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Abstract

IfH is any forest of order nwithm edges, then any graphG of order �nwith d(u)+d(v)�2m−1

for any two non-adjacent vertices u, v contains H.
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The Erdös–Sós conjecture that every graph with average degree greater than (m − 1)

contains every tree withm edges, is one of the important problems in graph theory. In 1963,

Erdös and Sós [5]. stated a conjecture on forests that any graph G of order n with

|E(G)| >max

{(

2k − 1

2

)

,

(

k − 1

2

)

+ (k − 1)(n − k + 1)

}

contains every forest with k edges and without isolated vertices as a subgraph. Brandt [4]

proved this conjecture. He also proved that, if H is any forest of order n with m edges, then

any graph of order �n with minimum degree �m contains H. These edge and minimum

degree bounds are tight for matchings.

We prove that, if H is any forest of order n with m edges, then any graph of order

�n with d(u) + d(v)�2m − 1 for any two non-adjacent vertices u, v contains H. We

show that, for some weaker degree conditions, graph G contains matching of size m but it
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does not contain all forests of size m. We prove that if H is any linear forest of order n

with m edges, then any graph G of order �n with at most i vertices of degree � i, for all

0� i < m, contains H.

Before proving the results let us fix the notations. All graphs considered are simple and

finite. All terms that are not defined are standard and may be found in, for example, [3].

For a non-complete graph G, let �2(G) be the minimum of d(u) + d(v) over all pairs of

non-adjacent vertices u, v ∈ V (G), and �2(G) = ∞ when G is a complete graph. We say

that a graph G contains a graph H if there is a subgraph of G isomorphic to H. If G contains

H, and f is an isomorphism from H to a subgraph f (H) of G, a vertex v of H is said to

correspond to the vertex f (v) of G. If H is any subgraph of G and v a vertex in G, then

d(v, H) is the number of vertices of H that are adjacent to v in G. If v /∈ V (H), H + v

is the subgraph of G obtained by adding to H the vertex v and all edges in G joining v

to a vertex of H. If Vs ⊂ V (G) then G[Vs] denotes the subgraph induced by Vs . If G

is any graph and S is either a vertex or edge in G, a subset of vertices or edges, or any

subgraph of G, then G − S is the subgraph of G obtained by deleting all vertices and edges

in S.

Lemma 1. Let T be any tree with m�1 edges. Any graph G of order �m + 1 with

�2(G)�2m − 1 contains T.

Proof. Weprove it by inductionon thenumber of edgesmofT. Ifm=1 thenG should contain

at least one edge. Let xy be an edge ofT such that y is a leaf. Let T1=T −y. Letw be a vertex

of minimum degree inG. LetG1=G−w. Since removal ofw fromG can reduce the degree

of any vertex by at most one, �2(G1)�2(m−1)−1. By induction hypothesis,G1 contains a

subgraph T ′
1, which is isomorphic to T1. Assume that u ∈ V (T ′

1) corresponds to x ∈ V (T1).

If u has any neighbour v ∈ V (G)\V (T ′
1), add vertex v and edge uv to T ′

1, to obtain a

subgraph of G isomorphic to T. If u has no neighbour in V (G)\V (T ′
1) then d(u, G) < m,

since |T ′
1| = m. Since w is a minimum degree vertex in G, d(w, G)�d(u, G) < m. So

d(u, G)+d(w, G) < 2m−1, this contradicts with �2(G)�2m−1, sincew is not adjacent

to u. �

Lemma 2. Let T be any non-trivial subtree of a graph G with |T | = t . Let u, v be two

vertices in V (G)\V (T ) such that d(u, T )+d(v, T )�2t −1. Then there exists a neighbour

w of v in T such that T + u − w contains T.

Proof. If d(u, T )= t , we can choosew to be any neighbour of v in T. Since u is adjacent to

all the neighbours ofw in T, we can replacew by u in T. If d(u, T )= t −1, then d(v, T )= t

and we can choose w to be the vertex of T that is not adjacent to u. �

Theorem 1. Let F be any forest with m edges. Any graph G of order � |F | with �2(G)�

2m − 1 contains F.

Proof. Without loss of generality assume that every component of F is a non-trivial tree.

We prove it by induction on the number of components of F. If F is a tree, it follows from

Lemma 1. Let T1, T2, . . . , Tk be the components ofF. Let T s
1 be a subgraph ofG isomorphic
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to T1 such that the number of edges in G[V (T s
1 )] is maximum. Let G[V (T s

1 )] be G1 and

G2=G−G1. If �2(G2)�2(m−|T1|+1)−1,G2 containsF −T1, by induction hypothesis,

and hence G contains F. So assume �2(G2) < 2(m − |T1| + 1) − 1.

Suppose G1 is not a complete graph. Let v ∈ V (G1) such that d(v, G1) < |T1| − 1. Let

u ∈ V (G2) be a vertex that is adjacent to every vertex in G1. Such a vertex should exist as

�2(G2) < 2(m − |T1| + 1) − 1 but �2(G)�2m − 1. The graph G1 − v + u contains T1 as

a spanning tree and has more edges than G1, which is a contradiction. So, G1 should be a

complete graph.

Let z be any vertex in G1. Let Gs
1 = G1 − z and Gs

2 = G2 + z. Since �2(G
s
2)�2(m −

|T1| + 1) − 1 and |Gs
2|� |F | − |T1| + 1, by induction hypothesis Gs

2 contains a subgraph

isomorphic to F − T1, let it be F s . Let G3 = Gs
2 − F s . If there is an edge between a vertex

x of Gs
1 and a vertex y of G3, G

s
1 + y contains a subgraph isomorphic to T1. F

s along with

this subgraph gives the required subgraph isomorphic to F in G. If �(G3)� |T1| − 1, G3

contains T1, by Lemma 1.

Let u ∈ V (G3) such that d(u, G3) is minimum. Let v be any vertex in Gs
1. Let T

s
j be the

component of F s isomorphic to the component Tj of F, for all 2�j �k. There should be

a component T s
i of F s , where 2� i�k, such that d(u, T s

i ) + d(v, T s
i )�2(|Ti | − 1) + 1,

since d(u, G) + d(v, G)�2m − 1 but d(v, Gs
1) + d(u, G3)�2(|T1| − 2). By Lemma 2,

there exists a neighbour w of v in T s
i such that T s

i − w + u contains Ti . Since Gs
1 + w

contains T1, we obtain a subgraph isomorphic to F in G. �

Now we will look at some other weaker degree conditions. These are motivated by the

corresponding results for Hamiltonian cycles [2].

The Komlós–Sós [1] conjecture states that any graph G of order n with at least half of its

vertices of degree at least k contains all trees of size k. This conjecture cannot be generalized

to forests since K2m−1 ∪ K1, where m�2, does not contain a matching of size m.

Let us look at a Pósá-type degree condition. Suppose the graph contains at most i vertices

of degree � i, for 0� i < m. The graph G obtained by adding an edge between disjoint

copies of K3m+1 and K2 does not contain three disjoint stars, each of order m + 1, even

though G contains at most i vertices of degree � i, for 1� i < 3m. So we will look at linear

forests, i.e. forests in which every component is a path.

Theorem 2. Let F be any linear forest with m edges and k components. Let G be any graph

with � |F | vertices. If there are at most i vertices in G with degree � i, for 0� i < m, then

G contains F.

Proof. Without loss of generality assume that every component of F is a non-trivial path.

Since |G|� |F |, if G contains a Hamiltonian path, G contains F. Take a new vertex v and

add edges between v and every vertex in G; let this new graph be Gs . In Gs the number of

vertices of degree �k is < k, for 1�k�m, and Gs is a connected graph.

Consider a longest path P in Gs such that the sum of the degrees of the end points is

maximum. Suppose that the degree of one end point u is d �m. Then for every neighbour

of u in P, the vertex preceding it in P must have degree �d; otherwise we obtain another

longest path with that vertex as the end point. Thus we obtain �d vertices of degree �d ,

a contradiction. So the degrees of both the end points are �m + 1.
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Suppose |P |�2m + 2. Let P = v1, v2, . . . , vk . Then we can find vi, vi+1 ∈ V (P ) such

that v1vi+1, vkvi ∈ E(Gs). So the subpaths v1, v2, . . . , vi and vi+1, vi+2, . . . , vk alongwith

the edges v1vi+1, vivk form a cycle of order |P |. Since Gs is connected, this contradicts

the assumption that G does not contain a Hamiltonian path and P is a longest path in Gs .

So |P |�2m + 3.

Since F contains m edges and k components, the order of F is m + k. So the order

of a longest path in F is �m − k + 2. Let P1, P2, . . . , Pk be the components of F. Let

F1 =F ∪Pk+1, where Pk+1 is a path of order m− k + 2 and disjoint from F. So |F1|� |P |,

and thusP contains a subgraphF ′
1 isomorphic toF1. Let the componentP ′

i ofF
′
1 correspond

to the component Pi of F1, for 1� i�k + 1.

If the newly added vertex v ∈ V (P ′
k+1), then G contains F, since F1 = F ∪ Pk+1. If

v ∈ V (P ′
i ), where 1� i�k, then G contains F1 − Pi . Since the order of Pk+1 is greater

than or equal to the order of a largest component in F, G contains F. �

Another possible generalization of Theorem 1 is to consider the closure of a graph, as

defined by Bondy and Chvátal. This generalization cannot be applied to forests in general

since 2K1,3 does not contain a path of length 3, but adding an edge between the centers of

the stars gives a path of length 3.

Theorem 3. Let F be any forest with m edges such that each component is a star. Let G be

any graph and u, v be two non-adjacent vertices in it such that d(u, G)+d(v, G)�2m−1.

G contains F iff G + uv contains F.

Proof. Suppose every subgraph of G + uv isomorphic to F includes the edge uv. Let

S1, S2, . . . , Sk be the components of F. Let F ′ be a subgraph of G + uv isomorphic to F

and let S′
i be the component of F ′ isomorphic to the component Si of F, for 1� i�k.

Assume that uv ∈ E(S′
k) and u is the centre of S′

k . Let F1 = G − (F ′ − S′
k). If �(F1)�

|Sk| − 1, then F1 contains a subgraph isomorphic to Sk , which along with F ′ − S′
k gives a

subgraph ofG isomorphic to F. So d(u, F1)=|Sk|−2 and d(v, F1)� |Sk|−2. Then we can

find a component S′
i of F ′, where 1� i < k, such that d(u, S′

i) + d(v, S′
i)�2(|Si | − 1) + 1,

since d(u, G) + d(v, G)�2m − 1. By Lemma 2, we can find a vertex w in S′
i such that w

is adjacent to u and S′
i − w + v contains S′

i . �
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