extension of the column

size of CS matrix constructed from the Euler Square. The way

the blocks, obtained from several Euler Squares, are arranged

ensures that the column size gets enlarged without affecting

the coherence of initial matrix.

The column extended matrix has RIP compliance as sum-

marized by the following theorem.

Theorem 6. The matrix [Φ(0) Ψ(1) . . . Ψ(l)] satisfies the RIP

with δk′ = k′−1
k

for any k′ < k + 1.

Remark 4: Combining the results in Sections III-B and

III-C, it can be concluded that the constructed matrix attains

column size m × c(mµ)2 for some c ∈ [1, 2). In particular,

when m is power of a single prime (that is, m = pl, l > 2),
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c = 1, and in other cases c can be made to lie in (1, 2), as

justified in Section III-C.

IV. COMPARISON WITH EXISTING CONSTRUCTIONS

As discussed already in the Section II-B, existing methods

provide binary CS matrices for specific set of integers. The

present work, however, provides a procedure for constructing

binary matrices for a large class of row sizes. From Remark

1, the maximum possible column size is between n2 and

2n2. Since k ≥ 2, it follows that (nk)2 ≥ 4n2 and hence

M < m2. In the constructions provided by [2], [7], [34], [35],

M < m2 holds, albeit for specific set of values of m. While

in the construction of [13], M > m2 holds. It is known [25]

that the Welch bound is not sharp in this case. Consequently

the gain obtained in terms of increased column size does

affect the coherence, which inturn restricts the sparsity of the

solution to be recovered. In addition to providing general row

size, the present construction is simple in the sense that it

does not involve function evaluations like in [13] and gives

matrices with small density, which support algorithms with

low computational complexity. For example, to generate an

Euler square matrix of size p, p−1, it is only required to store

two cyclic permutations of length p and p − 1 respectively

and for index pi, pi−1, it is sufficient to store at most pi

2
permutations [24].

To the best of our knowledge, the constructions possessing

sparsity k′ =
√
m (that is, coherence µ = 1√

m
) exist for non-

binary matrices with row size m being prime or prime power

[3], [4], [8], [9]. While in our construction methodology, if

we use the Euler Squares of index p, p− j for j = 1, 2, then

the size of the matrix Φ is p(p − j) × p2 and coherence µ
is 1

p−j
. Since the row size m of Φ is p(p − j), we have

µ = 1

⌊√m⌋ . Hence, this matrix provides guarantees for signals

of sparsity up to k′ = ⌊√m⌋. This is true for any Euler

Square of index pi, pi − j, where p is a prime number, i ≥ 1,
and j = 1, 2. Hence we construct the binary matrices that

provide guarantees for signals of sparsity up to k′ = ⌊√m⌋
for different class of row sizes such as pi(pi − j), where p is

prime i ≥ 1, and j = 1, 2.
For an arbitrary binary matrix, if the inner-product between

any two columns is at most 1, every column contains fixed

(
√
m) number of ones (that is coherence is at most 1√

m
) and

row size is m, then the maximum possible column size M =
O(m) as mentioned earlier.

Using Euler squares, we have constructed matrices that

provide guarantees for signals of sparsity up to k′ = ⌊√m⌋
with M = O(m). Through an extension of our construction

methodology, it is possible to generate ternary matrices, for

which k′ =
√
m holds (that is, coherence is in the order

of
√

M−m
m(M−1) ) with column size M = O(m

3
2 ), which is

explained in the following:

Suppose Φ is a matrix constructed from the Euler square of

index pi, pi−j for i ≥ 1, j = 1 or 2 and H a Hadamard matrix

of size (pi − j) or (pi − j) + 1. To get a ternary CS matrix

(i.e. matrix containing 0,±1 as elements) Ψ, for each column

of Φ, we replace each of its 1-valued entries with a distinct

row of H and 0-valued entries with a zero row of same size.

The size of the matrix Ψ becomes pi(pi− j)× p2i(pi− j). In

this construction, it is very easy to check that the coherence

of the matrix Ψ is 1
(pi−j) , which is in the order of

√

M−m
m(M−1)

(Welch bound) with column size M = O(m
3
2 ).

With a view towards comparing the numerical perfor-

mance against the standard Gaussian (with entries drawn from

N (0, 1
m
)) and Bernoulli (with entries φij = ± 1√

m
, each

with probability 1
2 ) random matrices, binary matrices of size

55×121 and 230×529 are generated using the Euler Squares

of indices (11, 5) and (23, 10). The OMP algorithm is used

to solve the l0 minimization problem for a signal x. Let x̃
denote the recovered solution. From the reconstruction, the

Signal-to-noise ratio (SNR) of x is computed using

SNR(x) = 10. log10

( ‖x‖2
‖x− x̃‖2

)

dB.

For recovery at each sparsity level, 1000 input k−sparse sig-

nals x (the nonzero indices are chosen uniformly randomly and

the nonzero entries are drawn with ∼ N (0, 1)) are considered.

The recovery is considered to be good if SNR(x) ≥ 100dB.

Simulation results on these matrices indicate (shown in Figure

2) that the Euler Square matrix gives better performance than

the Gaussian and Bernoulli random matrices for certain higher

sparsity levels. While for other sparsity levels, these matrices

give the same recovery performance. It is observed that the

CS matrices constructed from the Euler Squares of indices p, s
for a prime p and s = ⌊p

2⌋ to p − 1, give relatively superior

performance than the other choices of s against their Gaussian

and Bernoulli counterparts.

A. Phase transition

The phase transition diagrams depict the largest k (with

fixed m and M ) for faithfully recovering k−sparse vectors

via l1-norm minimization. In Figure 3, the region above the

curve is the one in which successful reconstruction is not

possible, while the region below consists of points at which

successful recovery is possible. Again, recovery is considered

to be successful if SNR is greater than 100dB. Given a set of

points δ = m
M

, we have generated phase transition by finding

the largest sparsity k such that the successful recovery of 90

percent is achieved by considering the average recovery over

1000 iterations at each point by using the matrix which gives

that particular point. Figure 3 provides phase transition for

Euler, Gaussian and Bernoulli random matrices for different

values of δ = m
M

which were given by the matrices of size

m × M , where m = 22, 33, 44, 55, 66, 77, 88, 99, 110 and

M=121. It may be inferred from Figure 3 that the Euler Square

based recovery is very competitive.

B. Reconstruction of images

The efficacy of Euler Square based matrix is demonstrated

using image reconstruction from lower dimensional patches,

where the patches are generated via the sensing matrices (as

explained in more detail in the next section and Figure 6).

Since the CS theory relies on the concept of sparsity, the key
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Fig. 2: Comparison of the reconstruction performances of Eu-

ler Square based, Bernoulli random and the Gaussian random

matrices when the matrices are of size (a) 55× 121 (top plot)

and (b) 230 × 529 (bottom plot). These plots indicate that

the Euler Square based matrix shows superior performance

for some sparsity levels, while for other levels all matrices

result in the same performance. The x and y axes in both

plots refer respectively to the sparsity level and the success

rate (in % terms). For matrices in (a) and (b), the coherences

0.5226, 0.34 (for Gaussian matrices) 0.52, 0.28 (for Bernoulli

matrices) and 0.2, 0.1 (for Euler based matrices). The values

of coherence of Euler matrices are equal to their theoretical

bound µ =
√
M
m

.
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Fig. 3: Comparison of the reconstruction performances of

Euler Square based, the Gaussian random and Bernoulli ran-

dom matrices through phase transition. This plot indicates

that the Euler Square based matrices provide wider recovery

region than their Gaussian and Bernoulli counterparts. The

x and y axes in the plot represent (m/M) and (k/M)
respectively. This plot is generated for M = 121, m =
22, 33, 44, 55, 66, 77, 88, 99 and 110.

Fig. 4: Orginal image

(b) (c)

(d) (e)

Fig. 5: For the original image in Figure 4, the images in (b) and

(d) are those reconstructed via the Euler Square based matrices

with down-sampling factors 2.6 and 1.6 respectively. The

images in (c) and (e) are those obtained via the corresponding

Gaussian matrices. This figure states that Euler Square based

CS matrices provide competitive reconstruction performance.

The corresponding reconstruction errors are reported in Table

I.

property needed of the image is enough sparsity in its original

or some transform domain.

As compressed sensing allows for the reconstruction of

sparse vector x from its linear measurements Φx, we demon-

strate reconstruction performance via a medical image. The

reconstructions shown in Figure 5 correspond to different

down-sampling factors, viz 2.6 and 1.6. The associated re-

construction errors in term of SNR are shown in Table I. Here

by down-sampling factor, we mean the ratio of original patch

size to reduced patch size which is same as M
m

(where, m×M
is the size of the matrix used for projecting data to the lower

dimensional space). From Figure 5 and Table I, it may be

concluded that the Euler Square based matrices provide better

reconstruction performance.

V. CONTENT BASED IMAGE RETRIEVAL (CBIR) USING

EULER SQUARE MATRICES

In this section, the usefulness of binary matrices so con-

structed for the CBIR of medical databases is demonstrated.

As more and more hospitals use picture archiving and com-
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Down-sampling Euler recovery Gaussian recovery

factor (M
m

) SNR error SNR error (Average error)

4 13.36 13.44
2.6 16.44 15.03
2 19.63 18.14

1.6 20.61 19.74

TABLE I: A comparative error analysis of reconstruction

by Euler based and Gaussian matrices for different down-

sampling factors (M
m
) 4, 2.6, 2, 1.6. The average error over

1000 iterations is reported for Gaussian matrices.

munication systems (PACS), the medical imagery world wide

is increasingly acquired, transferred and stored digitally [20].

The increasing dependence on modern medical diagnostic

techniques like radiology, histopathology and computerized

tomography has led to an explosion in the number of medical

images stored in hospitals. Digital image retrieval technique

is crucial in the emerging field of medical image databases

for clinical decision making process. It can retrieve images of

similar nature (like same modality and disease) and charac-

teristics. A typical CBIR system involves 2 steps, namely: 1)

feature extraction or dimensionality reduction and 2) retrieval

of relevant images through similarity metric.

In fields like tele-medicines [1], [11] the dimensionality

reduction (DR) is needed for the analysis and classification

of medical images, which is followed by the reconstruction

at diagnostic center. Though conventional DR approaches

[23] project data to very low-dimensional spaces than the

CS based method, in general, they fail to provide faithful

reconstruction from reduced dimension. The DR based on

Principal Component Analysis (PCA) has the potential to

provide reconstruction as well. Nevertheless, it may be noted

that PCA and Compressed Sensing become effective under

different sets of conditions [31]. Most importantly, the PCA

based CBIR is very time-consuming as it is a data-driven

approach. In [12], a dictionary learning (DL) based CBIR

approach is presented, which learns dictionaries in Radon

transform domain. The sparsity seeking DL approaches typi-

cally exploit the framework of under-determined setting and

hence work on some implicit assumptions on database. In

CBIR applications, when data bases are not big enough, the

sparsity seeking under-determined frame work may not be

deployed efficiently. In addition, when labeled data are not

used (as is the case with present work), one may not have

enough members in a cluster, which prevents the applicability

of Dictionary Learning [15]. The present CBIR application

involving the dimensionality reduction of database members

is not prone to these problems.

In general the CBIR approaches exploit the properties

of database members for feature extraction [12], [28]. For

example, the CBIR method in [28] uses the distribution of

edges, and hence appears to work well on databases where the

members have pronounced edges. The sparsity based methods,

on the other-hand, exploit the presence of inherent sparsity

present in most of the databases. In what follows, relevant

features are extracted by projecting image content into lower

dimensional space.

The database members {Il}Nl=1 are divided into smaller

patches {Il,p| l = 1, 2, ..., N and p = 1, 2, ...,M ′} of equal

size. Here, M ′ stands for the number of patches being carved

out of each of database members. The vectorized versions of

Il,p are then decomposed into the wavelet domain to generate

sparse vectors, say I ′l,p for each patch. It is to be emphasized

here that one may use any transformation that sparsely repre-

sents each patch. A down-sampled copy of I ′l,p is generated

via the binary sensing matrix T as I ′′l,p = TI ′l,p. If I ′l,p is

sparse enough, I ′l,p (and consequently Il,p) can be recovered

from the reduced vector I ′′l,p using l1 norm minimization

technique. Finally, the feature vector of lth database member

is obtained as {I ′′l,p| p = 1, 2, 3, ...,M ′}, which is very small

in size compared to {Il,p|p = 1, 2, ...,M ′}. Given the query

image Q, its feature vector {Q′′
p|p = 1, 2, ...,M ′} is generated

similarly. For retrieving the images of database that are similar

in content with the query image, cross-correlation is employed

as a similarity metric (other criteria are also possible). The

proposed CBIR method is shown in Figure 6.

Fig. 6: Block diagram of the proposed CBIR method.

The performance of the image retrieval task is measured in

terms of recall R = Nc/Nm and precision P = Nc / (Nc+Nf )
where Nm is the total number of actual (or similar) images,

Nc is the number of images detected correctly, and Nf is the

number of false alarms. A good performance requires both

recall and precision to be high, that is, close to unity. Recall is

the portion of total relevant images retrieved whereas precision

indicates the capability to retrieve relevant images.

A. Experimental results

For evaluating proposed CBIR, a database of 821 images

present in the form of 12 classes (Figure 7) has been chosen.

These classes of images containing skull, breast, chest and

hand etc are taken from the popular IRMA database2. Another

2www.irma-project.org
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240 are considered as query images.

From the database, {I ′′l,p|l = 1, 2, 3, ..., 821; p =
1, 2, 3, ..., 64} and {I ′′′l,p|l = 1, 2, 3, ..., 821; p = 1, 2, 3, ..., 64}
have been generated. I ′′l,p, I

′′′
l,p are obtained using binary and

Gaussian matrices respectively for the purpose of comparison

of their performances in CBIR.

The query image is compared with all database members

in compressed domain using cross-correlation as similarity

measure for retrieving top 10 similar images. The precision

and recall of binary and Gaussian based feature vector with 10

query images per class are shown in Table II. In the simulation

work, Haar wavelets have been used for sparsely representing

each patch.

Fig. 7: Some of the images from each of 12 classes of database.

The classification performances of different classes by bi-

nary and Gaussian matrices are shown in Figures 8 and 9 in

terms of a confusion matrix. The confusion matrix gives the

accuracy of the classification results. The diagonal elements

Classes

10 query images per class

Euler matrix Gaussian matrix

Precision Recall Precision Recall

C1 81 47.8 90 58.1

C2 100 97 100 85.5

C3 98 89 97 81

C4 89 58.7 92 75.2

C5 76 48.9 74 45

C6 95 69 98 71

C7 77 39 66 36

C8 91 61 92 45

C9 98 82 95 79

C10 100 69 100 61

C11 100 85 100 82

C12 100 46 94 37

Average 92 67.4 91.5 63.4

TABLE II: Performances (in % terms) of the proposed CBIR

method based on the Gaussian and binary matrices.

of the confusion matrix indicate if each class is classified

correctly. The corresponding nonzero column entries indicate

the presence of mis-classification by the CBIR scheme. From

Table II, it may be concluded that the binary based retrieval

gives the performance comparable to that of its Gaussian

counter part. The retrieval performances by both matrices may

be improved by fine-tuning the associated parameters (like

patch size) and by taking different sparsifying basis. Since the

main focus of the present work is to construct CS matrices

of general size, we do not go into the details of improvement

of performance of CBIR and the reconstruction of database

member from the reduced dimensional vectors any further.
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Fig. 8: Confusion matrix of Euler based binary matrix based

CBMIR.

VI. CONCLUDING REMARKS

In this paper, Euler Squares of index (n, k) are used to

construct binary sensing matrices of size nk×n2. Using these

and with the help of prime factorization, matrices of general

row size with asymptotically optimal column size and good

coherence have been constructed. Further, using block wise

extension, the column size of the constructed matrices has
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Fig. 9: Confusion matrix of Gaussian matrix based CBMIR.

been enhanced. Simulation results on two test cases show that

the generated matrices capture the support of the unknown

vector and give better performance than Gaussian matrices. It

has also been demonstrated that the proposed binary sensing

matrices exploit the pattern of inherent sparsity present in

natural images and project data into lower dimensional spaces

in such a way that the reduced vectors are useful for the

purpose of CBIR.
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