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Abstract. Vector-controlled induction motor drives are quite popular in the industry in applications that

demand high dynamic performance. This paper describes the implementation of a complete industrial vector-

controlled drive for a 30 kW induction motor. The control algorithms for the drive are implemented using a

TMS320F28335 Digital Signal Controller (DSC). Various monitoring and protection functions for the drive are

implemented using a Cyclone IV FPGA that communicates with the DSC, and acts as the master controller for

the drive. The FPGA also communicates with a Human–Machine Interface to provide a simple graphical control

interface to the operator.
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1. Introduction

AC induction motor drives using vector control technique

are widely employed in industrial applications requiring

high dynamic performance. A typical example of such an

application is the drive used in a steel rolling mill. The

drives are used in power levels varying from a few kW up

to the MW ranges. Modern day drives also include various

built-in facilities for monitoring, protection and fault

diagnosis, in addition to the basic functionality. IEEE Std

1566 [1] specifies the standards and some of the desired

features for an industrial drive of large rating. Also, these

additional facilities should not interfere with the accuracy

and speed of execution of the main control algorithms.

Therefore, a typical control hardware for industrial drives

generally employs two separate processing units, one of

which acts as a master controller and the other as a slave.

The slave unit is dedicated for executing the main drive

control algorithms, while the master controls the slave and

also takes care of the monitoring, protection and diagnosis

functions. The master unit also has additional non-volatile

memory interfaced with it for data logging of critical drive

parameters. Additionally, industrial drives also have a user

interface, which allows the operator to control the drive and

also remotely monitor various drive parameters [2]. An

overall block diagram of such an industrial drive is shown

in figure 1.

This paper describes the implementation of a complete

standalone industrial drive package for an induction motor,

as described earlier. The drive is intended to be operated

using a standard rotor-flux-oriented vector control tech-

nique. The designed drive must have the following

capabilities.

• Ability to operate without using a speed sensor up to

speeds as low as 2.5 Hz.

• Self-commissioning capability by parameter estima-

tion and auto-tuning of control loops.

• Ability to ride through short-term power supply

interruptions, and start on-the-fly.

• Interface with a Human–Machine Interface (HMI) to

receive commands from the operator, and also display

monitored machine parameters and fault information.

• A three-tier protection from an analog protection card,

DSP and FPGA side.

The control algorithms for the drive are implemented using

TMS320F28335, a 32-bit floating point Digital Signal

Controller (DSC). The various monitoring, protection and

diagnostic capabilities are implemented using a Cyclone IV

FPGA device, which also acts as the master controller. The

design of the FPGA system is based on the NIOS II soft

processor core and block diagram logic, working with
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proper synchronisation. The user interface for the drive is

designed around a G306A modular process controller from

Red Lion Controls Inc serially communicating with the

FPGA master. The paper explains the manner in which the

synchronised communication between the master and slave

controller is implemented, and also the sequence of pro-

cesses that happen during the starting, running and stopping

or tripping of the drive. The various protection and fault

diagnosis facilities in the drive and their implementation on

the FPGA are also explained in detail.

Section 2 describes the organisation of the drive in

detail. The DSP–FPGA communication and the overall

communication between various units of the drive are

explained. The sequence of actions during various phases

of drive operation are also described. Section 3 describes

the additional functionalities of the drive like self-com-

missioning and ride-through capability. The implementa-

tions of various monitoring and diagnosis functions are also

explained. Section 4 presents and discusses some of the

results obtained from the implementation of the drive.

Section 5 discusses the conclusions from the present work.

2. Drive organisation

2.1 Power structure of the drive

The power structure of the drive is as shown in figure 2.

The power converter is a 35 kVA, two-level, IGBT-based

Voltage Source Inverter (VSI) operated at a switching

frequency of 2 kHz. The rated DC bus voltage of 600 V is

obtained from a front end three-phase diode bridge rectifier.

The firing pulses to the drive are generated from the DSC

running sensored or sensorless vector control algorithms

with a loop sampling time of 100 ls. Hall effect sensors are

used to sense the line currents of the machine and the DC

bus voltage of the inverter, for feedback. An improved flux

estimation algorithm, as reported in [5], is used for control,

to obtain an accurate field orientation. With this control

scheme, low-speed, sensor-less operation up to 2.5 Hz

stator frequency is achieved.

2.2 Control platform

A powerful control board is designed to take care of the

sophisticated needs of the drive. The board houses both the

DSC and FPGA devices. Additional external Analog–Dig-

ital Converters (ADCs) are also interfaced with the FPGA

device. The board includes scaling, level shifting and fil-

tering circuitry for conditioning of the sensed analog sig-

nals from the drive, so as to make it suitable to be fed to the

ADC channels of the controllers. Additionally, level shift-

ing and differential transmission circuitry are provided to

obtain clean and noise-free PWM signals compatible with

the gate drivers of the power converter. The board also

includes transceivers for several communication protocols

and Digital–Analog Converter (DAC) circuits connected to

both the DSC and the FPGA. It also houses additional

memory chips, both volatile and non-volatile, interfaced

with the controllers. All the ICs used in the board are

chosen to be of industrial grade.

2.3 Communication flow

A block diagram of the various communications in the

drive is shown in figure 3. The FPGA device is the master

controller, which communicates with both the HMI and the

DSC. The FPGA processes the commands input to the HMI

from the user, and controls the DSC accordingly. The

communication between the HMI and FPGA is imple-

mented via a serial link using an RS-485 transceiver IC

ADM2587. A provision for RS-232 link is also provided for

the HMI–FPGA communication. Further, provisions for

CAN communications are provided for both the DSP and

FPGA by interfacing a CAN transceiver IC with the con-

trollers. These, along with the serial communication links,

may be used for future expansion by interfacing to SCADA

or EMS systems.

The communication between the DSP and the FPGA is

based on the External Interface (XINTF) peripheral of the

TMS320F28335. This peripheral allows external devices to

be connected to the DSC as memory–mapped peripherals

with 16 or 32-bit data width. The DSC has three different

XINTF zones (0, 6 and 7), each having its own chip-select,

read-enable and write-enable signals. In the present drive,

zone 0 is used for implementing the DSC–FPGA interface.
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The XINTF is configured in the 16-bit mode with

a 150 MHz clock signal. Eight GPIO lines of the DSC are

configured as the address lines and connected to the FPGA,

so as to address a total of 256 memory locations. Also,

another 16 GPIOs are configured as the data bus and con-

nected to the FPGA. Bi-directional communication is

established between the master and slave device using two

SARAM blocks configured within the FPGA and connected

to the DSC via the XINTF. This communication is also

shown in figure 3.

RAM-1 is an array of 128memory locations, each of 16-bit

width. The DSP is allowed to write only to these locations,

while the FPGA can only read from these locations. RAM-2

is similar to RAM-1, except that the FPGA can only write to

while the DSP can only read from these locations. Thus the

communication from FPGA to DSP is established by writing

data into pre-determined locations of RAM-2. Similarly,

communication from DSP to FPGA is achieved by writing

into the locations of RAM-1. The data are read from these

RAM as and when needed by the control software. For

example, location 0x0040 is used to transmit the information

about the estimated machine speed to the master controller.

Thus, whenever the speed information is required, the master

reads data from this location.

The communication between the HMI and the master

controller is managed by the NIOS II soft processor in the

FPGA built using the Qsys tool from Altera. The FPGA side

configuration showing the NIOS core along with connected

IP cores and block diagram logic is shown in figure 4.

The NIOS processor communicates with all IP cores

using a memory-mapped slave interface (Avalon-MM). The

NIOS II hardware system consists of CPU, on-chip mem-

ory, JTAG link (for communication between host computer

and NIOS), EPCS flash controller, interval timer (to gen-

erate periodic interrupts), system ID peripheral, UART core

(for RS485) and parallel I/O ports (interface between NIOS

and block diagram logic).

2.4 Condition monitoring

During drive operation, the master controller monitors

various electrical, mechanical and thermal parameters and

sends them to the HMI. For slow varying parameters like

speed, heat sink temperature and DC bus voltage, the

average values over a sampling time are calculated. For

other parameters like currents and voltages, the FPGA

system calculates the true RMS values using the relation

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN�1
n¼0 ½xðnÞ

2�

N

s

:

ð1Þ

where X is the true rms value of a signal x(t) and N is the

total number of samples over a time period. The time period

is calculated from the stator frequency information obtained

from the DSP. The FPGA also calculates the fundamental

and harmonic components upto 11th harmonic, and the

Total Harmonic Distortion (THD) of phase and line volt-

ages and currents, using the Discrete Fourier Transform

(DFT) algorithm. The DFT calculation is done in the fol-

lowing manner:

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i þ b2i

q

ð2Þ

where Ai is the magnitude of the ith harmonic and ai and bi
are given as follows:

ai ¼
2

N

X

N�1

n¼0

xðnÞ cos
2p

N
ni

� �� �

ð3Þ

bi ¼
2

N

X

N�1

n¼0

xðnÞ sin
2p

N
ni

� �� �

ð4Þ
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where n corresponds to the nth sample and N is the total

number of samples. The THD of the signal is then calcu-

lated as

THD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA2
rms � A2

1rmsÞ
p

A1rms

:

ð5Þ

The HMI displays these parameters and also alerts the

operator by sounding an alarm, if any parameter goes out of

normal limits.

2.5 Protection and fault diagnosis

Protection and fault diagnosis are vital components of any

drive system [3, 4]. It prevents operation of the drive under

abnormal conditions like over-currents, over-voltages, over-

speed, etc. In the present system, the protection is provided at

three different levels in the system. The primary protection is

implemented on an analog protection card, based on fast

acting opamp comparators, whose output is given to the set

input of an RS latch, through a wired AND logic. The

comparators compare the actual signals from the drive with a

reference voltage. The output of the RS latch is used to

generate an ENABLE signal that will block the PWMs on

detection of any fault. Fault diagnosis is provided by addi-

tional latches wired to individual comparator outputs, whose

outputs are used to drive LEDs that indicate the type of fault.

Once the drive system trips on any fault, the system needs to

be reset and started again following the operating sequences.

Secondary backup protection is provided from the FPGA

side, where the FPGA compares the digital signal from the

ADCs with set reference values. The tripping is done by

pulling the trip zone pin of the DSC low. This blocks the

PWM generation from the DSP in a fast manner indepen-

dent of the processor. An appropriate fault message is also

sent to the HMI for display. Tertiary backup protection is

provided from the DSC side using the sensed signals from

the ADC. Whenever the sensed signal exceeds the refer-

ence limits, a software trip event is initiated, and the

appropriate fault message information is transmitted to the

FPGA for display on the HMI. However, this is a slower

protection due to the execution loop time of the DSC.

Figure 5 shows the display on the user interface for an

over-current trip from the analog protection card.

2.6 Drive operating sequences

The operation of the drive is divided into specific sequen-

ces, namely START, RUN and STOP sequences. These

sequences describe the state of the drive and the response of

the drive to external user actions or faults. The logics and

program flow during each of these sequences are described

in the following.

START sequence: The START sequence describes the

course of events that happen when the user issues a

START command to the drive from the HMI. Initially,

when the control supply is extended to the drive, the HMI

will boot up and present the user with an option to

START the drive. At this stage, the DSC is held in a reset

condition by the FPGA, by pulling its RSTn pin low.

When the user gives a start command, the DSC is brought

out of RESET by the FPGA. The FPGA then retrieves the

default values of the reference quantities and the various

parameters and displays it to the user on the HMI. The

user can modify these parameters on the HMI. The FPGA

then receives the modified parameters and sends it to the

DSP via the FPGA. The FPGA then checks for drive

healthiness by monitoring a signal from the analog pro-

tection card of the drive. If the drive is healthy, the FPGA

issues commands to close the charging contactor. Then,

the FPGA waits for 2 s and checks to see if the DC bus

voltage has risen to at least 80% of its rated value. If the

DC voltage has been built up, the FPGA now issues

commands to open the charging contactor and close the

main contactor. FPGA then issues the RUN command to

the DSP. The DSP upon receiving the run command

executes the control algorithms and releases the PWM

pulses to the power converter. The complete flow diagram

for the START sequence is shown in figure 6.

RUN sequence: In the RUN sequence, the DSP keeps on

executing the control algorithms, while the FPGA contin-

uously communicates with the HMI to display the drive

status and parameters. Figure 7 shows a display page on the

HMI during the run sequence showing the various param-

eters of the drive. The RUN mode continues until a stop

command is received or the drive is tripped on a protection.

STOP sequence: Whenever the drive receives a stop

command from the operator via the HMI, the FPGA

withdraws the RUN command by clearing the appropriate

location in RAM-2. This blocks all PWM pulses to the

drive. The FPGA then pulls the reset pin of the DSP low

and issues a command to open the main contactor.

Figure 5. Fault annunciation in the HMI.
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3. Additional features

3.1 Self-commissioning scheme

A self-commissioning scheme, as reported in [5], has

been implemented in the drive. The user has to enter the

nameplate details of the drive at the beginning. With

this scheme, the parameters of the machine like stator

resistance, stator and rotor leakage inductance, mag-

netising inductance and the rotor time constant are

determined automatically by the drive before starting.

They are then used to tune the control loops for vector

control.

The leakage inductance is determined by applying a

short pulse of 80 ls duration to one of the phases with the

machine at standstill. Under these conditions, the machine

presents only the stator resistance and leakage inductance

impedance to the applied voltage. The voltage equation can

be written as

Vs ¼ Rsis þ rLs
dis

dt
ð6Þ

where rLs, which denotes the stator transient inductance,

can be shown to be approximately twice the stator leakage

inductance. Thus, with the applied step voltage pulse, the

current rises linearly. The leakage inductance can be cal-

culated directly from the slope of the current trace.

Stator resistance is obtained by injecting a DC current

into one phase using the inverter, while the machine is at

standstill. The voltage applied to the machine is calculated

from the PWM duty ratio, which is then used to calculate

the stator resistance. The rotor resistance and leakage

inductance are assumed to be equal to those of the stator.

While calculating the stator resistance, the voltage applied

to the stator windings from the inverter is quite low and

hence the effects of deadtime and switch drops become

significant. Therefore, they have to be compensated for

while calculating the stator resistance.

The rotor time constant is estimated by applying a step DC

current into one of the phases and measuring the induced

stator voltage. It can be shown that this voltage falls expo-

nentiallywith a time constant equal to the rotor time constant.

The initial slope of this falling voltage gives the rotor time

constant. The entire estimation process is completed in less

than 1 min time, before the machine is started.

The self-commissioning scheme is not required to be run

each time before starting the machine. It is a special

function, which the user can invoke if so required. Table 1
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Figure 6. Start sequence for the drive.

Figure 7. Parameter monitoring during RUN sequence.

Table 1. Estimated parameters.

Parameter

Self-commissioning

scheme

No-load and blocked rotor

test

Rs = Rr 0.1255 X 0.1273 X

Lls = Llr 1.15 mH 1.34 mH

sr 0.3587 s 0.366 s
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compares the parameters obtained from the self-commis-

sioning scheme with those obtained from no-load and

blocked rotor tests on the machine.

3.2 Power loss ride-through

Power loss ride-through refers to the ability of the drive to

withstand a momentary power supply interruption at the grid

side, without tripping on undervoltage protection [6]. The

drive should also be able to smoothly continue operation

when the supply is restored. In the present drive, a regener-

ative scheme of ride-through as reported in [7] is imple-

mented. In this method, the machine is made to regenerate

whenever a power supply interruption is sensed. The devel-

oped torque in an induction machine can be written as

Md ¼ Ktimrisq ð7Þ

where imr denotes the rotor magnetising current, isq denotes

the stator q-axis current andKt is a machine parameter. Thus,

by making isq negative during a supply interruption, the

machine can bemade to regenerate. The regenerated power is

used to maintain the DC bus voltage during ride-through.

With this scheme, the drive is able to withstand supply

interruptions of duration up to 2 s without tripping. However,

the drop in speed is dependent on the mechanical load on the

machine. Figure 8 shows the waveforms in the drive for a

ride-through condition at no-load. The drop in speed and the

smooth restart after supply is restored are clearly visible.

4. Results

The designed drive is tested under various operating con-

ditions. Some of the results obtained are presented here.

Figure 9 shows the response of the R-phase current in the

machine during starting with no-load and a step change in

speed reference. The variation in speed and the q-axis

current of the machine is also shown.

Figure 10 shows the waveforms of the R-phase modulating

signal and the phase current at low-speed operation of 75 rpm.

Figure 8. Waveforms during regenerative ride-through: Ch1—

DC bus voltage, Ch2—speed, Ch3—isq, Ch4—R-phase current

(scale—X-axis: 1.0 s/div, Y-axis: Ch1—200 V/div, Ch2—

455 rpm/div, Ch3—15.15 A/div, Ch4—20 A/div).

Figure 9. Starting and a step change in speed reference. (Ch1—

q-axis current, Ch2—R-phase current, Ch3—mechanical speed in

pu scale. X-axis: 1.52 s/div, Y-axis: Ch1, Ch3—0.225 pu/div

Ch2—10 A/div).

Figure 10. Waveforms at low speed operation (75 rpm). Ch1—

R-phase are modulating signal, Ch2—R-phase are current, (scale:

X-axis: 100 ms/div, Y-axis: Ch1—0.06 pu/div, Ch2—10 A/div).

Figure 11. Waveforms during a speed reversal: Ch1—R-phase

are current, Ch2—Y-phase are current (scale: X-axis: 500 ms/div,

Y-axis: Ch1—10 A/div, Ch2—10 A/div).
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The waveforms are indicative of the satisfactory performance

of the estimation algorithms under low-speed conditions.

Figure 11 shows the waveforms of the phase current

during a speed reversal operation. Figure 12 shows a pho-

tograph of the developed control platform that houses the

DSC and the FPGA. Figure 13 shows a photograph of the

complete drive set-up.

5. Conclusion

This paper described the implementation of a complete

industrial drive using sensored or sensorless vector control

for an induction motor. The control organisation and the

sequence of activities involved in starting, running and

stopping of the drive are explained in detail. The commu-

nication and co-ordination between various units of the

drive, and the implementation of the DSC–FPGA com-

munication using the XINTF peripheral of the DSC, are

also described. The additional features of the drive like self-

commissioning, ride-through and remote status monitoring

are also explained. Finally, some of the results from the

hardware implementation are also presented.

Appendix: Machine details

Appendix 1: Machine rating

30 kW, 380 V, 1450 rpm, 59 A, 3-/ delta connected

squirrel cage induction machine.

Appendix 2: Machine parameters

RS ¼ 0:1273X, Rr ¼ 0:127X, Lls ¼ 1:34mH, Llr ¼
1:34mH, Lm ¼ 45:219mH.
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