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Abstract

The deformation and break-up of Newtonian/viscoelastic droplets are studied in confined shear flow. Our

numerical approach is based on a combination of lattice-Boltzmann models (LBM) and finite difference

schemes, the former used to model two immiscible fluids with variable viscous ratio, and the latter used to

model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for

viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin’s closure (FENE-P).

We quantify the droplet response by changing the polymer relaxation time τP, the maximum extensibility L

of the polymers, and the degree of confinement, i.e. the ratio of the droplet diameter to wall separation. In

unconfined shear flow, the effects of droplet viscoelasticity on the critical Capillary number Cacr for break-

up are moderate in all cases studied. However, in confined conditions a different behaviour is observed:

the critical Capillary number of a viscoelastic droplet increases or decreases, depending on the maximum

elongation of the polymers, the latter affecting the extensional viscosity of the polymeric solution. Force

balance is monitored in the numerical simulations to validate the physical picture.
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I. INTRODUCTION

Emulsions play an important role in a huge variety of applications, including foods, cosmetics,

chemical and material processing [1]. Deformation, break-up and coalescence of droplets

occur during flow, and the control over these processes is imperative to synthesize the desired

macroscopic behaviour of the emulsion. The problem is also challenging from the theoretical

point of view: it is intrinsically multiscale, as it bridges between the “microscopic” dynamics of

single constituents (i.e. droplets) and the macroscopic behaviour of the emulsion [2]. Most of the

times, the synthesis of the emulsion takes place in presence of confinement: this is the case of

microfluidic technologies, which are gaining importance as a promising route for the emulsion

fabrication [3, 4]. Moreover, in real processing conditions, relevant constituents have commonly

a viscoelastic -rather than Newtonian- nature. The “single” droplet problem has been considered

to be the simplest model: in the case of dilute emulsions with negligible droplets interactions, the

dynamics of a single droplet indeed provides complete information about the emulsion behaviour.

Single droplet deformation and break-up have been extensively studied and reviewed in the

literature for the case of Newtonian fluids [5–9]. In the classical problem studied by Taylor [5],

a droplet (D) with radius R, interfacial tension σ , and viscosity ηD is suspended in another

immiscible fluid matrix (M) with viscosity ηM under the effect of a shear flow with intensity γ̇ .

The various physical quantities are grouped in two dimensionless numbers, the Capillary number

Ca = γ̇RηM/σ , giving a dimensionless measure of the balance between viscous and interfacial

forces, and the viscous ratio λ = ηD/ηM, going from zero for vanishing values of the droplet

viscosity (i.e. a bubble) to infinity (i.e. a solid particle). Break-up occurs at a critical Capillary

number Cacr, which depends on the viscous ratio λ [6]. In presence of confinement, a third

parameter has to be taken into account: that is the confinement ratio, defined as the ratio between

the droplet diameter 2R and the wall separation H [10]. Confinement suppresses break-up for

small viscosity ratios λ < 1, while promoting it for λ > 1. Confinement can promote break-up

even of droplets with a viscosity ratio larger than 4 [11–13], which cannot be broken in unconfined

shear flows [6]. It has also been suggested that the conditions of a uniform and confined shear

flow can be exploited to generate quasi monodisperse emulsions by controlled break-up [14, 15].

This is supported by experiments and numerical simulations [11] where multiple neckings are

observed.

Viscoelasticity changes droplet deformation as well as the critical Capillary number for break-up.

2



It is generally accepted that viscoelasticity stabilizes unconfined droplets against break-up [16–

25]. It has also been theoretically predicted that viscoelastic effects show up in the droplet

deformation in terms of two dimensionless parameters: the Deborah number, De = N1R
2σ

1
Ca2 ,

where N1 is the first normal stress difference generated in simple shear flow [26], and the ratio

N2/N1 between the second and first normal stresses difference [27]. In spite of its relevance,

the current understanding of the combined effect of confinement and viscoelasticity on droplets

deformation up to and including break-up is rather limited. Experimental data on the dynamics

of confined droplets that contain viscoelastic components are rare [28–33]. Cardinaels et al. [28]

investigated droplets under confinement for confinement ratios 0.1 < 2R/H < 0.75, viscosity

ratio equal to λ = 0.45 and λ = 1.5, and Deborah number De = 1. Matrix viscoelasticity

has been found to enhance wall effects and good overall agreement was found by comparing

experimental data with predictions from theoretical models [10]. Confined droplet relaxation was

studied in Cardinaels et al. [30], revealing a complex non trivial interaction between geometrical

confinement and component viscoelasticity. Another recent study by Cardinaels et al. [31] also

analyzed droplet break-up in systems with either a viscoelastic matrix or a viscoelastic droplet.

For a viscoelastic droplet the authors report critical Capillary numbers which are similar to those

of a Newtonian droplet, whereas matrix viscoelasticity causes break-up at a much lower Capillary

number. Issues related to the capability of viscoelasticity to suppress multiple neckings were

also discussed. Complementing experimental results with systematic investigations by varying

deformation rates and fluid constitutive parameters is of extreme interest. This is witnessed

by the various papers in the literature, addressing the effects of viscoelastic components on

droplet deformation and break-up in numerical simulations. Transient behaviour and deformation

of a two-dimensional Oldroyd-B droplet in a Newtonian matrix were analyzed by Toose et

al. [34] using a boundary-integral method. Ramaswamy & Leal [35, 36] and Hooper et al. [37]

used instead a finite-element method to investigate axisymmetric deformation of viscoelastic

droplets using FENE-CR and Oldroyd-B equations [26]. They predicted reduced deformation

for a viscoelastic droplet in a viscous matrix and enhanced deformation in the reversed case.

Pillapakam & Singh [38] presented finite-element simulations using an Oldroyd-B model. They

report a non-monotonic change in deformation for a viscoelastic droplet in a viscous matrix while

the reversed case was seen to increase droplet deformation. Yue et al. [39–44] performed various

numerical calculations based on a diffuse-interface formulation and the Oldroyd-B constitutive

equation for the non-Newtonian phase [40]. Such analysis was then extended by Aggarwal &
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Sarkar [21, 22] using a 3D front-tracking finite difference numerical method. In the case of a

Newtonian droplet in a viscoelastic matrix they found an increased droplet orientation along

the flow direction with respect to the Newtonian case, in agreement with previous theoretical

predictions and experimental results [27, 45, 46]. Furthermore, Aggarwal & Sarkar [21] developed

a simple force balance ODE model which predicts the observed scaling of De as a function of Ca.

At small Deborah numbers, the critical Capillary number was found to increase proportionally

with the degree of viscoelasticity, in line with experimental results [19]. Some of the numerical

simulations in the literature report a non-monotonic change in the steady-state droplet deformation

with increasing Deborah number [21, 22, 40, 47], whereas other investigations of a viscoelastic

droplet in a Newtonian matrix and the reversed situation showed a saturation at high Deborah

numbers [24, 25].

Here, we present a 3D numerical investigation of deformation and break-up of Newto-

nian/viscoelastic droplets at small Reynolds numbers. The kinetics of the polymers is introduced

using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic

dumbbells with Peterlin’s closure (FENE-P) [26], in which the dumbbells can only be stretched

by a finite amount, the latter effect parametrized with a maximum extensional length squared L2,

hereafter denoted with finite extensibility parameter. The model supports a positive first normal

stress and a zero second normal stress in steady shear flow. It also supports a thinning effect

at large shear, although such effect will not be important in our calculations, all the numerical

simulations being performed with fluid pairs with nearly constant shear viscosities. We will

discuss the interplay between the degree of confinement and the model parameters of the polymer

equation, i.e. the relaxation time τP and the maximum elongation of the polymers L, by separately

tuning the Deborah number and the elongational viscosity of the polymeric phase [48]. We choose

a viscous ratio λ = 1, the reason being that is the most studied in the literature [5–9, 12, 15]. It

is known from the Newtonian case [11, 12] that confinement hardly affects the critical Capillary

number for such viscous ratio. However, as we will see, the effect of viscoelasticity induces

significant changes. Issues related to the presence of multiple neckings will also be investigated

with the numerical simulations.

The paper is organized as follows: in Sec. II we will present the necessary mathematical

background for the problem studied, showing the relevant equations that we integrate in both

the matrix and droplet phase. In Sec. III we will present basic benchmark tests to verify the

importance of confinement and viscoelasticity in the numerical algorithm. In particular, we will
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choose a confined case where viscoelasticity is introduced in the matrix phase, so as to produce

a sizeable and measurable effect in the droplet orientation that we can benchmark against known

results in the literature [12, 49]. In Sec. IV we specialize to the case of droplet viscoelasticity

and present a comprehensive study on the interplay between the degree of confinement and the

viscoelastic model parameters, i.e. the relaxation time τP and the maximum elongation of the

polymer L. In Sec. V we will complement the results discussed in Sec. IV by directly monitoring

the force balance which is a consequence of the equations of motion. Conclusions follow in

Sec. VI. The methodology we use is well detailed in another paper [50] and we briefly summarize

it in appendix A.

II. PROBLEM STATEMENT AND MATHEMATICAL FORMULATION

Our numerical approach is based on a combination of lattice-Boltzmann models (LBM) and

finite difference schemes, the former used to model two immiscible fluids with variable viscous

ratio, and the latter used to model viscoelasticity using the FENE-P constitutive equations. LBM

have already been used to model droplet deformation problems [51–54] and also viscoelastic

flows [55–57]. The novelty we offer from the methodological point of view is the exploration

of regimes and situations which have not been explored so far in the literature. We focus mainly

on the droplet deformation and break-up problems, being the quantitative benchmarks against

known analytical results for the rheology of dilute suspensions [26, 58] present in another dedi-

cated methodological publication [50]. LBM have already been used to model the droplet defor-

mation problems. Three-dimensional numerical simulations of the classical Taylor experiment on

droplet deformation [5] in a simple shear flow have been performed by Xi & Duncan [51] using

the so called “Shan-Chen” approach [59]. The single droplet problem was also investigated by Van

der Sman & Van der Graaf [52] using a “free energy” LBM. LBM modelling of two phase flows

is intrinsically a diffuse interface method and involves a finite thickness of the interface between

the two liquids and related free energy model parameters. These numerical degrees of freedom are

characterized by two dimensionless numbers, the Péclet (Pe) and Cahn (Ch) numbers: the Cahn

number is the interface thickness normalized by the droplet radius, whereas the Peclet number is

the ratio between the convective time scale and the time scale associated with the interface diffu-

sion. Those parameters have to be chosen within certain ranges to reproduce the correct physical
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behavior [52, 53] (see also Appendix A). The set-up for the study of break-up is shown in Fig. 1.

In the droplet phase we integrate both the NS (Navier-Stokes) for the velocity u and FENE-P

reference equations:

ρ [∂tu+(u ·∇)u] = −∇P+∇ ·
(

ηA(∇u+(∇u)T )
)

+
ηP

τP
∇ · [ f (rP)C ]; (1)

∂tC +(u ·∇)C = C · (∇u)+(∇u)T ·C −
f (rP)C −1

τP
. (2)

Here, ηA is the dynamic viscosity of the fluid, ηP the viscosity parameter for the FENE-P solute,

τP the polymer relaxation time, ρ the solvent density, P the solvent pressure, (∇u)T the transpose

of (∇u). C ≡ 〈RiR j〉 is the polymer-conformation tensor, i.e. the ensemble average of the

tensor product of the end-to-end distance vector Ri, which equals the identity tensor (C = 1)

at equilibrium. Finally, f (rP) ≡ (L2 −3)/(L2 − r2
P) is the FENE-P potential that ensures finite

extensibility, whereas rP ≡
√

Tr(C ) and L are the length and the maximum possible extension of

the polymers [26], respectively. In the outer matrix phase (indicated with a prime), we consider

the equations

ρ ′
[

∂tu
′+(u′ ·∇)u′

]

= −∇P′+∇ ·
(

ηB(∇u′+(∇u′)T )
)

+
η ′

P

τ ′P
∇ · [ f (r′P)C

′]; (3)

∂tC
′+(u′ ·∇)C ′ = C

′ · (∇u′)+(∇u′)T ·C ′−
f (r′P)C

′−1

τ ′P
. (4)

with ηB the matrix shear viscosity. In all the cases, the Navier-Stokes equations are obtained

from a lattice Boltzmann model [51, 55] and immiscibility between the droplet phase and the

matrix phase is introduced using the so-called “Shan-Chen” model [59, 60]. The methodology

is well detailed in another paper [50] and we briefly recall it in appendix A. In all the numerical

simulations presented in this paper, we work with unitary viscous ratio, defined in terms of the

total (fluid+polymer) shear viscosity. In particular, when presenting some benchmark studies for

droplet deformation (Sec. III), we will choose a case with matrix viscoelasticity (ηP = 0 in Eq. (1))

with λ = ηD/ηM = ηA/(ηB+η ′
P) = 1 and polymer concentration η ′

P/ηM ≈ 0.4; all the results for

droplet break-up (Sec. IV), instead, refer to a case with droplet viscoelasticity (η ′
P = 0 in Eq. (3))

with λ = ηD/ηM = (ηA +ηP)/ηB = 1 and polymer concentration ηP/ηD ≈ 0.4. The degree of

viscoelasticity is computed from the Deborah number (see also Sec. I)

De =
N1R

2σ

1

Ca2
(5)

where Ca is always computed in the matrix phase while the first normal stress difference N1 is

computed either in the droplet phase (Sec. IV) or in the matrix phase (Sec. III), dependently on the
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case studied. Solving the constitutive equation for steady shear flow, the first normal stress differ-

ence N1 for the FENE-P model [26, 48] follows (primed variables replace non-primed variables

for matrix phases)

N1(τPγ̇,L2) = 8
ηP

τP

(

L2

6

)

sinh2

(

1

3
arcsinh

(

τPγ̇L2

4

(

L2

6

)−3/2
))

. (6)

In the Oldroyd-B limit (L2 ≫ 1) we can use the asymptotic expansion of the hyperbolic functions

and we get N1 = 2ηPγ̇2τP so that

De =
τP

τem

ηP

ηM
(7)

showing that De is clearly dependent on the ratio between the polymer relaxation time τP and the

emulsion time

τem =
RηM

σ
. (8)

In the following sections, we report the Deborah number based on the definition (7), as we esti-

mated the difference between (7) and (5) to be at maximum of a few percent for the values of L2

considered.

III. STEADY-STATE DROPLET DEFORMATION/ORIENTATION: IMPORTANCE OF CON-

FINEMENT AND VISCOELASTICITY

In this section we present benchmark tests of the numerical simulations with regard to the

problem of steady-state droplet deformation and orientation in shear flow. In particular, we will

show that both the effects of confinement and viscoelasticity are fairly reproduced by our approach.

In order to quantify the deformation of the droplet, we study the deformation parameter D ≡

(a− b)/(a+ b), where a and b are the droplet semi-axes in the shear plane, and an orientation

angle θ between the major semi-axis and the flow direction (see Fig. 1). Taylor’s result, based on

a small deformation perturbation procedure to first-order, relates the deformation parameter to the

Capillary number,

D =
(19λ +16)

(16λ +16)
Ca (9)

whereas the orientation angle is constant and equal to θ = π/4 to first order. Taylor’s analysis

was later extended by working out the perturbation procedure to second order in Ca, which leaves

unchanged the expression of the deformation parameter and gives the O(Ca) correction to the
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orientation angle [61, 62]. The effects of confinement have been theoretically addressed at first-

order by Shapira & Haber [10, 14]. They found that the deformation parameter in the confined

geometry can be obtained by the unconfined flow expression through a correction in the third

power of the ratio between droplet radius at rest R and the gap between the walls H

D =
(19λ +16)

(16λ +16)

[

1+Csh

2.5λ +1

λ +1

(

R

H

)3
]

Ca (10)

where Csh is a tabulated numerical factor depending on the relative distance between the droplet

center and the wall (the value of Csh for droplets placed halfway between the plates is Csh = 5.6996).

Numerical simulations results are presented in Panel (a) of Fig. 2. To the best of the authors

knowledge, this is the first time that LBM simulations are quantitatively compared with the

theoretical prediction by Shapira & Haber [10, 14]. In particular, we report the steady-state

droplet deformation for a confined shear flow at a given degree of confinement 2R/H = 0.465

at changing Ca. The droplet radius is R = 30 lattice cells and the computational domain is

Lx × Ly ×H = 128× 128× 128 lattice cells. The viscous ratio is λ = 1, the dynamic viscosi-

ties in equations (1)-(3) are ηA = ηB = 1.75 lbu (LBM units), and the surface tension at the non

ideal interface is σ = 0.1 lbu. The Capillary number is changed by imposing different velocities

at the upper and lower walls. As we can see, the linearity of the deformation is captured at small

Ca, but the numerical results overestimate Taylor’s prediction, being well approximated by the

theoretical prediction of Shapira & Haber for a confined droplet [10]. As a consequence of this

increased droplet deformation at reduced gap size, elongated shapes are observed at steady-state

in confined shear flow, which would be unstable in the unconfined case [14].

We next go on by proposing a benchmark test for the viscoelastic effects on shear-induced

droplet orientation at small Ca. We prefer to look at the orientation angle θ (see Fig. 1) because

non-Newtonian effects on the steady-state deformation show up at the second order in Ca, while

the orientation angle has a correction at first order in Ca [27]. Also, we choose to use only matrix

viscoelasticity (ηP = 0 in Eq. (1)) because it is known that droplet viscoelasticity has hardly any

effect on the steady-state droplet deformation and orientation at small Capillary numbers [24, 25].

As a reference theory, to test both confinement and viscoelastic effects, we refer to the model pro-

posed by Minale, Caserta & Guido [29]. This model belongs to the family of “ellipsoidal” mod-

els [49], which were originally introduced to describe the dynamics of a single Newtonian droplet

immersed in a Newtonian matrix subjected to a generic flow field, based on the assumption that the

droplets deform into an ellipsoid. The steady-state predictions of such models for small Capillary
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FIG. 1: Shear plane (xz plane at y = Ly/2) view of the numerical set-up for the study of deformation and

break-up of confined droplets. A Newtonian droplet (D) (phase A) with radius R and shear viscosity ηA

is placed in between two parallel plates at distance H in a Newtonian matrix (M) (phase B) with shear

viscosity ηB. We then add a polymer phase with shear viscosity ηP/η ′
P in the droplet/matrix (D/M) phase.

We work with unitary viscous ratio, defined in terms of the total (fluid+polymer) shear viscosity: λ =

(ηA+ηP)/ηB = 1 in case of droplet viscoelasticity; λ = ηA/(ηB+η ′
P) = 1 in case of matrix viscoelasticity

(see Eqs. (1)-(4)). A shear γ̇ = 2Uw/H is applied by moving the two plates in opposite directions with

velocities ±Uw. The corresponding Capillary number is given in terms of the matrix viscosity and surface

tension σ at the interface, Ca = γ̇RηM/σ . In order to quantify the deformation of the droplet, we study the

deformation parameter D = (a− b)/(a+ b), where a and b are the droplet semi-axes in the shear plane,

and the orientation angle θ between the major semi-axis and the flow direction. Droplet deformation is

benchmarked in a case of matrix viscoelasticity in Fig. 2. For large Ca the droplet deformation is increased

and the droplet breaks at a critical Capillary number Cacr. Droplet break-up will be analyzed for the case of

droplet viscoelasticity.

numbers are constructed in such a way to recover the exact perturbative result, i.e. Taylor’s result

for an unconfined droplet [63] or the Shapira & Haber result for a confined droplet [12]. Recently,

extension of ellipsoidal models have been proposed also for non-Newtonian fluids. In particular,

Minale [46] proposed a model which recovers the small deformation steady-state theory devel-

oped by Greco [27] to predict the deformation of a droplet made of a second-order fluid. Minale,

Caserta & Guido [29] recently generalized the work by Minale [12, 46] to study the effects of

confinement in non-Newtonian systems. With respect to the Newtonian case studied in Panel (a)

of Fig. 2, we leave all the parameters unchanged, with the only difference that we switch on the

polymeric viscosity η ′
P = 0.69333 lbu and lower the solvent matrix viscosity ηB so as to leave the
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FIG. 2: Panel (a): We report the steady-state deformation parameter D for a Newtonian droplet under steady

shear flow as a function of the associated Capillary number Ca. The viscous ratio between the droplet phase

and the matrix phase is kept fixed to λ = 1. For small Ca the linearity of the deformation is captured by

the numerical simulations, but the numerical results overestimate Taylor’s prediction (unconfined droplet),

being well approximated by the theoretical prediction of Shapira & Haber for a confined droplet [10].

Panel (b): steady-state orientation angle for a Newtonian droplet immersed in a viscoelastic matrix with

Deborah numbers De = 1.44 and De = 2.88 and finite extensibility parameter L2 = 104. The results for

the corresponding Newtonian system (De = 0) with the same viscous ratio are also reported. The reference

theory comes from the prediction of “ellipsoidal” models [12, 49], describing the dynamics of a single

Newtonian droplet immersed in a viscoelastic matrix, based on the assumption that the droplet deforms into

an ellipsoid.
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total viscous ratio λ = ηD/ηM = ηA/(ηB+η ′
P) = 1 unchanged. In Panel (b) of Fig. 2 we report the

steady-state orientation angle for a Newtonian droplet immersed in a non-Newtonian matrix with

De = 1.44,2.88 and L2 = 104. The results for the corresponding Newtonian system (De = 0) with

the same viscous ratio are also reported. The value of L2 is chosen to avoid thinning effects in the

viscoelastic behaviour which would complicate the quantitative matching between the reference

theory [29] and the simulations. The effect of viscoelasticity is clearly visible: if compared with

the Newtonian case (De = 0), viscoelasticity promotes stronger alignment in the flow direction

and the numerical results are well in agreement with the ellipsoidal model by Minale, Caserta &

Guido [29] for all the Deborah numbers considered.

IV. EFFECTS OF DROPLET VISCOELASTICITY ON CRITICAL CAPILLARY NUMBER

In this section we report the results for the critical Capillary number for various confinement

ratios and Deborah numbers. We will be mainly interested in droplet viscoelasticity, which is

obtained by setting η ′
P = 0 in eq. (4). A complementary study regarding the role of matrix vis-

coelasticity will be published in a future paper. In all the cases discussed in this section, a spherical

droplet is initially placed halfway between the walls. The critical Capillary number is computed

by identifying the pre-critical (Uw,pre) and the post-critical wall velocity (Uw,post), i.e. the largest

(smallest) wall velocity for which the droplet is stable (breaks). All the simulations described

refer to the cases with polymeric relaxation times ranging in the interval 0 ≤ τP ≤ 7000 lbu and

finite extensibility parameter 102 ≤ L2 ≤ 104, corresponding to Deborah numbers ranging in the

interval 0 ≤ De ≤ 2. The numerical simulations have been carried out in three dimensional do-

mains Lx ×Ly ×H. The droplet radius R and the vertical gap H have been changed in the ranges

50 ≤ R ≤ 60 lattice cells and 128 ≤ H ≤ 256 lattice cells to achieve different confinement ratios

2R/H. The stream-flow length Lx is varying in the range 1024≤ Lx ≤ 1356 lattice cells, depending

on the droplet elongation properties, while the transverse-flow length Ly is resolved with 128 lat-

tice cells. Periodic conditions are applied in the stream-flow and in the transverse-flow directions.

The droplet is subjected to a linear shear flow ux = γ̇z, uy = uz = 0, with the shear introduced with

two opposite velocities in the stream-flow direction (−ux(x,y,z = 0) = +ux(x,y,z = H) = Uw) at

the upper (z = H) and lower wall (z = 0). The main simulation parameters are summarized in table

I.

In Fig. 3 we report 3D snapshots showing deformation and subsequent break-up of the droplet
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2R/H Lx ×Ly ×H R ηA ηB ηP τP De L2 Uw,pre Uw,post

cells lbu lbu lbu lbu lbu lbu lbu

0.4 1024×128×256 50 1.75 1.75 0.00 0.04 0.0425

0.4 1024×128×256 50 1.05 1.75 0.69 5−50×102 0.2−2.0 102 0.04−0.0425 0.0425−0.045

0.4 1024×128×256 50 1.05 1.75 0.69 50×102 2.0 104 0.0425 0.045

0.45 1024×128×224 50 1.75 1.75 0.00 0.035 0.0375

0.52 1024×128×192 50 1.75 1.75 0.00 0.03 0.0325

0.52 1024×128×192 50 1.05 1.75 0.69 5−50×102 0.2−2.0 102 0.03−0.035 0.0325−0.0375

0.63 1024×128×160 50 1.75 1.75 0.00 0.025 0.0275

0.63 1024×128×160 50 1.05 1.75 0.69 10−50×102 0.4−2.0 102 0.0275−0.04 0.03−0.0425

0.70 1024×128×160 56 1.75 1.75 0.00 0.0275 0.03

0.70 1024×128×160 56 1.05 1.75 0.69 5−50×102 0.2−2.0 102 0.0275−0.0425 0.03−0.045

0.78 1024×128×128 50 1.75 1.75 0.00 0.0275 0.03

0.78 1024×128×128 50 1.05 1.75 0.69 2.5−70×102 0.1−2.8 102 0.0275−0.045 0.03−0.0475

0.78 1024×128×128 50 1.05 1.75 0.69 2.5−50×102 0.1−2.0 104 0.02−0.0325 0.0225−0.035

0.94 1192×128×128 60 1.75 1.75 0.00 0.025 0.0275

0.94 1360×128×128 60 1.05 1.75 0.69 5−50×102 0.2−2.0 102 0.025−0.0375 0.0275−0.04

2R/H Lx ×Ly ×H R ηA ηB ηP τP De L2 Uw

cells lbu lbu lbu lbu lbu lbu

0.78 1024×128×128 50 1.05 1.75 0.69 50×102 2.0 102,103,5×103,104 0.02

TABLE I: Parameters for break-up simulations : 2R/H is the confinement ratio, Lx ×Ly ×H is the compu-

tational domain, R is the droplet radius, ηA is the dynamic viscosity of the Newtonian solvent fluid inside

the droplet, ηB is the dynamic viscosity of the Newtonian matrix (see also Fig. 1), ηP is the dynamic vis-

cosity of the polymers, τP is the polymer relaxation time, L2 is the finite extensibility parameter for the

polymers (i.e. their maximum squared elongation), Uw,pre and Uw,post are pre-break-up (pre-critical) and

post-break-up (post-critical) wall velocity, respectively.

after the startup of a shear flow with the smallest confinement ratio analyzed in our numerical

simulations, 2R/H = 0.4, at fixed Capillary number. The Capillary number is chosen to be the

critical Capillary number for the Newtonian droplet (Ca = 0.34). Panels (a)-(c) refer to the New-
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tonian case and they show the initial droplet deformation at time t = 25τem, the droplet deformation

prior to break-up at time t = 75τem, and the droplet in post-break-up conditions at t = 100τem, re-

spectively. Panels (d)-(f) and panels (g)-(i) show the behavior at changing the Deborah number,

obtained by changing the relaxation time τP in Eqs.(1)-(2). Panels (d)-(f) show the results for a

slightly viscoelastic case (De = 0.2). Clearly, in presence of weak viscoelastic effects, the droplet

dynamics is very close to the Newtonian case, with little resistance against deformation. Panels

(g)-(i) show the results for a viscoelastic case with Deborah number above unity (De= 2.0). In this

case, the viscoelastic droplet does not break, indicating that viscoelasticity has a stabilizing effect

on the droplet and prevents the droplet break-up. However, this stabilization is not remarkable,

since a slight increase in Ca leads to droplet break-up. This is shown in Fig. 4, where the last row

of images of Fig. 3 is compared with the corresponding images at a slightly larger Capillary num-

ber, Ca ≈ 0.35. We remark that we set our parameters in such a way that the viscous ratio between

the droplet phase and the matrix phase is kept fixed to λ = 1. This is done to appreciate in full the

role of non-Newtonian effects, which seem to be rather small at this stage of the analysis. Some

words of caution for the values of the critical Capillary numbers studied are also in order. We no-

tice that the critical Capillary number for the Newtonian case (De = 0) is found to be Cacr = 0.34,

which is different from the usual unconfined result Cacr = 0.43 [6, 11]. We attribute this difference

to the finite Reynolds number of our simulations, which is close to Re = 0.1. Indeed, Renardy

& Cristini [64] in their numerical study using a volume-of-fluid (VOF) method, determined the

critical Capillary number at Re = 0.1 and λ = 1 to be Cacr ≈ 0.38, which is well in agreement with

our finding.

We next perform a similar analysis for a case where the droplet is in a highly confined sit-

uation. In Fig. 5 we show 3D snapshots including deformation and subsequent break-up of the

droplet after the startup of a shear flow, with a confinement ratio 2R/H = 0.78, at fixed Capillary

number. Similarly to Fig. 3, the first row of images is related to the Newtonian case: panels (a)-(c)

show the initial droplet deformation at time t = 25τem, the droplet deformation prior to break-up

at time t = 75τem, and in a post-break-up condition at t = 100τem, respectively. It must be noted

that confinement acts in stabilizing the droplet with elongated shapes that would be unstable in an

unconfined case [14]. Upon elongation, the droplet now breaks into three (more than two) equally

sized droplets, due to the Rayleigh-Plateau instability that develops at the interface [11, 31]. Com-

pared to the lower confinement ratio analyzed in the first row of Fig. 3, the critical Capillary

number increases because of the stabilizing effect of the wall and the associated different break-up

13



(a) t/τem=25, 2R/H = 0.4, De=0 (b) t/τem=75, 2R/H = 0.4, De=0 (c) t/τem=100, 2R/H = 0.4, De=0

(d) t/τem=25, 2R/H = 0.4,

De=0.20

(e) t/τem=75, 2R/H = 0.4, De=0.20 (f) t/τem=100, 2R/H = 0.4,

De=0.20

(g) t/τem=25, 2R/H = 0.4, De=2.0 (h) t/τem=75, 2R/H = 0.4, De=2.0 (i) t/τem=100, 2R/H = 0.4, De=2.0

FIG. 3: Deformation/Break-up after the startup of a shear flow with confinement ratio 2R/H = 0.4. We

report the time history of droplet deformation and break-up including 3 time frames which represent, in the

Newtonian case (De= 0), initial deformation (left column, t = 25τem); deformation prior to break-up (middle

column, t = 75τem); post-break-up frame (right column, t = 100τem). We use the emulsion time τem (see

Eq. (8)) as a unit of time. The second row of images is related to a weakly viscoelastic droplet (De = 0.2),

indicating that non-Newtonian properties do not affect the droplet deformation and break-up much. The

third row of images is related to a viscoelastic droplet with Deborah number above unity (De = 2.0), and

indicates that non-Newtonian properties stabilize the droplet deformation and inhibit droplet break-up. Note

that the Capillary number is kept fixed to the post-critical Newtonian value Ca = 0.34, which is the smallest

Capillary number available for us at which we observe break-up in the Newtonian case. In all cases, the

viscous ratio between the droplet phase and the matrix phase is kept fixed to λ = ηD/ηM = 1, independently

of the degree of viscoelasticity. The finite extensibility parameter is fixed to L2 = 102.

mechanism. We estimate Cacr = 0.47 compared to Cacr = 0.34 estimated in the lower confine-

ment ratio. Panels (d)-(f) and panels (g)-(i) show the behavior at changing the Deborah number,

obtained by changing the relaxation time τP in Eqs. (1)-(2). Similarly to the unconfined case ana-

lyzed in Fig. 3, viscoelasticity stabilizes the droplet and prevents the droplet break-up. However,

a net distinction between the unconfined case (2R/H = 0.4) and the confined case (2R/H = 0.78)
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(a) t/τem=25, 2R/H = 0.4,

Ca=0.34, De=2.0

(b) t/τem=75, 2R/H = 0.4,

Ca=0.34, De=2.0

(c) t/τem=100, 2R/H = 0.4,

Ca=0.34, De=2.0

(d) t/τem=25, 2R/H = 0.4,

Ca=0.35, De=2.0

(e) t/τem=75, 2R/H = 0.4,

Ca=0.35, De=2.0

(f) t/τem=100, 2R/H = 0.4,

Ca=0.35, De=2.0

FIG. 4: Deformation/Break-up of a viscoelastic droplet in a Newtonian matrix after the startup of a shear

flow with confinement ratio 2R/H = 0.4 and Deborah number De = 2.0, at changing the Capillary number.

The finite extensibility parameter is fixed to L2 = 102. The first row of images is just the last row of images

in Fig. 3, corresponding to Ca = 0.34. The droplet deformation increases with increasing Ca, and when

Ca exceeds a critical value Cacr between 0.34 and 0.35 the droplet breaks into two equally sized droplets

(second row of images). The critical Capillary number at De = 2.0 is close to the Newtonian counterpart

(De = 0, see Fig. 3). In all cases, the viscous ratio between the droplet phase and the matrix phase is kept

fixed to λ = ηD/ηM = 1, independently of the degree of viscoelasticity.

emerges. At fixed Deborah number, break-up in the confined case is observed at a much higher

Cacr than the Newtonian case. This is quantitatively visualized in Fig. 6, where we show the his-

tory of the deformation and break-up of the viscoelastic droplet for De = 2.0 and confinement

ratio 2R/H = 0.78. The critical Capillary number is measured to be Cacr = 0.75 which is roughly

doubled with respect to the corresponding Newtonian case. Another interesting feature emerging

from the second row of images of Fig. 6 is that the formation of multiple neckings is significantly

suppressed by viscoelasticity. In particular, the droplet still breaks-up in three droplets, but their

size is different, with the central droplet being much smaller that the other two. Being interested in

using a uniform and confined shear flow to generate quasi monodisperse emulsions by controlled

break-up [14, 15], Fig. 6 suggests to use caution in presence of non-Newtonian phases.

Thus, the effects of viscoelasticity on the critical Capillary number appear more sizeable in the

case with a larger confinement ratio. This is complemented by the results reported in Fig. 7, where
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(a) t/τem=25, 2R/H = 0.78, De=0 (b) t/τem=75, 2R/H = 0.78, De=0 (c) t/τem=100, 2R/H = 0.78, De=0

(d) t/τem=25, 2R/H = 0.78, De=0.2 (e) t/τem=75, 2R/H = 0.78, De=0.2 (f) t/τem=100, 2R/H = 0.78, De=0.2

(g) t/τem=25, 2R/H = 0.78, De=2.0 (h) t/τem=75, 2R/H = 0.78, De=2.0 (i) t/τem=100, 2R/H = 0.78, De=2.0

FIG. 5: Deformation/Break-up after the startup of a shear flow with confinement ratio 2R/H = 0.78. We

report the time history of droplet deformation and break-up including 3 representative time frames, similarly

to what is reported in Fig. 3. A distinctive feature of this confined case is the emergence of triple break-

up [11]. The second row of images is related to a weekly viscoelastic droplet (De = 0.2), indicating that

non-Newtonian properties do not affect the droplet deformation and break-up much. The third row of images

is related to a viscoelastic droplet with Deborah number above unity (De= 2.0), and indicates that such non-

Newtonian properties stabilize the droplet deformation and inhibit droplet break-up. Note that the Capillary

number is kept fixed to the post-critical Newtonian value Ca = 0.47, which is the smallest Capillary number

at which we observe break-up in the Newtonian case. In all cases, the viscous ratio between the droplet

phase and the matrix phase is kept fixed to λ = ηD/ηM = 1, independently of the degree of viscoelasticity.

The finite extensibility parameter is fixed to L2 = 102.

we show the dimensionless droplet elongation Lp/2R as a function of time for several values of

De and Ca. Since the shape of highly deformed and confined droplets deviates from an ellipsoid,

we estimated the droplet elongation from the projection of the droplet length (Lp) in the velocity

direction. In Panel (a) of Fig. 7 we show the results for a Newtonian droplet with Capillary

number ranging in the interval 0.318 ≤ Ca ≤ 0.476, with the critical Capillary number being equal

to Cacr = 0.476 (see Fig. 5). Before break-up, the droplet elongation reaches a maximum value

and then it breaks while retracting, which is another signature of the triple break-up discussed

before. The maximum elongation increases with the Deborah number (Panel (b)-(c) of Fig. 7) and
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(a) t/τem=25, 2R/H = 0.78, Ca=0.47,

De=2.0

(b) t/τem=75, 2R/H = 0.78, Ca=0.47,

De=2.0

(c) t/τem=100, 2R/H = 0.78,

Ca=0.47, De=2.0

(d) t/τem=25, 2R/H = 0.78, Ca=0.75,

De=2.0

(e) t/τem=100, 2R/H = 0.78,

Ca=0.75, De=2.0

(f) t/τem=125, 2R/H = 0.78,

Ca=0.75, De=2.0

FIG. 6: Deformation/Break-up of a viscoelastic droplet in a Newtonian matrix after the startup of a shear

flow with confinement ratio 2R/H = 0.78 and Deborah number above unity (De = 2.0). The finite exten-

sibility parameter is fixed to L2 = 102. The first row of images is just the last row of images in Fig. 5,

corresponding to Ca = 0.47. The droplet deformation increases with increasing Ca and when Ca exceeds

a critical value Cacr the droplet breaks (second row of images). The critical Capillary number is found to

be Cacr = 0.75 and increases substantially compared to its Newtonian counterpart (De = 0, see Fig. 5). In

all cases, the viscous ratio between the droplet phase and the matrix phase is kept fixed to λ = ηD/ηM = 1,

independently of the degree of viscoelasticity.

the increase of the maximum elongation goes together with an increase of the critical Capillary

number: the maximum elongation is indeed doubled when moving from De = 0.1 to De = 2.0.

Overall, there are two main messages conveyed by Figs. 3-7. First, it is evident that viscoelas-

ticity has a stabilizing effect on droplet break-up [16–25], with a larger effect in presence of a

larger confinement ratio [31]. Second, the formation of multiple neckings - a distinctive feature

of break-up of confined droplets - is also affected by the presence of viscoelasticity. These state-

ments are better complemented by the results reported in Fig 8, which give an overview of all the

various numerical simulations performed, at changing confinement ratio and degree of viscoelas-

ticity, while keeping the finite extensibility of the polymers fixed to L2 = 102. In Panel (a) of

Fig. 8, we report the critical Capillary number Cacr as a function of the confinement ratio. For

Newtonian droplets, the role of confinement is almost insignificant up to 2R/H = 0.625, whereas

for larger confinement ratio a monotonous increase of Cacr is observed. The emergence of this

up-turn in Cacr is a direct consequence of the change of the break-up mechanism. Up to De ≈ 1,
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(c) De = 2.0, L2 = 102

FIG. 7: Evolution of the dimensionless droplet length after the startup of a shear flow for various Capillary

numbers and Deborah numbers for a fixed confinement ratio 2R/H = 0.78 and finite extensibility parameter

L2 = 102. Since the shape of highly deformed droplets may deviate from an ellipsoid, we estimated the

droplet elongation from the projection of the droplet length (Lp) in the velocity direction. The viscous ratio

between the droplet phase and the matrix phase is kept fixed to λ = ηD/ηM = 1, independently of the degree

of viscoelasticity. Similarly to Figs. 3-6, we use the emulsion time τem (see Eq. (8)) as a unit of time.
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Cacr only slightly increases upon increasing De. When De > 1, however, the change in Cacr sig-

nificantly increases with 2R/H. The black open circles indicate situations where ternary break-up

is observed. We notice that the addition of polymers to droplets for the highest confinement ratio

considered (2R/H = 0.93) is enough to remove ternary break-up, independently of the degree of

viscoelasticity. In addition to the critical Capillary number, in Panel (b) of Fig. 8, we report the

maximum dimensionless elongation of the droplet, L
(M)
p /2R, as a function of confinement ratio. It

is clear that the trends for Cacr and L
(M)
p /2R are quite similar. Indeed, L

(M)
p /2R starts to increase

at approximately the same degree of confinement where Cacr shows the up-turn (see Panel (a) of

Fig. 8). We have also drawn a horizontal dashed line to show the cutoff (Lp/R = 5.95) predicted

by Janssen et al. [11] above which the Rayleigh-Plateau instability sets-in. As shown in Figs. 6

and 8 , viscoelasticity has an effect on the triple break-up of confined droplets. To better quantify

this effect, we measured the size of the “outer” and “inner” daughter droplets. The dimensionless

sizes of such daughter droplets, Rout/R and Rin/R, are shown as a function of De in Panel (c) of

Fig. 8. It is clear from this plot that up to De ≈ 1 droplets break into roughly equal sized daughter

droplets, but for De > 1 there is substantial change, as the size of inner (outer) daughter droplet

starts decreasing (increasing) rapidly by increasing De.

So far, we have kept the finite extensibility L of the polymers fixed. However, as L in-

creases, the polymer dumbbell becomes more extensible and the maximum level of stress at-

tainable is increased. More quantitatively, in a homogeneous steady uniaxial extension, the ex-

tensional viscosity of the polymers increases proportionally to L2 and it becomes infinite in the

limit L2 ≫ 1 [26, 48]. It is also noted that a simple shear flow can always be decomposed into two

parts: an antisymmetric one which provides a rigid-like clockwise rotation of the droplet, and a

symmetric part corresponding to an elongational flow, which tends to elongate and orientate the

droplet along θ = π/4 [65]. Thus, at changing the elongational viscosity of the droplet, we expect

a different response under shear flow. A further hint that the elongational properties of the droplet

are affecting droplet deformation and subsequent break-up is provided by Fig. 9, where we report

the dimensionless droplet elongation Lp/2R as a function of time for several values of Ca and fixed

De = 2.0. Two different values of L2 are considered: L2 = 102 (Panel (a), data already shown in

Fig. 7) and L2 = 104 (Panel (b)). The maximum elongation of the droplet is inhibited by changing

the maximum elongation of the polymers and break-up takes place at a much smaller Capillary

number, Cacr ≈ 0.34. Also, while in the case with L2 = 102 the droplet first retracts and then breaks

with a triple break-up (see also Fig. 6), this does not seem to be the case for L2 = 104. Panel (c)
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FIG. 8: Panel (a): Critical Capillary number for break-up as a function of confinement ratio for systems

with finite extensibility parameter L2 = 102. The viscous ratio between the polymeric droplet phase and the

matrix phase is kept fixed to λ = ηD/ηM = 1. Different Deborah numbers are considered, by letting the

polymer relaxation time τP in Eq. (2) changing in the interval 0≤ τP ≤ 7000 lbu. Black open circles indicate

situations where multiple neckings occur. Panel (b): data analyzed in Panel (a) are reported in terms of the

dimensionless maximum elongation of the droplet L
(M)
p /2R. Panel (c): we plot the dimensionless size of

the outer (Rout/R) and inner (Rin/R) daughter droplets in the triple break-up (see also Fig. 6). Up to De ≈ 1,

droplets break into roughly equal sized daughter droplets, but for De > 1 there is substantial change in the

size of these daughter droplets, as the size of inner (outer) daughter droplet starts decreasing (increasing)

rapidly 20



of Fig. 9 reports Cacr as a function of the Deborah number for the two values of L2 considered.

Up to De = 1, the behaviour of the critical Capillary number is essentially the same, witnessing

an irrelevant role of viscoelasticity. However, for a Deborah above unity, an opposite effect is

found: while for L2 = 102 the critical Capillary number is increasing with the Deborah number, at

much larger L2 the critical Capillary number decreases. The reason for this bifurcation is found

in a different mechanism of break-up, as evidenced by Fig. 10, where we report 3D snapshots

showing deformation and subsequent break-up for the droplets with both L2 = 102 and L2 = 104

in post-critical situations. For L2 = 102 (panels (a)-(c)), the droplet first elongates above the crit-

ical elongation where the Rayleigh-Plateau instability develops and then breaks during retraction

(data already shown in Fig. 9). For L2 = 104 (panels (d)-(f)) the droplet does not elongate, it just

deforms and breaks very similarly to the unconfined case (Panels (a)-(c) of Fig. 3). Consequently,

the critical Capillary number is decreased to Cacr ≈ 0.34, thus becoming much more comparable

with the unconfined value (see Fig. 3). For completeness, we repeated the numerical simulations

in the unconfined case and we could not estimate a significant difference in the critical Capillary

number Cacr at changing the finite extensibility parameter L2. This lends further support to the idea

that a non trivial interplay between confinement and viscoelasticity is at the core of the observed

behaviour for the critical Capillary number.

V. FORCE BALANCE INSIDE THE DROPLET

In Sec. IV we have analyzed the behaviour of confined droplets under shear flows and deter-

mined the associated critical Capillary number. Our simulations have provided easy access to

quantities such as droplet deformation and orientation showing a non trivial interplay between

confinement and viscoelasticity. Indeed, by increasing the confinement ratio, we have seen that

two opposite behaviours can take place, dependently on the finite extensibility parameter of the

polymers. Simulations also allow to monitor the velocity flow field, pressure field and polymers

feedback stress inside the droplet. The goal of the present section is therefore to complement

the results discussed in Sec. IV by directly monitoring the various forces contributions which are

present in Eqs (1) and (2).

To start, in Fig. 11 we show some snapshots of the feedback stress in the shear plane (xz plane at

y = Ly/2) for a Deborah number above unity (De = 2.0) and fixed L2 = 102. Data are the same

reported in panels (g)-(i) of Figs. 3 and 5: the top and bottom rows correspond to the confinement
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FIG. 9: Panel (a): evolution of the dimensionless droplet length after the startup of a shear flow for various

Capillary numbers. We fix both the Deborah number (De = 2.0), the confinement ratio (2R/H = 0.78), and

the finite extensibility parameter L2 = 102 (data already shown in Panel (c) of Fig. 7). Panel (b): same as

Panel (a) with an increased finite extensibility parameter, L2 = 104. The increase of L2 determines different

elongational properties and is affecting the critical Capillary number. Panel (c): the critical Capillary num-

ber is reported as a function of the Deborah number for the two values of L2 considered in Panels (a)-(b).

In all cases, the viscous ratio between the polymeric droplet phase and the matrix phase is kept fixed to

λ = ηD/ηM = 1.
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(a) t/τem=25, 2R/H = 0.78, Ca=0.75,

De=2.0, L2=102

(b) t/τem=75, 2R/H = 0.78, Ca=0.75,

De=2.0, L2=102

(c) t/τem=100, 2R/H = 0.78, Ca=0.75,

De=2.0, L2=102

(d) t/τem=25, 2R/H = 0.78,

Ca=0.35, De=2.0, L2=104

(e) t/τem=75, 2R/H = 0.78,

Ca=0.35, De=2.0, L2=104

(f) t/τem=100, 2R/H = 0.78,

Ca=0.35, De=2.0, L2=104

FIG. 10: Influence of the finite extensibility parameter L2 in the break-up after the startup of a shear flow

with confinement ratio 2R/H = 0.78 and fixed Deborah number De = 2.0. We report the time history of

droplet deformation and break-up including 3 representative snapshots: initial deformation (left column,

t = 25τem); deformation prior to break-up (middle column, t = 75τem); post-break-up frame (right column,

t = 100τem). We use the emulsion time τem (see Eq. (8)) as a unit of time. In all cases, the viscous ratio

between the droplet phase and the matrix phase is kept fixed to λ = ηD/ηM = 1, independently of the

degree of viscoelasticity.

ratios 2R/H = 0.4 and 2R/H = 0.78, respectively. We see that the maximum of the feedback stress

is slightly above the tip of the droplet at the back, and slightly below the tip of the droplet at the

front [24]. Also, the spatial modulation is suggesting that the polymer feedback stress is providing

a resistance against elongation in the direction θ = π/4 with respect to the flow direction, which

echoes the discussion on the elongational viscosity done in the previous section.

To quantitatively understand both the role of confinement and viscoelasticity, in Fig 12 we

show the forces contributions at the stationary state for a droplet with two confinement ratios,

2R/H = 0.4 and 2R/H = 0.78, and finite extensibility parameters, L2 = 102. We quantitatively

compare the Newtonian (De = 0) and the viscoelastic case with Deborah number above unity

(De = 2.0). Data are shown for the same Capillary number Ca = 0.32, corresponding to pre-

critical conditions for the Newtonian (De = 0) droplet in the smaller (2R/H = 0.4) confinement

ratio analyzed. Working in the shear plane (xz plane at y = Ly/2), we project the viscous forces

(Fν = ∇ ·
(

ηA(∇u+(∇u)T )
)

), the pressure forces (Fp = −∇P), and the viscoelastic forces

(Fpoly =
ηP

τP
∇ · [ f (rP)C ], where applicable) of Eq. (1) in the radial direction at a given distance
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(a) t/τem=25, 2R/H = 0.4, Ca=0.33,

De=2.0

(b) t/τem=100, 2R/H = 0.4, Ca=0.33,

De=2.0

(c) t/τem=125, 2R/H = 0.4, Ca=0.33,

De=2.0

(d) t/τem=25, 2R/H = 0.78, Ca=0.47,

De=2.0

(e) t/τem=100, 2R/H = 0.78, Ca=0.47,

De=2.0

(f) t/τem=125, 2R/H = 0.78, Ca=0.47,

De=2.0

FIG. 11: Feedback stress magnitude in the shear plane (xz plane at y = Ly/2) for the viscoelastic data

with De = 2.0 reported in Figs. 3 and 5. We use the emulsion time τem (see Eq. (8)) as a unit of time.

In both confinement ratios, the Capillary number is such that it corresponds to the post-critical condition

for the corresponding Newtonian case (De = 0). Gradients in the polymeric stress are modulated in space

and more pronounced in the confined case, which qualitatively explains the larger increase in the Capillary

number at break-up.

.

(R/10 lbu) from the interface. The force balance is then studied as a function of the angular

position θ (see Fig 1) from the flow direction. In the Newtonian case (panels (a)-(b)) the pressure

forces are well balancing with the viscous forces and the structure of the angular modulation of

the forces is quite similar in the two confinement ratios analyzed. The negative radial peak of

the pressure forces is located in correspondence of the major semi-axis of the droplet (indicated

with a dotted line) where the curvature is larger. We remark, however, that elongated droplets are

stabilized by confinement, and therefore break at a larger Capillary number with a triple break-

up. The structure of the force balance is changed by the introduction of the viscoelastic stresses

(Panels (c)-(d)). In order to properly analyze these figures, one has to remark that viscoelastic

forces provide a contribution to the shear forces. This happens in simple shear flows and also

for weak viscoelasticity [26, 58], where we expect that the viscoelastic stresses closely follow the

viscous stresses, i.e.
ηP

τP
∇ · [ f (rP)C ] ≈ ∇ ·

(

ηP(∇u+(∇u)T )
)

. Obviously, this cannot be the

case when viscoelasticity is enhanced and the Deborah number is above unity. For this reason, to
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better visualize the importance of the viscoelastic forces in comparison with the Newtonian case,

we have defined the effective force (Feff) as

Feff =
ηP

τP
∇ · [ f (rP)C ]−∇

(

ηP(∇u+(∇u)T )
)

. (11)

Since all our simulations are performed with the same shear viscosity inside the droplet, the ef-

fective force gives us an idea of how much the viscoelastic system differs from the corresponding

Newtonian system with the same viscosity. If present (Feff 6= 0), this change is solely attributed to

viscoelasticity. The effective force for the cases with L2 = 102 (panels (c)-(d)) is peaked in corre-

spondence of the droplet semi-axes, with a negative (positive) radial contribution along the major

(minor) semi-axis. This supports the discussion done in the previous section, in that the viscoelas-

tic forces provide a resistance against elongation in the direction θ = π/4, although the peaks

appear in correspondence of slightly different angles than π/4 as the droplet is already deformed

and deviates from an ellipsoidal shape, especially in the larger confinement ratio. To quantify the

role of the finite extensibility parameter L2 in the force balance, we repeated the analysis shown

in Fig. 12 for a fixed Capillary number (Ca = 0.32), fixed Deborah number (De = 2.0), fixed con-

finement ratio (2R/H = 0.78), and for different values of the finite extensibility parameter ranging

in the interval 102 ≤ L2 ≤ 104. Results are reported in Fig. 13. It is clear that as L2 increases, poly-

mer forces develop along the orientation axes of the droplet, preventing the droplet from being

elongated. In particular, a net positive radial contribution along the minor semi-axis starts growing

at L2 = 103 with increasing magnitude at increasing L2.

VI. CONCLUSIONS

The deformation and break-up of Newtonian/viscoelastic droplets in systems with a Newtonian

matrix have been studied in confined shear flow. We have proposed numerical simulations based

on a hybrid algorithm combining lattice-Boltzmann models (LBM) and finite differences schemes,

the former used to model the Navier-Stokes equations, and the latter used to model the kinetics

of polymers using the constitutive equations for finitely extensible non-linear elastic dumbbells

with Peterlin’s closure (FENE-P). Simulations provide easy access to quantities such as droplet

deformation and orientation as well as the velocity flow field, viscous and viscoelastic stresses,

and pressure field. Various messages are conveyed by our analysis. It is evident that droplet vis-

coelasticity has a stabilizing effect on droplet break-up [16–25]. The effect is larger in presence of
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(d) 2R/H = 0.78, Ca=0.32, De=2.0, L2 = 102

FIG. 12: We report the forces contributions resulting from Eq. (1) in the shear plane (xz plane at y =

Ly/2). The Capillary number is fixed, Ca = 0.32, corresponding to steady-states for all the cases studied.

We project the viscous forces (Fν ), the pressure forces (Fp), and the viscoelastic forces (Fpoly, where

applicable) of Eq. (1) in the radial direction at a given distance (R/10 lbu) from the interface. The force

balance is then studied as a function of the angular position θ (see Fig 1) from the flow direction. Left panel

figures are related to a confinement ratio 2R/H = 0.4, whereas the right panel ones refer to 2R/H = 0.78.

Different Deborah numbers are considered. Panels (a)-(b) show the force balance for the Newtonian case

(De = 0); Panels (c)-(d) show the viscoelastic case with De = 2.0 and L2 = 102. The vertical dashed lines

show the orientation angle of the droplet, computed as the one of the equivalent ellipsoid. All forces are

reported in lbu (LBM units).

a larger confinement ratio. In particular, in agreement with some recent experiments [31], we have

found that the formation of multiple neckings, which is acknowledged as a distinctive feature of

confined break-up [11, 14], is also affected by the presence of viscoelasticity: it visibly changes

as soon as the ratio of fluid relaxation time to droplet emulsion time (i.e. the Deborah number) be-

comes of the order of 1. A non trivial interplay between confinement and the maximum elongation
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(c) 2R/H = 0.78, Ca = 0.32, De=2.0,

L2 = 5×103
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(d) 2R/H = 0.78, Ca = 0.32, De=2.0, L2 = 104

FIG. 13: We repeat the analysis of Fig. 12 for different values of the finite extensibility parameter L2,

by keeping the Deborah number fixed to De = 2.0 and the Capillary number fixed to Ca = 0.32. The

confinement ratio is kept fixed to 2R/H = 0.78. All forces are reported in lbu (LBM units).

of the polymers has also emerged. With the use of numerical simulations we had the opportunity

to change separately the viscous ratio in the Newtonian phases, the maximum extension of the

polymers, and the degree of viscoelasticity, thus allowing for a systematic analysis of the vis-

coelastic effects while keeping the shear viscosity of the droplet fixed to the reference Newtonian

case. In particular, by increasing the finite extensibility of the polymers, it is observed that the

resistance against elongation may be enough to prevent both droplet elongation and subsequent

triple break-up, thus altering significantly the critical Capillary number for viscoelastic droplets

under confinement.

For future investigations, it is surely warranted a complementary study to highlight the role of

matrix viscoelasticity on the break-up properties of confined droplets. Also, as an upgrade of

complexity, it would be extremely interesting to study other more structured flows in confined ge-
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ometries, like flow-focusing devices with viscoelastic phases [66, 67]. Complementing the exper-

imental results with the help of numerical simulations would be of extreme interest. Simulations

can indeed be used to perform in-silico comparative studies, at changing the model parameters, to

shed lights on the complex properties of viscoelastic flows in confined geometries.
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Appendix A: Hybrid Lattice Boltzmann Models (LBM) - Finite Difference Scheme for dilute Poly-

meric solutions

In this appendix we report the essential technical details of the numerical scheme used. We

refer the interested reader to a dedicated paper [50] where all the technical details are reported and

the model benchmarked by characterizing the rheological behaviour of dilute homogeneous solu-

tions in various configurations, including steady shear flow, elongational flows, transient shear and

oscillatory flows. The LBM equations evolve in time the discretized probability density function

fζ ℓ(x, t) to find at position x and time t a fluid particle of component ζ = A,B (the two com-

ponents indicate the droplet (D) or the matrix (M) Newtonian phases in Eqs. (1) and (3)) with

velocity cℓ according to the updating scheme

fζ ℓ(x+cℓ, t +1)− fζ ℓ(x, t) = ∑
j

Lℓ j( fζ j − f
(eq)
ζ j

)+∆
g

ζ ℓ
(A1)

where the lattice time step ∆t has been set to a unitary value for simplicity. The (linear) collisional

operator in the rhs of Eq. (A1) expresses the relaxation of the probability distribution function

towards the local equilibrium f
(eq)
ζ ℓ

. The expression for the equilibrium distribution is a result of

the projection onto the lower order Hermite polynomials [68, 69] and the weights wℓ are a priori

known through the choice of the quadrature

f
(eq)
ζ ℓ

= wℓρζ

[

1+
u ·cℓ

c2
s

+
uu : (cℓcℓ−1)

2c4
s

]

(A2)
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wℓ =























1/3 ℓ= 0

1/18 ℓ= 1 . . .6

1/36 ℓ= 7 . . .18

, (A3)

where cs is the isothermal speed of sound (a constant in the model) and u is the fluid velocity. Our

implementation features a D3Q19 model with 19 velocities

cℓ =























(0,0,0) ℓ= 0

(±1,0,0),(0,±1,0),(0,0,±1) ℓ= 1 . . .6

(±1,±1,0),(±1,0,±1),(0,±1,±1) ℓ= 7 . . .18

. (A4)

The operator Lℓ j in Eq. (A1) is the same for both components and is constructed to have a diagonal

representation in the so-called mode space: the basis vectors ek (k = 0, ...,18) of mode space

are constructed by orthogonalizing polynomials of the dimensionless velocity vectors [68, 69].

The basis vectors are used to calculate a complete set of moments, the so-called modes mζ k =

∑ℓekℓ fζ ℓ (k = 0, ...,18). The lowest order modes are associated with the hydrodynamic variables.

In particular, the zero-th order moment gives the densities for both components, ρζ = mζ 0 =

∑ℓ fζ ℓ, with the total density given by ρ = ∑ζ mζ 0 = ∑ζ ρζ . The next three moments m̃ζ =

(mζ 1,mζ 2,mζ 3), when properly summed over all the components, are related to the velocity of the

mixture

u≡
1

ρ ∑
ζ

m̃ζ +
g

2ρ
=

1

ρ ∑
ζ

∑
ℓ

fζ icℓ+
g

2ρ
. (A5)

The other modes are the bulk and the shear modes (associated with the viscous stress tensor), and

four groups of kinetic modes which do not emerge at the hydrodynamic level [68, 69]. Since the

operator Lℓ j is diagonal in mode space, the collisional term describes a linear relaxation of the

non-equilibrium modes

m∗
ζ k = (1+λk)mζ k +m

g

ζ k
(A6)

where the ∗ indicates the post-collisional mode and where the relaxation frequencies −λk (i.e. the

eigenvalues of −Lℓ j) are related to the transport coefficients of the modes. The term m
g

ζ k
is related

to the k-th moment of the forcing source ∆
g

ζ ℓ
associated with a forcing term with density gζ . The

term g=∑ζ gζ in Eq. (A5) refers to all the contributions coming from internal and external forces.

While the forces have no effect on the mass density, they transfer an amount gζ of total momentum

to the fluid in one time step. The forcing term is determined in such a way that the hydrodynamic
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Eqs. (A9)-(A10) are recovered, and can be written as [70]

∆
g

ζ ℓ
=

wℓ

c2
s

(

2+λM

2

)

gζ ·cℓ+
wℓ

c2
s

[

1

2c2
s

G : (cℓcℓ− c2
s1)

]

, (A7)

where the tensor G is defined as

G=
2+λs

2

(

ug+(ug)T −
2

3
1(u ·g)

)

+
2+λb

3
1(u ·g). (A8)

In the above equations we have used explicitly the relaxation frequencies of the momentum (−λM),

bulk (−λb) and shear (−λs) modes. Using the LBM we are able to reproduce the continuity

equations and the Navier Stokes equations for the total momentum

∂tρζ +∇ · (ρζu) =∇ ·Dζ , (A9)

ρ [∂tu+(u ·∇)u] =−∇p+∇

[

ηs

(

∇u+(∇u)T −
2

3
1(∇ ·u)

)

+ηb1(∇ ·u)

]

+g (A10)

where ηs, ηb are the shear and bulk viscosities, respectively. In Eq. (A10), p = ∑ζ pζ = ∑ζ c2
s ρζ

is the internal (ideal) pressure of the mixture. The quantity Dζ represents the diffusion flux of one

component into the other

Dζ = µ

[(

∇pζ −
ρζ

ρ
∇p

)

−

(

gζ −
ρζ

ρ
g

)]

(A11)

with µ a mobility parameter regulating the intensity of such diffusion flux. As for the internal

forces, we will use the “Shan-Chen” model [59] for multicomponent mixtures

gζ (x) =−G ρζ (x)∑
ℓ

∑
ζ ′ 6=ζ

wℓρζ ′(x+cℓ)cℓ ζ ,ζ ′ = A,B (A12)

where G is a parameter that regulates the interactions between the two components. The sum in

Eq. (A12) extends over a set of interaction links coinciding with those of the LBM dynamics (see

Eq. (A4)). When the coupling strength parameter G is sufficiently large, demixing occurs and

the model can describe stable interfaces with a surface tension. The resulting physical domain is

partitioned into two different phases, each with a majority of one of the two components, with

the interface between the two phases described as a thin layer where the fluid properties change

smoothly. The effect of the internal forces can be recast into the gradient of the pressure tensor

P (int) [71], thus modifying the internal pressure of the model, i.e. P = p1+P (int), with

P (int)(x) =
1

2
G ρA(x)∑

ℓ

wℓρB(x+cℓ)cℓcℓ+
1

2
G ρB(x)∑

ℓ

wℓρA(x+cℓ)cℓcℓ (A13)
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Upon Taylor expanding the expression (A13), we get a bulk pressure contribution P = p +

c2
sG ρAρB (which is the bulk pressure appearing in Eqs. (1) and (3)) and a contribution proportional

to the density gradients, which are responsible for the surface tension at the non ideal interface.

A proper tuning of the density gradients in contact with the wall allows for the modelling of the

wetting properties. In all the simulations described in this paper, the resulting contact angle for a

droplet placed in contact with the solid walls is θwet = 90◦ (i.e. neutral wetting). The relaxation fre-

quencies of the momentum, bulk and shear modes in (A1) are related to the transport coefficients

of hydrodynamics as

µ =−

(

1

λM
+

1

2

)

ηs =−ρc2
s

(

1

λs
+

1

2

)

ηb =−
2

3
ρc2

s

(

1

λb

+
1

2

)

. (A14)

For the numerical simulations presented we have used G = 1.5 lbu in (A12) corresponding to a

surface tension σ = 0.1 lbu and associated bulk densities ρA = 2.0 lbu and ρB = 0.1 lbu in the

A-rich region (see Fig. 1). The relaxation frequencies in (A14) are such that λM = −1.0 lbu and

λs = λb, which reproduces the viscous stress tensor given in Eqs. (1) and (3). The viscous ratio of

the LBM fluid is changed by letting λs depend on space

−ρc2
s

(

1

λs
+

1

2

)

= ηs = ηA( f+(φ))+ηB( f−(φ)) (A15)

where φ = φ(x) = (ρA(x)−ρB(x))
(ρA(x)+ρB(x))

represents the order parameter. The functions f±(φ) are chosen

as

f±(φ) =

(

1± tanh(φ/ξ )

2

)

(A16)

which allows to recover, in the two bulk phases, the Newtonian part of the Navier Stokes equa-

tions reported in Eqs. (1) and (3) with shear viscosities ηA and ηB. The smoothing parameter ξ

is chosen sufficiently small so as to recover a good matching with the analytical prediction of the

droplet deformation (See Fig. 2).

As for the polymer evolution given in Eqs. (2) and (4), we are following the two Refer-

ences [72, 73] to solve the FENE-P equation. We maintain the symmetric-positive-definite nature

of conformation tensor at all times by using the Cholesky-decomposition scheme [72, 73]. The

polymer stress f (rP)C is computed from the FENE-P evolution equation and used to change the

shear modes of the LBM [50, 68, 69]. In the spirit of the diffuse interface models proposed by Yue

et al. [39], the feedback of the polymers is modulated in space with the function f+(φ)

ρ [∂tu+(u ·∇)u] =−∇P +∇
[

(ηA f+(φ)+ηB f−(φ))(∇u+(∇u)T )
]

+
ηP

τP
∇[ f (rP)C f+(φ)]

(A17)
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which recovers Eq. (1) in the droplet phase with a Newtonian matrix phase. Consistently, if the

polymer feedback stress is modulated in space with the function f−(φ), we recover a case with

matrix viscoelasticity and a Newtonian droplet (see Sec. III).
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