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During Ostwald ripening in vapor–liquid or liquid–solid systems, unstable clusters, which are

smaller than the critical nucleus size, rapidly disappear. This denucleation process is distinct from

the reversible dissolution of stable clusters that are larger than the critical size but are more soluble

than larger clusters because of the Gibbs–Thomson effect. Thus, ripening involves larger clusters

growing, smaller clusters shrinking, and unstable clusters rapidly disintegrating. We show how the

denucleation rate can be estimated based on the appropriate cluster distribution dynamics

~population balance! equations. Monomer addition and dissociation from an unstable cluster occur

at rates determined by the energy profile, which is formulated with classical nucleation concepts.

Effectively, the cluster loses free energy as monomers dissociate, and falls down the energy stair

steps. Numerical results for the distribution dynamics equations reveal the influence of the minimum

number of dimensionless parameters, and demonstrate that denucleation is very fast compared to the

ripening rate. © 2002 American Institute of Physics. @DOI: 10.1063/1.1506148#

I. INTRODUCTION

The final stage of a condensation phase transition is Os-

twald ripening, or coarsening, whereby smaller, unstable

clusters dissolve, giving up their mass so that larger stable

clusters can grow. For liquid–solid condensation the clusters

are particles that precipitate, for example, crystals; for

vapor–liquid condensation the clusters are droplets. As the

supersaturation approaches unity, the size of the unstable

clusters increases. The general understanding is that eventu-

ally all but one stable cluster will have vanished.1,2 The van-

ishing rate of these unstable clusters has not been systemati-

cally examined, and in many theories of ripening, has been

ignored.

Cluster dissolution and growth in ripening is closely re-

lated to similar processes in homogeneous nucleation. Un-

stable clusters can exist only as transient fluctuations caused

by monomer addition and dissociation. The Gibbs–Thomson

equation stipulates that the solubility ~or dissociation ten-

dency! is greater for smaller clusters owing to their larger

surface free energy per volume or mass. According to the

classical picture,3 nucleation occurs by one-at-a-time deposi-

tion of monomers that increase the free energy of a cluster

until the free energy barrier at the critical cluster ~nucleus!
size is surmounted. Incorporating the sum of surface and

volume formation free energy contributions, the free energy

barrier increases and shifts to larger clusters as the supersatu-

ration decreases due to monomer deposition. Once past the

maximum free energy, the stable cluster decreases its energy

by adding more monomers, growing according to a driving

force that decreases as the supersaturation declines to its

equilibrium value. Differentiating between stable and un-

stable clusters, this view has important consequences for Os-

twald ripening and for phase transition dynamics in general.

Denucleation can occur during growth and ripening pro-

cesses when the supersaturation decreases, causing the criti-

cal nucleus size to increase. Any cluster smaller than critical

size is unstable and will tend to dissolve spontaneously. Al-

though the problem of quantifying the homogeneous nucle-

ation rate has been studied extensively, almost no attention

has been directed toward the denucleation problem associ-

ated with Ostwald ripening. In fact, most theories of ripening

neglect denucleation and allow clusters down to zero size to

be present in the cluster size distribution.2,4–6 Madras and

McCoy7 included denucleation in their ripening models, as-

suming that the rate of dissolution of unstable clusters is

instantaneous. Such an infinite rate is tantamount to assum-

ing the slowest rate ~growth or dissociation in the stable re-

gion! completely dominates the ripening process.2 Although

this assumption seems reasonable, especially considering the

success of ripening models based on it, confirmation of the

assumption remains a gap in the theory. Our aim here is to

estimate the denucleation rate for clusters of size less than

the stable cluster. Such an estimate must account for the

interaction of thermodynamics, kinetics, and dynamics dur-

ing phase transitions.

We follow tradition in using thermodynamic properties

such as interfacial energy, formation free energy, and mass

density for very small clusters assumed to be spherical, rec-

ognizing the problem in applying such concepts for clusters

consisting of fewer than ten monomers.8 If we consider that
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the critical cluster comprises many monomers, however, then

the effect of the approximate treatment for small clusters

becomes less significant. Estimates of denucleation rates

based on this approximation will certainly be considerably

improved over the assumption of instantaneous rates.7

Metastable solutions tend to condense when the super-

saturated monomers aggregate one-by-one to form dimers,

trimers, tetramers, and so on. The attractive forces that hold

these clusters together are opposed by thermal agitation. De-

creasing the temperature increases the cohesive effect of at-

tractive energy relative to thermal energy. The competition

between these effects is expressed by the total cluster energy,

which is the sum of interfacial and volume terms.9 Homoge-

neous nucleation can occur when this cluster free energy

reaches the maximum, and then volume-dominated energy

can decrease by further monomer addition ~stable growth!.
By adding monomers one-at-a-time, the cluster free energy

rises by a discrete stair-climbing process until it reaches the

maximum, critical energy ~see Fig. 1!. Clusters smaller than

the critical size are dominated by interfacial energy and are

unstable, existing only as energy fluctuations. The reversible

growth and dissolution of unstable clusters gives rise to a

cluster size distribution in a manner similar to chain poly-

merization. This picture of reversible monomer addition to or

dissociation from unstable clusters enables us to quantita-

tively represent how a size distribution of clusters will

evolve in time. We will develop the equations that govern the

cluster size distribution under unstable conditions, thus rep-

resenting how rapidly any such distribution will denucleate

as energy declines until clusters are dissolved to monomer.

Some theories10,11 of homogeneous nucleation have been

based on master equations for the stair-climbing process pic-

tured in Fig. 1. Master equations for population transitions

are inherently first-order in cluster distribution,12 such that

the bimolecular interaction of monomer and cluster is ap-

proximated by pseudo-first-order kinetics. Gerlach13 formu-

lated a population dynamics equation with growth and dis-

sociation rate coefficients varying with cluster size. Such

chemical kinetic views have inspired approaches to homoge-

neous nucleation,14 as well as the present model for treating

denucleation.

Our approach has the objective of evaluating rates of

transitions or fluctuations for monomer dissociation from an

unstable cluster, defined as a cluster of size less than the

critical nucleus size. We hypothesize that such dynamics can

be represented quantitatively by a discrete population bal-

ance, or distribution dynamics equation, which is a generali-

zation of the master equation. The mathematical model is for

a vessel in which clusters of unstable size are disintegrating.

The cluster size distribution obeys a continuous distribution

dynamics equation that can be transformed to discrete form

for finite numbers of clustered monomers.15 Energy expres-

sions enter into the temperature dependence of the rate coef-

ficients for monomer addition and dissociation, which are

related by microscopic reversibility for stable clusters but not

for the unstable clusters considered here. To develop rate

expressions for dissolution, the Gibbs–Thomson ~Kelvin!
equation relates surface and thermal energy to solubility and

thus supersaturation. The equations for cluster dissolution

take on simple forms when cast in dimensionless variables,

and are readily solved numerically. For constant-temperature

denucleation, the size distribution of unstable clusters de-

pends on but five parameters: the supersaturation S, the ratio

of surface to thermal energy v, two exponents l and n of

cluster mass for dissociation and deposition rates, and the

ratio of dissociation to deposition rate b. Of these, S and v
are the key parameters that determine the order of magnitude

of the denucleation rate.

II. CLUSTER ENERGY AND DENUCLEATION RATE

We base our approach on the Gibbs capillarity

approximation,16 which utilizes the sum of surface energy

and formation free energy for a spherical cluster of radius

rc ,

W~x !54prc
2s2~4/3!prc

3~rc /xm!kBT ln S . ~2.1!

Here, s is the cluster interfacial energy, rc is the cluster mass

density, xm is the monomer mass, and 2kBT ln S is the clus-

ter energy difference between the two phases in terms of

supersaturation,

S5m ~0 !/m`
~0 ! , ~2.2!

where m (0) is the monomer molar concentration and the sub-

script ` refers to its equilibrium value for a flat surface. The

applicability of continuum thermodynamic properties such as

interfacial energy s and cluster density rc is obviously ques-

tionable for very small clusters. Indeed, even if these prop-

erties can be defined, one expects sand rc would depend on

the number of monomers in such clusters. In the current

computations, we consider many steps on the stairs, so that

the activated fluctuations at the lower few steps will not

dominate the overall cluster size distribution evolution, and

hence we will take s and rc as constants of x. This will serve

to evaluate the proposed denucleation model, and to illustrate

its implementation. Then the cluster mass x is related to the

condensed-phase mass density rc and cluster radius rc by

FIG. 1. Energy diagram, Eq. ~2.6!, for v55 and S56.3 and 2 showing the

unstable-cluster stair steps. The energy maximum appears when the number

of monomers in the cluster is j*5(v/ln S)3, Eq. ~2.8!.
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x5(4/3)prc
3rc . An alternative approach is to express W(x)

as an increasing function of cluster size with two undeter-

mined parameters.14

For the assumed spherical cluster the local-equilibrium

interfacial concentration at the cluster surface is given by the

Gibbs–Thomson equation,2

meq
~0 !

5m`
~0 ! exp~V !, ~2.3!

where

V52sxm /rcrckBT , ~2.4!

in terms of monomer volume xm /rc , the Boltzmann con-

stant kB , and absolute temperature T. Thus smaller clusters

are more soluble than larger clusters. For vapor–liquid pro-

cesses, m`
(0)

5P`(T)/RT is expressed in terms of the stan-

dard vapor pressure for a flat surface, P`(T). Equation ~2.4!
has been verified experimentally3 for water clusters as small

as 1025 cm and may be valid17 at ,1026 cm. Frenkel8 ar-

gued that the thermodynamic surface-energy expression was

satisfactory down to clusters of ten molecules. Although cor-

rections for small clusters can be written,16 the classical ap-

proximation serves to illustrate the current approach.

The mathematical manipulations are streamlined if we

define dimensionless variables,

j5x/xm and v5@~4p/3!~xm /rc!2#1/32s/kBT , ~2.5!

where v represents the ratio of surface energy to thermal

energy. Equations ~2.1! and ~2.4! are recast as

G~j ![W~x !/kBT5~3/2!vj2/3
2j ln S ~2.6!

and

V~x !5v/j1/3. ~2.7!

Note that j is the number of monomers in a cluster. To show

the decreasing stair-step heights as j increases, Eq. ~2.6! is

plotted in Fig. 1 for v55 and various values of S. For the

smaller supersaturation, the cluster size at the energy maxi-

mum is larger. Classical homogeneous nucleation theory, and

thus our denucleation model, is based on energy fluctuations,

which for nucleation allow cluster energy to reach the maxi-

mum ~activation! energy. We see that W(x) is zero at j50

and has its maximum at

j*5~v/ln S !3. ~2.8!

Thus by Eq. ~2.6! the maximum energy is

G*5~1/2!v3/~ ln S !2. ~2.9!

The dimensionless quantities, Eqs. ~2.5!–~2.9!, are similar to

expressions defined previously.18

III. CLUSTER DISTRIBUTION KINETICS

For denucleation, the unstable cluster size distribution is

defined by c(x ,t)dx , representing the concentration of clus-

ters at time t in the differential mass range (x ,x1dx). Mo-

ments are defined as integrals over the mass, where the limits

of integration are the dimer mass, 2xm , and critical nucleus

mass, x*,

c ~n !~ t !5E c~x ,t !xndx . ~3.1!

The zeroth moment, c (0)(t), and the first moment, c (1)(t), of

clusters are the time-dependent molar ~or number! concen-

tration and the mass concentration ~mass/volume!, respec-

tively. The ratio of the two is the average cluster mass,

cavg
5c (1)/c (0). The variance, cvar

5c (2)/c (0)
2@cavg#2, and

the polydispersity index, cpd
5c (2)c (0)/c (1)2, are measures

of the cluster polydispersity. The molar concentration,

m (0)(t), of solute monomer of molecular weight xm

is the zeroth moment of the monomer distribution

m(x ,t)5m (0)(t)d(x2xm).

The process by which monomers of mass x85xm are

reversibly added to or dissociated from a cluster of mass x is

similar to a chain polymerization, or depolymerization,

reaction,7

C~x !1M~x8! ⇄

kd~x !

kg~x !

C~x1x8!, ~3.2!

where C(x) is the cluster of mass x and M(x85xm) is the

monomer. This process intrinsically conserves mass, and is

naturally expressed in terms of mass x rather than cluster

radius r. When many monomers make up a cluster, the lower

limit of integration, 2xm , can be replaced by 0. Similar to

polymerization kinetics, the balance equations governing the

cluster distribution, c(x ,t), and the monomer distribution,

m(x ,t), are based on mass conservation.

The population balance equations, for a well-mixed ves-

sel of volume V with flow rate Q having average residence

time tr5V/Q , and with the inlet distributions for crystals

and solute c in(x) and m in(x), respectively, are given by

]c~x ,t !/]t52kg~x !c~x ,t !E
0

x*
m~x8,t !dx8

1E
0

x*
kg~x2x8!c~x2x8,t !m~x8,t !dx8

2kd~x !c~x ,t !1E
x

x*
kd~x8!c~x8,t !

3d~x2~x82xm!!dx81~c in2c !/tr ~3.3!

and

]m~x ,t !/]t52m~x ,t !E
0

x*
kg~x8!c~x8,t !dx8

1E
x

x*
kd~x8!c~x8,t !d~x2xm!dx8

1~m in2m !/tr . ~3.4!

For a batch vessel with no flow, 1/tr50. According to the

molecularity ~mass action! of Eq. ~3.2!, additional reactions

are second-order in c(x ,t) and m(x ,t), whereas dissociation

reactions are first-order in c(x ,t). Initial conditions for Eqs.

~3.3! and ~3.4! are c(x ,t50)5c0(x) and m(x ,t50)

5m0
(0)d(x2xm).
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The cluster size distribution evolves according to Eq.

~3.3!, which becomes, when the integrations over the Dirac

distributions are performed, the finite-difference differential

equation,

]c~x ,t !/]t52kg~x !c~x ,t !m ~0 !
1kg~x2xm!

3c~x2xm ,t !m ~0 !
2kd~x !c~x ,t !

1kd~x1xm!c~x1xm ,t !. ~3.5!

Equation ~3.5! shows that c(x ,t) increases by addition of

mass xm to the reactant of mass (x2xm) and decreases by

the loss of reactant of mass x. The dissociation of mass xm

from reactant of mass (x1xm) increases c(x ,t) while the

loss of reactant of mass x decreases c(x ,t). It is not neces-

sary to assume arbitrarily that forward rate coefficients are

first-order in monomer concentration,19 since the dependence

on m (0) appears as a natural consequence of Eq. ~3.4!. Equa-

tion ~3.5! can be expanded for xm!x to convert the differ-

ences into differentials,7 and to obtain a partial differential

~Fokker–Planck! equation for growth and dissolution.

In liquid–solid phase transitions, a monomer that at-

taches to a cluster diffuses through the solution to the cluster

surface by surmounting the activation energy, W(x). Such

diffusion-controlled reactionlike processes20,21 can be repre-

sented by

kg~x !5gxle2W~x !/RT, ~3.6!

where l51/3. The 1/3 power on x represents diffusion-

controlled ripening,22 and the exponential x dependence rep-

resents the activated step at each energy level for each mono-

mer added.

When growth is limited by monomer attachment and dis-

sociation at the cluster surface,22,23 the rate coefficient may

be proportional to the cluster surface area, kg}r2, so that we

can write @in Eq. ~3.6!# l52/3 for surface-controlled growth.

If the deposition is independent of the surface area, then l
50. Other values of l may be realistic for complex and

combined rate processes.

Expressions for dissociation are considered not to have

an activation barrier ~or possibly one very small compared

with the energy steps that must be surmounted for attach-

ment to occur!. We allow, however, for the possibility that

dissociation may depend on cluster size and thus write

kd~x !5kxn. ~3.7!

The coefficients g and k in Eqs. ~3.6! and ~3.7! may depend

on parameters such as temperature, and thus may be assumed

to be constants in this work. Gerlach13 proposed that kd de-

creases monotonically with x, such that, for example, n
521 in Eq. ~3.7!. Unlike clusters that can evolve to equi-

librium as supersaturation decreases to unity, the unstable

clusters are not required to obey microscopic reversibility

~detailed balancing!. For clusters larger than the critical nu-

clei, detailed balancing is necessary, but such stable clusters

do not enter into the present analysis. Corresponding to the

energy landscape schematically illustrated in Fig. 1, for the

unstable clusters (j,j*) the reaction progress is down the

stair steps. Denucleation will be rapid as there are no free

energy barriers to monomer dissociation from the unstable

cluster. Furthermore, fluctuations that allow the unstable

cluster to grow are impeded by the energy steps, W(x).

Substituting expressions for kg(x) and kd(x), Eqs. ~3.6!
and ~3.7!, into Eq. ~3.5! yields

]c~x ,t !/]t5gm ~0 !~ t !@2xle2W~x !/RTc~x ,t !

1~x2xm!le2W~x2xm!/RTc~x2xm ,t !#

1k@2xnc~x ,t !1~x1xm!nc~x1xm ,t !# .

~3.8!

The powers on x are unequal for the growth and dissociation

terms owing to lack of detailed balancing for these unstable

clusters. The governing equation for the vapor concentration

is

dm ~0 !/dt52gm ~0 !~ t !E
2xm

x*
xle2W~x !/RTc~x ,t !dx

1kE
2xm

x*
xnc~x ,t !dx . ~3.9!

Next we introduce the dimensionless time, cluster distri-

bution, moments, and dissociation coefficient,

u5tgm`
~0 !xm

l , C5cxm /m`
~0 ! , C ~n !

5c ~n !/m`
~0 !xm

n ,

b5k/~gm`
~0 !xm

l2n!. ~3.10!

Thus b represents the ratio of dissociation to association rate

parameters. From Eq. ~3.1! the scaled moments are

C ~n !~u !5E
2

j*
C~j ,u !jndj . ~3.11!

Substitution of the scaled quantities into Eqs. ~3.8! and

~3.9! yields the fully dimensionless difference-differential

equation,

]C~j ,u !/]u5S~u !@2jle2G~j !C~j ,u !

1~j21 !le2G~j21 !C~j21,u !#

1b@2jnC~j ,u !1~j11 !nC~j11,u !#

~3.12!

and the integral-differential equation

dS~u !/du5E
2

j*
@2jle2G~j !

1bjn#C~j ,u !dj ~3.13!

with initial conditions,

S~u50 !5S0 and C~j ,u50 !5C0~j !. ~3.14!

Equation ~3.13! is to be solved simultaneously with the

difference-differential Eq. ~3.12!, which has a tridiagonal

form ~only terms with j21, j, and j11 appear in each

equation!. Numerical computations are solutions of Eqs.

~3.12!–~3.14! for clusters smaller than the critical size, j
<j*. We recognize that a cluster with but one molecule is a

monomer, so that C(1,u)5S . The cluster initial condition,

C0(j), is taken to be a delta distribution in our computations

for denucleation, and is therefore given by C(j ,u50)

5d(j5C0
avg).
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The computations are significantly simplified if the su-

persaturation is maintained constant with time. Such a steady

supersaturation can be realized experimentally if monomer is

continuously removed to make up for monomer that is re-

leased during denucleation. This will set a lower bound on

the denucleation rate, as S would otherwise decrease and thus

increase the rate. The mass balance, Eq. ~3.13!, on monomer

and cluster mass determines how much monomer is to be

removed. Then the difference-differential Eq. ~3.12!, with

G~j! given by Eq. ~2.6!, can be readily solved for C(j ,u).

The Runge–Kutta method was used to evaluate C(j ,u) at

each time step sequentially for Eq. ~3.12!. A time step of 0.01

was chosen to ensure stability and accuracy of the numerical

scheme. The cluster size distribution ~CSD! is zero when

j>j*, and the cluster number concentration is calculated by

integration of the nonzero CSD from 2 to j*.

IV. COMPUTATIONAL RESULTS

For illustrative computations we chose the following

constant values: C (0)(u50)51, Cavg(u50)52, 10, 50, 100,

or 250; S51.5, 2, or 3; v54, 5, or 6; b50.1, 1, or 10; l
50, 1, or 2; and n521, 0, or 1. The evolution of a distri-

bution is shown in Fig. 2 from an initial delta distribution at

C0
avg

550 to a final state where the concentration of the dimer

is predominant with nearly complete dissolution of clusters

other than the dimer. We are primarily concerned about how

the number ~or moles! of clusters, C (0), decreases with time.

With an initial delta distribution, we choose the dimension-

less zeroth moment, C0
(0) , as unity and representative values

for supersaturation, S, and the ratio of surface to thermal

effects, v. The zeroth moment of the distribution ~cluster

moles! versus time is displayed in Fig. 3 for several values of

b, which is the ratio of dissociation to association rate

parameters, Eq. ~3.10!. Increasing b proportionately de-

creases the time for the final distribution to be reached.

Thus, the time-dependence of the cluster evolution is quite

sensitive to the coefficient b over most of the unstable re-

gion, 1,j,j*. This is in accord with the proposition that

cluster dissociation dominates over cluster growth during

denucleation.7

The power n on x ~or j! for the dissociation rate coeffi-

cient also overwhelms l, the power for the growth coeffi-

cient, as shown in Fig. 4. Changes in l are negligible com-

FIG. 2. Time evolution of the unstable CSD from an initial delta distribution

at C0
avg

550. The parameters are b51, S52, v55, and l5n50.

FIG. 3. Effect of b on the variation of the dimensionless number of clusters,

C (0), with time. The parameters are S52, C0
avg

550, v55, and l5n50.

FIG. 4. Effect of rate exponents, l and m, on the variation of the number of

clusters, C (0), with time. The parameters are b51, S52, C0
avg

550, and v

55.

FIG. 5. Effect of the dimensionless initial average cluster size, C0
avg , on the

time variation of the number of clusters. The parameters are b51, S52,

v55, and l5n50.
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pared to the substantial effect of n, whereas increasing n
strongly increases the denucleation rate ~Fig. 4!. The influ-

ence of the initial average cluster size ~Fig. 5! is significant.

Small clusters dissolve quickly and larger clusters have an

induction time. The larger clusters have a longer induction

time because the final average cluster size is nearly two ~the

concentration of the dimer, although small, is much higher

than the concentration of other clusters!. This is apparent

from the time evolution of the average cluster size ~Fig. 6!.
The final CSD is predominately dimer with the concentration

of other clusters being nearly equal to zero. The nature of the

final CSD can be discerned mathematically by equating Eq.

~3.12! to zero for 2<j<j*. The final state of the dimer

distribution, C(2), obtained by equating Eq. ~3.12! to zero

for j52, is given by (bC(3)1S2e2G(1))/(b1Se2G(2)).

Because e2G(j) decreases with increasing j, the the dimer

concentration is much larger than C(j.2). Thus the dimer

concentration greatly influences the total number concentra-

tion.

The supersaturation, here assumed to be constant, affects

only the final number of clusters ~Fig. 7!, and not the rate of

denucleation. This is in keeping with the realization that dis-

sociation dominates the rate of denucleation, but association

influences the final CSD. The decrease of C (0) with S is

consistent with the expectation that as S decreases to its equi-

librium value, i.e., unity, the number of unstable clusters will

vanish. The effect of v, the ratio of surface to thermal ef-

fects, is similar ~Fig. 8!; only the final state is influenced by

v. The evolution of the polydispersity is illustrated in Fig. 9

for various values of cluster average size. Regardless of the

initial condition, the final polydispersity always approaches

unity indicating that almost all the clusters have been con-

verted to the dimer.

The denucleation rate determined above can be com-

pared with the ripening rate calculated from the equations

given by Madras and McCoy.7 We choose the supersatura-

tion, S55, and v55. The critical cluster size, j *, given by

Eq. ~2.8!, for these values of S and v, is 30. The initial

average cluster size, C0
avg should be greater than j * for rip-

ening and less than j * for denucleation. Therefore, the initial

condition for ripening and denucleation was chosen to be a

delta distribution at j equal to 50 and 20, respectively. Figure

10 shows the variation of the cluster numbers with the di-

FIG. 6. Effect of the dimensionless initial average cluster size, C0
avg , on the

time variation of the average cluster size, Cavg. The parameters are b51,

S52, v55, and l5n50.

FIG. 7. Effect of the supersaturation, S, on the time variation of the number

of clusters. The parameters are b51, C0
avg

550, v55, and l5n50.

FIG. 8. Effect of v on the time variation of the number of clusters. The

parameters are b51, S52, C0
avg

550, and l5n50.

FIG. 9. Effect of the dimensionless initial average cluster size, C0
avg , on the

time variation of the polydispersity. The parameters are b51, S52, C0
avg

550, and l5n50.
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mensionless time, u. The figure clearly shows the rate of

denucleation is much higher than the ripening rate. This re-

sult confirms that denucleation is essentially instantaneous

compared to growth and thus supports the hypothesis in our

previous papers on ripening.7,23

Another striking feature of the study is that the denucle-

ation, though extremely rapid compared to ripening, has an

induction period ~Fig. 5!. Mathematically, this induction oc-

curs because Eq. ~3.12! is the governing equation of the sys-

tem with C(1,u)5S and the initial condition, C(j ,u50)

5d(j5C0
avg). Equation ~3.12! written for the dimer (j52)

is dependent on C(1,u), which is independent of time when

S is assumed to be a constant. The concentration of other

clusters rapidly decreases with time and the distribution falls

down the stair steps in the energy diagram until reaching j
,2, when it vanishes. Although the distribution is rapidly

shifting downward, the number of clusters, C (0), is essen-

tially unchanged until clusters in the distribution reach j
52. In ripening, the clusters that shrink to the critical size,

j*, immediately begin this descent and quickly disintegrate

into monomer.

V. CONCLUSION

Founded on concepts of distribution kinetics and gov-

erned by population balances, the present theory is simplified

by defining scaled quantities. The treatment of denucleation

departs from the usual assumptions that stable and unstable

clusters in the size distribution are not distinct, and that clus-

ters exist down to zero mass. Ripening behavior can still

occur under this approximation because smaller stable clus-

ters are in general more soluble than larger clusters. In prior

work we assumed that unstable clusters vanished instantan-

eously,7 that is, very rapidly compared with the rate of

growth of stable clusters. Here we have verified that the rate

of denucleation is quite rapid relative to stable cluster growth

and dissolution. This not only justifies our previous assump-

tion, but also provides insight into this aspect of phase tran-

sition dynamics.

The current theory has the advantage that the minimum

number of dimensionless parameters and variables is pre-

sented explicitly. The mass, j, and time, u, dependencies of

the CSD, C(j ,u), are governed by the supersaturation, S,

and the ratio, v, of cluster surface energy to thermal energy.

Rate effects are incorporated in the ratio of dissociation to

growth rate parameters, b, and in the powers on the mass, n
and l, for the respective rate coefficients. We have shown

that the power n for the dissociation rate coefficient has a

predominant effect compared to the power l for the growth

coefficient. The initial average cluster size strongly influ-

ences the time evolution of number of clusters, with larger

clusters having a larger induction time. The supersaturation,

S, and the ratio of surface to thermal effects, v, do not influ-

ence the denucleation rate but effect the final number of clus-

ters. These computations indicate that dissociation influences

the denucleation rate while growth influences the final num-

ber of clusters in the CSD.
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FIG. 10. Variation of the number of clusters with time. The solid line rep-

resents the variation due to denucleation with C0
avg

520. The dashed line

represents the variation due to ripening with C0
avg

550. The other parameters

are S5v55 and l5n50.

6613J. Chem. Phys., Vol. 117, No. 14, 8 October 2002 Denucleation rates during Ostwald ripening

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.24.51.181 On: Sun, 23 Nov 2014 23:02:05


