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Abstract: Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral

information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus

aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method

using ncRGB images. Using the data from the agronomic research trial for maize and breeding

research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model,

Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral

image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral

image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs,

ensuring the model can use widely available ncRGB images as input. The integrated loss function

of mean relative absolute error (MRAEloss) and spectral information divergence (SIDloss) were most

effective during the building of both models, while models using the MRAEloss function were more

robust towards variability between growing seasons and species. The reliability of the reconstructed

MSIs was demonstrated by high coefficients of determination compared to ground truth values,

using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using

“reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images,

were illustrated by their higher capabilities in differentiating three levels of irrigation treatments

on maize plants. This study emphasizes that the performance of MSI reconstruction models could

benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The

ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will,

in particular, promote the application for plant phenotyping in precision agriculture.

Keywords: multispectral image reconstruction; natural color RGB image; deep learning; loss function

optimization; precision agriculture

1. Introduction

Monitoring plant growth status during the whole growing season is an important
objective targeted by multispectral imaging in both breeding and precision agriculture [1,2].
In multispectral images (MSIs), each pixel is composed of reflectance or radiance from
multiple discrete wavebands—providing additional spectral information regarding the
chemical composition of an object compared to natural color RGB (ncRGB; red, green, blue)
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images. MSIs can be regarded as a subset of hyperspectral images (HSIs) [3]. With the
advancement of sensing technology and data analysis methods, MSIs and HSIs are widely
recognized as indispensable tools for continuous and non-destructive monitoring and
management in a wide range of fields. However, the broad application of spectral imaging
techniques is still restrained due to the higher cost of multi/hyper-spectral sensors and the
lower spatial resolution compared to conventional RGB sensors [4,5]. MSI super-resolution
through deep learning has become a promising method to recover additional spectral
information from RGB images without using more expensive MSI or HSI hardware [6].
MSIs have been shown to be superior in classification tasks compared to corresponding RGB
images [7,8]. Optimal waveband selection has been shown to improve the performances
of model predictions [9,10]. Furthermore, high spatial resolution hyperspectral images
(HR-HSIs) performed better than low spatial resolution ones [11]. Therefore, more readily
accessible spectral information beyond the classical RGB bands, preferably at the high
spatial resolution, is urgently required to expand the field of application of these techniques.

Recently, ncRGB images have been identified as one possible resource for generating
HR-MSIs through deep learning approaches [12,13] because they are widely available
worldwide (as captured with consumer-level digital cameras) and generally high in spatial
resolution (≥12 million pixels) compared to standard MSIs (~one million pixels, e.g.,
MicaSense RedEdge™ multispectral band sensor). In contrast, true-color RGB images
(tcRGB, i.e., stacked R, G and B bands taken by MSI [14–16]), as frequently used for MSI
visualization [17–19], are generally considered over-saturated (Figure 1) compared to
ncRGB images [14,20].

Higher-dimensional hyper-/multispectral information recovery from lower spectral-
dimensional ncRGB space is ill-posed in practice [14,21]. Various methods have been
proposed to reconstruct HSIs from a single ncRGB image [6,22]. In order to build end-
to-end fully supervised models enabling reconstructing MSIs from ncRGB images, the
training image pairs (MSIs and ncRGB) have to be established first. The preparation of
ncRGB images through conversion directly from MSIs is a more natural approach, as image
registration between MSIs and ncRGB images (taken by different cameras) is a complicated
task itself and can thus be bypassed [23].

Currently, the generation of ncRGB from MSIs rather than hyperspectral images (HSIs)
is hampered because there is a standard approach using well-calibrated spectral response
function (SRF) for HSIs while a similar SRF is not available for MSIs [14]. SRF is used to
project hyperspectral information to three-dimensional RGB values in natural color through
mimicking human perception [24]. Traditional ways of searching for a new SRF were based
on hand-crafted priors and strict assumptions [14,25]. In contrast, the potential of deep
learning models to directly map MSIs to high-quality ncRGB images through finely tuning
non-linear SRFs has not been explored yet [14].

While deep learning is one of the most promising approaches, a bottleneck has been
reached to improve deep learning’s performances in hyperspectral information recovery [6].
Specifically, a refined model architecture could only slightly improve the reconstruction
accuracy after several years of research. Other components within deep learning should
thus be explored regarding their ability to improve model performances—taking advantage
of existing architectures. In particular, loss function plays a key role in training deep
learning models, measuring the difference between ground truth and predicted values in
relative, absolute, squared or angle forms [6]. Two major loss functions, mean squared error
(MSEloss) and mean relative absolute error (MRAEloss), have been used widely during the
training of models for reconstructing HSIs from single RGB images [6]. However, models
trained with both above mentioned loss functions, measuring magnitude differences, still
suffer from extensive performance fluctuations in real-world applications [26–28]. In
contrast, loss functions such as spectral angle mapper (SAMloss) and spectral information
divergence (SIDloss), measuring shape similarities between reflectance, can potentially be
used to reduce performance variance of models which were trained with magnitude loss
functions only [26,29,30].
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Taking the different while complimentary properties of these two types of loss func-
tions (i.e., directionless/directional) into consideration, it is tempting to have a composite
loss function that can simultaneously measure the differences in magnitude and shape
dissimilarities—providing the model an overall “learning direction” during training. Com-
bining two or more algorithms has been shown to feature outstanding performances in
material classification, pointing towards the superiority of composite measures of spectra
compared to individual ones [31–33]. For example, [34] combined both the shape and
magnitude of spectra to avoid the limitation of using SAMloss in HSI classification. Unfor-
tunately, models using composite loss functions during training for spectral reconstruction
are still rare in precision agriculture.

This study developed and validated a novel method for reconstructing MSIs using
ncRGB images of maize and rice plots captured by UAVs. We improved the state-of-the-
art deep learning structure HSCNN-R by tuning the number of residual blocks inside
the architecture for feature extraction and different loss functions to optimize the model
convergence. The enhanced models were used to generate ncRGB images from MSIs
and subsequently reconstruct MSIs from ncRGB images. The major contributions can
be summarized as follows. First is the derivation of the mapping function converting
tcRGB to ncRGB images through training Model-TN based on a benchmark drone HSIs
dataset [35]. The mapping function ensured RGB images used for training and future
predictions were of a more similar color space, minimizing the performance drop of the
RGB color space dependent on MSI reconstruction models. Second is the involvement of
combined loss functions in regulating the model convergence. The combined loss functions
with complementary properties further improved the model performance. Third, we tested
the MSI reconstruction models in real-world experiments. The end-to-end supervised
deep learning model (Model-NM) was built based on ncRGB-Con images and MSIs of the
maize experiment in 2018. The performances of the Model-NM in recovering multispectral
information from RGB images were tested on contrasting testing datasets (i.e., maize data
2019, and rice data 2018) from our experiments. The fidelities of the reconstructed MSIs for
phenotyping applications were demonstrated by comparing the calculated Normalized
Difference Vegetation Index (NDVI) of reconstructed MSIs from standardized ncRGB
images and ground truth MSIs using different growth stages, years and/or crop species.
The potential benefits of using NDVI calculated from reconstructed MSIs over Triangular
Greenness Index (TGI) based on RGB images for discriminating differently irrigated maize
plants were explored to illustrate the application potential of the novel image reconstruction
technique in real-world tasks in precision agriculture.

The remainder of this article is organized as follows. The Materials and Methods
section describes how different data were collected and used to build different models.
The Results section shows the major outcomes from different analyses. The Discussion
section mainly discusses the major outcomes of the study and how they were affected
by different analyses. The Conclusion section summarizes the study and predicts future
research direction on this research topic.

2. Materials and Methods

2.1. tcRGB and ncRGB Image Acquisition from Hyperspectral Images

The true-color RGB (tcRGB) and the corresponding converted, natural color RGB
(ncRGB-Con) images, used to build Model-TN (see below), were derived from an HSI
benchmark dataset of WHU-Hi-Honghu HSI [35]. The benchmark HSI dataset contains
270 bands from 400 to 1000 nm with a ground sampling distance of about 0.043 m. The
tcRGB image was composed of the 33rd, 72nd and 119th bands corresponding to ~475 nm,
561 nm and 668 nm in HSI. The ncRGB images were converted from the HSIs following
the procedure described in [14], excluding radiance conversion. In brief, the CIE1934 color
response function was used to convert hyperspectral reflectance to a tristimulus vector
XYZ and then subjected to linear transformation, non-linear brightness adjustment and
finally a threshold of 10−4 was applied to improve the image contrast.
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2.2. UAV Image Acquisition of MSI and ncRGB Images from Maize and Rice Fields

Maize (Zea mays L.) plants of the same cultivar were grown on 30 subplots in the field
in 2018 (Figure S1a) and 2019 (Figure S1b) in India (N17◦19′27.22”, E78◦23′55.71”), see [36]
for details. Three different irrigation levels were set, i.e., 60% (level 1), 80% (level 2) and
120% (level 3) of cumulative pan evaporation were applied at the subplot level throughout
the growing season. Each treatment was replicated three times and randomly distributed
as subplots (90) in the field.

In 2018, 160 rice (Oryza sativa L.) cultivars, with two replicates each, were randomly
distributed in subplots (320) in the field (Figure S1c) and cultivated following common
agronomic practices in India (N17◦19′21.55”, E78◦24′35.01”).

In both experiments, MSIs and ncRGB images (ncRGB-Cam) were collected simulta-
neously by different cameras onboard. For MSI acquisition, a MicaSense RedEdge multi-
spectral camera (MicaSense Inc., Seattle, WA, USA) [37] covering 5 wavebands, blue (475
nm, 32 nm bandwidth), green (560 nm, 27 nm bandwidth), red (668 nm, 14 nm bandwidth),
near-infrared (840 nm, 57 nm bandwidth), and red edge (717 nm, 12 nm bandwidth) was
mounted on an Inspire-1 Pro (DJI, Shenzhen, China) unmanned aerial vehicle (UAV). The
onboard RGB camera was Zenmuse X5 (DJI, Shenzhen, China) with a resolution of 16.0
megapixels and ISO range of 100 to 25,600. The flight was set in autopilot mode, flight
speed and altitude were 4 km h−1 and 10 m above ground level, respectively. Eighty
percent overlap between two consecutive images, containing 1296 × 960 pixels in each
band, were realized. Flights were conducted every week around 11 a.m. throughout the
growing seasons. Subsequently, specific days of the year (DOY) representing four different
growth stages of maize (DOY 303, 313, 323 and 354) and rice (DOY 233, 270, 299 and 328)
in 2018, and three different growth stages of maize (DOY 313, 326 and 354) in 2019 were
selected for further analysis. Orthomosaics of the entire fields were produced per flight by
Agisoft Metashape software [38].

2.3. Model Selection, Training, Validation and Testing

Residual block, which has been used in HSCNN-R [13] previously and shown excellent
performance in HSI reconstruction, was used as basic architecture and the number of
residual blocks was tuned based on the task complexity in this study. There were 16
residual blocks included in the original architecture which was built to map 3-channel RGB
images to 31-channel HSIs for HSI reconstruction. We adapted the output channel number
to 3 or 5 based on the number of channels of output images in our study. It has been shown
in previous studies that the number of residual blocks was redundant [6,39]. The number
of residual blocks was further tuned in this study as well. One residual block was finalized
for the ncRGB-Con image production model (Model-True to Model-Natural color image
(Model-TN), see below) while three blocks were for MSI reconstruction models (Model-
Natural to Multispectral image (Model-NM), see below). The Model-TN (Figure S2) was
trained to convert tcRGB images of maize and rice crops to ncRGB ones. Model-NM (Figure
S3) was used to recover the multispectral information of the HR-RGB images of maize
and rice. HR images are advantageous as the boundaries between different objects can be
more clearly set and smaller objects can be more distinguishable, contributing to easier
pixel-level semantic segmentation [40]. Contrary to HR features rich in spatial details such
as points, lines and local edges, high-level features provide abstract semantic information
such as cars, trees and differently irrigated crops [41–43]. In order to manage semantic
classification tasks well, HR features and high-level features have to be combined [42]. The
flowchart of the whole analysis is also supplemented as Figure S4.

Multispectral radiance from the cameras was converted to reflectance based on the
known reference panel provided by (MicaSense Inc., Seattle, WA, USA) [37]. RGB images
were color corrected with a white reference panel placed inside the field. The RGB images
of both benchmark and field experiments were transformed to a range of 0–1 while multi-
spectral images, with reflectance already in the range of 0–1, were used. In order to increase
the robustness of both models towards different brightness levels, a random scaling factor
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(0.1–1.9) was added to each pixel of both input images and output prediction during train-
ing [21]. For model training, the batch size was set as 1 and the optimizer Adammax [44]
with settings of β1 = 0.9, β2 = 0.999, and eps = 10−8 was selected as default. The weights
were initialized through HeNormal initialization [45] in each convolutional layer. The
initial learning rate was set at 10−4 and the learning rate decreased by 20% every 5 epochs
if the validation loss failed to decrease further. The training of models with composite loss
functions is initialized from the weights of trained models with corresponding magnitude
loss functions with the same initial learning rate (10−4). All models were trained until no
further decrease in validation loss occurred over successive 200 epochs.

The quality of a reconstructed spectrum can be quantified in both magnitude and
shape differences when compared to the ground truth one. Three different loss functions
were used to either measure magnitude differences, i.e., mean square error (MSEloss; Equa-
tion (1); [6,46]) or mean relative absolute error (MRAEloss; Equation (2); [47]), or shape
dissimilarities, i.e., spectral information divergence (SIDloss; Equation (3); [26]). Both
MSEloss and MRAEloss functions are commonly used while prone to extreme reflectance
values [25]. SIDloss has been shown to effectively quantify spectral shape differences re-
gardless of magnitude ones [26]. In addition, two composite loss functions combined
measurements of magnitude and shape dissimilarity, i.e., MSE-SIDloss and MRAE-SIDloss.
Different weights (W) were assigned to each subcomponent of the composite loss functions:
Wmse:Wsid equaled 0.333 and Wmrae:Wsid was 0.0667 throughout the training process to
ensure similar contributions to the final loss. The effectiveness of the five different loss
functions was compared during model training. Trained Model-TN and Model-NM with
the smallest validation losses were selected for further predictions. Three evaluation met-
rics corresponding to the loss functions, i.e., MRAEev (Equation (4)), RMSEev (Equation
(5)), and SIDev (Equation (6)), were used to evaluate models’ performance.
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(i) and Ire

(i) represent the ith pixel of the ground truth and reconstructed MSIs, I,
respectively.

For Model-TN, original-sized tcRGB and ncRGB-Con images were split into 5 sections:
4 of those were randomly selected for training and the other for validation. The trained
model with the best performance was then used for transforming tcRGB images, derived
from MSIs of field experiments, to ncRGB-Con images.

During the training of Model-NM, all images of maize collected in 2018 were used
for model building, while maize images from 2019 and rice images from 2018 were used
for testing—allowing for an independent test of model performance and transferability.
Training images were fragmented into 152 patches (size: 512 × 512 pixels) of which 2/3
were used for training and 1/3 for initial validation. These validated models, trained
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with different loss functions, were subsequently used to reconstruct MSIs of independent
testing datasets and further evaluated through three metrics, MRAEev, RMSEev and SIDev

at subplot level (Figure S1). The cloud service Google Colaboratory (Colab Pro), 25GB
RAM with Python 3 runtime served as the major platform for all model training, validation
and testing.

2.4. Ground Truthing of Reconstructed MSIs Using NDVI, and Comparison with
RGB-Derived TGI

To illustrate the quality of MSIs reconstructed from standard ncRGB-Con images,
the ncRGB-Cam images of maize and rice from the year 2018 were color matched to
corresponding ncRGB-Con images rendered from MSIs, before being used to reconstruct
high spatial resolution MSIs. Mutual information (MI) is the Kullback divergence between
the joint probability density function (PDF) of observed values over local patches of the two
images and the product of the marginal PDFs of them [48]. MI was calculated to compare
similarities between ncRGB-Con and ncRGB-Cam image either before or after histogram
color matching; MI reaches its maximum of one when two images are the same. The quality
of the reconstructed MSIs was further assessed through comparisons between calculated
NDVI [49] of subplots of MSIs reconstructed from ncRGB-Cam-Con images. Because only
plants were of interest when comparing the NDVIs, a threshold of 0.6 was applied to filter
out the soil and shadows. The average NDVI of each subplot was calculated and linear
regression was used to compare reconstructed and ground truth values.

The NDVIs of reconstructed MSIs from models built on both ncRGB-Cam and tcRGB
images were compared so as to highlight the superiority of the intermediate step of natural
color conversion from tcRGB to ncRGB-Con.

In order to show the advantages of reconstructed MSIs over indexes derived from
ncRGB-Cam, the TGI was calculated based on the color-matched ncRGB-Cam images of
maize [50]. The ability of either MSI-derived NDVI or ncRGB-Cam-derived TGIs to reliably
separate three levels of irrigation treatments in maize was compared. NDVIs and TGIs
of differently irrigated maize plants within each sampling date in 2018 were compared
through a permutation test [51] in R [52].

3. Results

3.1. Natural Color Image Rendering

A distinct visual difference was noticed between ncRGB-Con (Figure 1a,d) and tcRGB
image (Figure 1b,e) aerial images of maize and rice canopies. The vector of pixel values
in corresponding images were distinct in both direction and magnitude (Figure 1c,f). The
difference of selected pixels between tcRGB and ncRGB images (see insets in Figure 1)
as evaluated by MRAEev, RMSEev and SIDev were 0.233, 0.0934 and 0.0178 for maize,
respectively, and 0.932, 0.100 and 0.0701 in rice, respectively.

3.2. Model Convergence with Different Loss Functions

Both Model-TN and Model-NM, optimized by five different loss functions, had similar
performance rankings based on three evaluation metrics (Tables 1 and 2). Models with
MRAE-SIDloss generated minimum total losses of 0.0582 and 0.0571, respectively, compared
to models with the other four utilized loss functions. Models with MRAE-SIDloss also
predominantly produced the minimum values in each individual evaluation metric, except
RMSEev = 0.0127 from Model-TN with MRAEloss with a marginal difference of 0.0001. The
second-best loss function was MRAEloss, with a performance close to models regulated by
MRAE-SIDloss; the total error differences were marginal as well, i.e., 0.000400 and 0.00310 in
Model-TN and Model-NM, respectively. Models with MSE-SIDloss produced errors of 0.258
(Model-NM) and 0.0636 (Model-TN), both being lower than the corresponding models with
MSEloss while greater than those of models with SIDloss. Both model types with SIDloss

held much higher MRAEev and RMSEev while featuring comparable SIDev compared with
models optimized by other loss functions.
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Figure 1. Converted natural color RGB (ncRGB-Con; (a,d)) and true-color RGB (tcRGB; (b,e)) aerial

images, and values of selected pixels (c,f) of maize (a–c) and rice (d–f). The location of pixels is

marked by a blue dot at the center of the red box in each RGB image.

Table 1. Evaluation of Model-TN (Model-True to Model-Natural color image) with five different loss

functions (MRAEloss, MSEloss, SIDloss, MRAE-SIDloss and MSE-SIDloss) by three evaluation metrics

(MRAEev, RMSEev and SIDev); see text for details. Model-TN was built to convert tcRGB images

from MSIs to ncRGB-Con images of a benchmark dataset. Epochs and time till convergence are given.

Model-TN

Loss Function
Evaluation Metric

MRAEev RMSEev SIDev Total Epochs Time (s)

MRAEloss 0.0432 0.0127 0.00266 0.0586 7965 3510
MSEloss 0.0566 0.0152 0.00457 0.0764 3724 248
SIDloss 0.4670 0.0878 0.00394 0.5590 4534 512

MRAE-SIDloss 0.0428 0.0128 0.00261 0.0582 8660 3723
MSE-SIDloss 0.0476 0.0130 0.00302 0.0636 3729 250

The minimum values from different evaluation metrics are highlighted in bold.

Table 2. Evaluation of Model-NM (Model-Natural color to Multispectral image) with five different

loss functions (MRAEloss, MSEloss, SIDloss, MRAE-SIDloss and MSE-SIDloss) by three evaluation

metrics (MRAEev, RMSEev and SIDev); see text for details. Model-NM reconstructed MSIs from

ncRGB-Con images of the 2018 maize experiment for model validation. Epochs and time to conver-

gence are given.

Model-NM

Loss Function
Evaluation Metric

MRAEev RMSEev SIDev Total Epochs Time (s)

MRAEloss 0.0353 0.0188 0.00606 0.0602 2777 22,969
MSEloss 0.0534 0.0209 0.0119 0.0862 2269 20,952
SIDloss 1.1180 0.1070 0.00564 1.2310 2995 35,298

MRAE-SIDloss 0.0344 0.0173 0.00541 0.0571 4642 40,634
MSE-SIDloss 0.2250 0.0266 0.00614 0.2580 4950 40,461

The minimum values from different evaluation metrics are highlighted in bold.

Models of Model-TN trained with MSEloss and MSE-SIDloss loss functions had a similar
convergence speed, with 3724 and 3729 epochs in 248 and 250 s, respectively (Table 1).
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Using other loss functions resulted in (considerable) more epochs and time. Models of
Model-NM with both MRAEloss and MSEloss loss functions converged at a similar speed
of 22,969 and 20,952 s (Table 2), while it took 35,298 s for final convergence when using
SIDloss. Noticeably, the two models with composite loss functions consumed much more
time compared to those trained with individual loss functions.

3.3. Universality of Models Trained with Different Loss Functions

The model performances on the maize testing datasets, evaluated at subplot levels,
varied greatly with different loss functions (Figure 2a–c). Models with MRAEloss featured
the best performances on testing maize data—indicated by low evaluation values (0.0600,
0.0237 and 0.00348 in MRAEev, RMSEev and SIDev, respectively). In contrast, all models
trained with SIDloss had significantly higher magnitude errors (MRAEev = 0.322, RMSEev

= 0.0620) compared with other loss functions in maize testing data; nevertheless, they
reached a similar level of SIDev compared to the best performing models. The models with
the composite loss function MRAE-SIDloss had comparable errors in both evaluations of
MRAEev and SIDev as models optimized by MRAEloss.

 

Figure 2. Evaluation of reconstructed MSIs of maize (2019, subplot level, (a–c)) and rice (2018, subplot

level, (d–f)) by five loss functions (MRAEloss, MSEloss, SIDloss, MRAE-SIDloss and MSE-SIDloss) using

three evaluation metrics (MRAEev, RMSEev and SIDev) (mean ± standard error); see text for details.

A total of 90 maize sublots from three sampling dates, and 1680 rice subplots from four sampling

dates were analyzed. Different letters in each subpanel indicate a significant difference at the level of

0.05. Note: Differences in Y axis scales; Y axis breaks in subpanels (a,d) for better visualization are

indicated by dotted lines.

Applied to the rice testing data, the performances of models with different loss func-
tions were similar (Figure 2d–f) compared to the models applied to the maize testing data.
Models with MRAEloss performed best in all three evaluation criteria (MRAEev, RMSEev

and SIDev of 0.107, 0.046, and 0.012, respectively). SIDloss once more possessed the least
generality as suggested by significantly greater errors of MRAEev and RMSEev (0.0363 and
0.0978, respectively) when applied to the rice data. Models trained with MSE-SIDloss had
the same level of generality as their corresponding subcomponent, MSEloss, as statistically
the same values were produced in all three evaluations. The composite loss function MRAE-
SIDloss performed better in MRAEev while worse in RMSEev than the other composite one,
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MSE-SIDloss. Interestingly, models with all loss functions except MRAEloss reconstructed
rice MSIs with statistically the same SIDev.

Visualization of different evaluation metrics on reconstructed MSIs from ncRGB-Con
images (Figure S5) of both maize and rice testing data are shown in Figures 3 and 4. More
extensive errors of the reconstructed MSIs, indicated by red color, mainly originated from
locations with very low reflectance values, such as shadows.

 

Figure 3. Visualizations of the evaluations on reconstructed MSIs of maize (2019) based on mod-

els optimized with different loss functions. Model_MRAEloss, Model_MSEloss, Model_SIDloss,

Model_MRAE-SIDloss and Model_MSE-SIDloss are models trained with five loss functions, cor-

respondingly. MRAEev, RMSEev and SIDev are evaluation metrics on the reconstructed MSIs by

corresponding models. Higher errors are indicated by red while lower ones are in green color. See

text for details and Supplementary Figure S2a for the ncRGB-Con image.

 

Figure 4. Visualizations of the evaluations on reconstructed MSIs of rice (2018) based on mod-

els optimized with different loss functions. Model_MRAEloss, Model_MSEloss, Model_SIDloss,

Model_MRAE-SIDloss and Model_MSE-SIDloss are models trained with five loss functions, cor-

respondingly. MRAEev, RMSEev and SIDev are evaluation metrics on the reconstructed MSIs by

corresponding models. Higher errors are indicated by red while lower ones are in green color. See

text for details and Supplementary Figure S2b for the ncRGB-Con image.
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3.4. Effectiveness of MSIs Reconstructed from ncRGB-Cam-Con Images through NDVI and
TGI Comparisons

The color differences of tcRGB, ncRGB-Cam, ncRGB-Con and ncRGB-Cam-Con im-
ages are exemplified in Figure 5. Even though ncRGB-Con images transformed by the
Model-TN looked more natural compared to tcRGB ones, they were still different from
directly captured ncRGB-Cam images (Figure 5). The colors of the ncRGB-Cam-Con im-
ages (Figure 5c,f) of both maize and rice became more similar to the ncRGB-Con ones
(Figure 5b,e)—both by visual impression and MI (Table S1) after color matching. Color
matching increased the MI of these ncRGB-Cam testing images of both maize and rice. The
minimum increase of MI was 7.55% on maize image on DOY 313 in 2018 while the highest
one was on maize on DOY 323 in 2018 with 38.9% after histogram color matching. In rice,
the improvement in MI was generally higher than maize images. The smallest increase of
MI was 21.3% on DOY 233 in 2018 and the biggest increase was on DOY 270 in 2018 with
the value of 135%. The maize image on DOY 354 in 2018 shared the highest MI, 0.65, with
the corresponding ncRGB-Con image, while the rice image on DOY 233 in 2018 had the
highest agreement with the corresponding converted image, 0.775, after color matching.

 

Figure 5. Example tcRGB images of stacked red, green and blue bands of MSIs (a,e), original ncRGB-

Cam images directly taken by onboard RGB camera (b,f), ncRGB-Con images rendered from MSIs by

model-TN (c,g), ncRGB-Cam images color matched to ncRGB-Con images (ncRGB-Cam-Con) (d,h)

of maize (top row; DOY 354) and rice (bottom row; DOY 328) plots in 2018, respectively.

A significant increase in correlation of reconstructed NDVIs with ground truth NDVIS
was found when reconstruction models were either built from tcRGB or ncRGB-Con images:
0.57 to 0.75 in maize and 0.47 to 0.78 in rice, respectively (Figure 6). The NDVI calculated
from reconstructed MSIs (NDVIrec) values of subplots of ncRGB-Cam-Con images of maize
and rice in 2018 reached the highest correlations (R2 = 0.89–0.91) with the NDVI calculated
from ground truth MSIs taken directly by a multispectral camera (NDVIgt) (Figure 7).
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Figure 6. NDVIs calculated based on reconstructed MSIs (NDVIrec) of ncRGB-Cam images of maize

and rice of year 2018 based on models trained on either tcRGB (a,c) or ncRGB-Con (b,d) images of

maize 2018 vs. corresponding ground truth MSIs (NDVIgt) taken by the multispectral camera at

subplot level. Data of 120 subplots of maize and 1680 subplots of rice were used.

 

Figure 7. NDVIs calculated based on reconstructed MSIs (NDVIrec) from color-matched ncRGB-Cam

(ncRGB-Cam-Con) images of maize (a) and rice (b) of year 2018 vs. corresponding ground truth MSIs

(NDVIgt) taken by the multispectral camera at subplot level. Data of 120 subplots of maize and 1680

subplots of rice were used.

Statistically significant differences of NDVIs of maize leaves among different levels
of irrigation were similarly detected by both ground truth MSIs and reconstructed ones
from ncRGB-Cam-Con images on DOY 254 in 2018 (Figure 8d,e), while no differences were
found between irrigation levels at DOY 303 and 313 (not shown) and DOY 323 (Figure 8a,b).
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Figure 8. NDVI and TGI comparisons between three different irrigation levels of maize on DOY 323

(top row) and DOY 354 (bottom row) in 2018. NDVIgt (a,d) was based on MSIs from the multispectral

camera (“ground truth”, gt) while NDVIrec (b,e) and TGI (c,f) were based on MSIs reconstructed

from color-matched ncRGB-Cam (ncRGB-Cam-Con) and ncRGB-Cam images, respectively (mean ±

standard error). Different letters in each subpanel indicate significance at the level of 0.05.

TGI could not detect the different irrigation levels on maize plants on DOY 354 in 2018,
while NDVI was able to do so. Similar to NDVI, no significant differences were found in
TGIs of maize plants among different irrigation levels during the first three growth stages,
DOY 303 and 313 (not shown) and 323 in 2018 (Figure 8c). Even though TGI values of the
least irrigated maize plants (60%) were significantly greater, 19.6, than the other moderately
irrigated plants, 16.3, no difference was found between the moderately irrigated maize
plants with either of the other two levels of irrigated maize plants on DOY 354 in 2018
(Figure 8f).

4. Discussion

The multispectral information recovery model, Model-NM, has to target ncRGB images
for the sake of universality because ncRGB images can be produced easily from low-cost
RGB sensors. Models trained on input images of one color type, either true or natural
(Figure 1c,f), will perform poorly when reconstructing MSIs from another color space
because of the enormous difference in vector magnitude, RMSEev and MRAEev, and
directions, SIDev, of pixel values [53]. The performance increase from Model-NM built
on tcRGB to Model-NM built on ncRGB-Con images was confirmed by the much more
accurate reconstructed NDVIs from ncRGB-Cam images (Figure 6). The recovery of spectral
information is thus largely the reconstruction of a higher-dimensional vector from lower-
dimension ones, and both the magnitude and direction of the lower-dimensional RGB
vector surely affect the reconstruction process [53,54].

The Model-TN was able to produce natural-looking ncRGB images from over-saturated
tcRGB images with the help of hyperspectral images, which was an indispensable step
to connect MSIs and ncRGB images. Model-TN was trained on benchmark images with
various crops, soil and buildings while the maize and rice were not included. Nevertheless,
the rendered ncRGB images of maize and rice appeared natural and looked much closer
to the color captured by RGB cameras on board based on human perception, indicating a
well-polished multispectral response function embedded within the model. Representation
of MSIs in ncRGB images is valuable, as the false color tcRGB images can easily lead to
misunderstandings during knowledge transferring especially when viewers interpret them
based on common sense [55].

The MSI reconstruction model, Model-NM, trained on maize from year 2018, already
performed very well on maize of different growth stages from the following year, 2019,
and even another crop, rice, at different sampling dates in this study—as indicated by
low error rates, green color, of the three applied evaluation metrics on reconstructed MSIs
based on models trained with different loss functions, except for ones with SIDloss. The
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highly accurate reconstructed MSIs at least validated the possibility of MSIs’ recovery from
RGB images, which can already offer both researchers and farmers the potential to obtain
high-quality MSIs based on standard ncRGB-Cam images.

Fusion of HR-RGB and LR-MSIs is another commonly used approach in spectral image
super-resolution. One advantage of fusion strategies over the direct reconstruction ones,
e.g., HSCNNR, is that higher quality HR-MSIs can be generated when the super-resolution
scale is high (often ≥ 8) [56]. However, the final quality of generated HR-MSIs should not be
affected if the super-resolution scale is low, e.g., only 4 in our study. Another advantage of
direct reconstruction methods in MSI super-resolution is that the HR-MSIs are reconstructed
directly based on the HR-RGB image, taking full advantage of the spatial information of HR-
RGB and leading to marginal spatial distortion in the derived HR-MSIs [57]. Additionally,
the fusion strategy normally requires a pair of existing low-resolution spectral images and
HR-RGB—largely limiting the transferability during practical applications.

Different brightness levels of input images were also covered in the trained models
by adding the scaling factor, which changed the brightness from 0.1 to 1.9 times, on
input images and reconstructed output as shown in [21], which could be inferred from
the excellent performance of the trained models on various testing images in the field.
The brightness invariant property is important because it can be easily affected by many
factors such as shutter speed, illumination, and aperture size [53]. Most of the spectral
reconstruction studies failed to cover this aspect, resulting in big errors when the various
exposure of the RGB images were tested [6]. An earlier study using deep learning to
reconstruct spectral image brightness invariantly still failed to manage the task on MSI
reconstruction due to the missing standard function converting MSIs to ncRGB images [53].
Nonetheless, most images are more or less white balanced through either automatic or
manual correction in practice. In precision agriculture, either reference reflectance panels
or Downwelling Light Sensor is a must in order to have the comparable reflectance of the
crops correctly calculated in time series and environment changing measurements [58].
Even though it is not strictly necessary to train a model to have brightness differences
considered, it is still appealing if the model could handle it well. The brightness invariant
property of the trained model also guaranteed a much greater potential and robustness
towards various real-world situations.

The trained brightness invariant models could still not handle shadow well. Brightness
is a matter of light intensity changes, i.e., differences in magnitude, while the spectral shape
remains relatively constant [53]. In contrast, shadows affect both the shape and magnitude
of the spectrum due to heterogenous illuminations and geometric structure of objects [59].
Shadows are unavoidable for field images and reflectance values were generally much
lower, which can be close to 0 in all wavebands, compared to well-illuminated condi-
tions [60], making them prone to have large MRAE errors during spectral reconstruction.
Nansen et al. [61] found that one model developed on crops under lighting conditions
failed to work on the same crop under shade conditions. The unpredictable properties of
spectra due to shadows might be one of the biggest obstacles reducing the generality of the
trained models, as no spectra under shadow are alike. Shadow removal, which has been
studied extensively in recent years, should thus be one challenge to further improve the
model performance [62–64].

In brief, loss functions regulate the “direction” towards which the model will learn. Re-
gardless of its high importance, loss function optimization in spectral construction tasks has
been much less studied than architectural changes and other hyperparameter tuning in deep
learning [39]. Directionless loss functions such as MSEloss and MRAEloss were commonly
used in deep learning, in particular, in most scenarios including spectral reconstruction.
In contrast, direction sensitive loss functions such as SIDloss and SAMloss were previously
mostly used on hyperspectral images for spectral matching during multi/hyper-spectral im-
age exploration [6,65]. Considering the practical applications of spectral imaging, the bias
of using MRAEloss in training spectral reconstruction models is much smaller compared to
models trained with MSEloss—as the integrity of the whole spectrum is of interest [13,39].
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The superiority and consistency of models trained with MRAEloss were also confirmed
by Zhao et al. [39]. SIDloss, however, was only able to regulate the shape of reconstructed
MSIs, leaving other magnitude-related errors to be enormously high [26]. If aiming to
reconstruct MSIs as close to ground truth values as possible and obtaining physically
plausible ncRGB images converted from reconstructed MSIs [21], SIDloss will thus not be an
option. Nonetheless, due to the fact that most spectral matching assignments are searching
spectral signatures for separating different materials or objects, SIDloss is still essential in
spectral studies.

The more overall difference a loss function can measure, the better the model can
possibly be regulated. In this study, models trained with the composite loss function, MRAE-
SIDloss, featuring complementary properties, constantly possessed a better performance
compared to models with individual subcomponents. While it was shown earlier that
MRAEloss worked more effectively than MSEloss [39], the composite loss function possessed
an even better performance compared to MRAEloss alone because of the extra regulation
on the shapes of spectra, specifically during model convergence. The below-average
performance of models with MSE-SIDloss might be due to the lower capability of the
MSEloss component in managing the bias towards outliers or high reflectance values,
analog to the limited performance of models trained with MSEloss alone. The contributions
of subcomponents were set to equal in this study. However, more efforts in tuning different
ratios of them might further improve the model’s final performance but were beyond the
scope of this study.

The performances of trained models with different loss functions on new datasets
were not consistent with the ones on training sets. Models with composite loss function,
MRAE-SIDloss, fell short compared to models with MRAEloss, which is also common in
deep learning due to overfitting issues [39]. Deformed spectral reflectance due to shadows
also makes the model harder to generalize (see discussion above). Moreover, it has been
shown that performances of the spectral reconstruction models were partially dependent
on the spatial pattern of the image objects [6]. This may explain why all evaluations ended
with lower error values in testing maize plants from another growing season, compared to
rice. As MRAE-SIDloss was able to assist models to converge well in all three tasks, further
increasing the diversity or augmenting data during training might be a way to further
increase model performance on unseen data. Nevertheless, the overfitted model still had
outstanding performance, which was better than most of other loss functions tested, on
different testing datasets. NDVI is the parameter indicating the chlorophyll content [49],
and is frequently used to create biochemical maps of field crops in precision agriculture.
The fidelity of reconstructed MSIs can also be partially speculated by whether NDVIs
calculated from reconstructed images match with the ground truth values from MSIs,
particularly if they can be similarly used to detect plants that were watered differently. The
NDVIs showed significant differences among different levels of irrigation at the last growth
stage of maize plants. Even though the R2 of sublots’ NDVIs of rice data were not as high
as the ones of maize, this was quite reasonable, as the canopy structures between maize and
rice were very different which surely affected their spectral reflectance reconstructions [66].
Even though the NDVIs calculated from MSIs which were reconstructed directly from
ncRGB-Cam also significantly correlated to the ground truth ones, the relation was further
increased, as suggested by higher R2 values, 0.75–0.78 to 0.89–0.91, when ncRGB-Cam
images were color adjusted to match ncRGB-Con ones.

The natural color space in which these ncRGB-Cam images locate also affects the final
reconstructed MSIs [53]. Histogram color matching was commonly used to correct color
differences due to the various light and atmospheric conditions in remote sensing [67,68].
As it is clear that the MIs of all these color-corrected ncRGB-Cam images were subjected
to a big increase, even over 100% in rice images, the effectiveness of using histogram
color matching in bringing different ncRGB-Cam images to more uniform color space is
supported. The color-corrected images share more similar color spaces to corresponding
ncRGB-Con images, which is the main reason the reconstructed MSIs had higher accuracy.
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These indexes generated were more consistent towards ground truth ones, underlining
different water treatments. As the spectral response functions of consumer-level cameras
vary greatly, resulting in extensive color differences in produced RGB images in practice,
these functions are mostly not available for consumers [69]. Transformation of different
ncRGB-Cam images of different appearances to the standard format, e.g., ncRGB-Con
in this study, should be a more robust method to be explored in order to simplify the
reconstruction process and increase the model’s generality at the same time.

The indexes generated from reconstructed MSIs are more consistent with ground truth
measurements compared to ones derived from “normal”, broadband RGB images. The most
well-known index characterizing the chlorophyll content based on RGB images is TGI [70,
71]. TGI also showed the most intimate behavior to NDVI compared to other indexes
calculated from RGB images [71]. However, compared with the excellent agreements of
NDVIrec, TGIs were not able to show the irrigation differences. It has been shown recently
that the TGI calculation depends on the peak wavelength sensitivity, which is affected by
the specifications of the Complementary Metal Oxide Semiconductor (CMOS) sensors of
the camera used [50]. Even the recalibrated formula calculating TGI, which tried to cover
wider CMOS sensitivities, still could not fully cover the variabilities coming from different
camera sensors in our study. The reconstructed near-infrared information in MSIs is thus
rated indispensable for achieving a higher efficacy in distinguishing maize plants that were
differently irrigated.

5. Conclusions

We validated the fidelity of the deep learning model in reconstructing MSIs based on
high-resolution ncRGB-Cam images irrespective of brightness levels. We illustrated the
benefits of combining complimentary loss functions to supervise the convergence direction
of the model on different tasks. The advantage of natural color conversion on tcRGB images
in improving the performance of MSI reconstruction models was also highlighted. The
model was trained and validated using one crop (maize) imaged in different years and
successfully applied on another crop, rice, with a totally different canopy structure. The
superiority of the reconstructed NDVIs in separating differently watered maize plants over
the frequently used broadband RGB images-derived TGI was endorsed.

The application of reconstructed MSIs in precision agriculture just started and more
studies in this area should be conducted, especially targeting image segmentation, object
detection and 3D image reconstruction, in which both higher spatial and spectral resolution
play more important roles [5,72,73]. During further advancement in this field, some key
limitations have to be solved. A more robust mapping function should be developed
to connect MSIs to ncRGB-Cam color space rather than a complicated model relying on
benchmark HSIs. The establishment of a spectral response function that can translate the
reflectance of hyperspectral, multispectral or even RGB images directly to the target ncRGB-
Cam image through deep learning is needed. For example, an end-to-end supervised linear
neural network with physical constraints applied can be integrated into the reconstruction
model. Another issue in multispectral image reconstruction is the ubiquitous existence of
shadows. Image pre-processing includes either transforming images to shadow invariant
space, or other deep learning methods to remove the shadows before being used for
multispectral image reconstruction [74,75]. Once these strategies are incorporated in current
reconstruction models, full spectrum reconstruction processes will likely become more
precise and thus automatable. Hyperspectral images featuring a higher spectral resolution,
thus holding wider application potentials than MSIs, should also be focused on in the future.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/rs14051272/s1, Table S1: The Kullback divergence-based mutual information (MI) between

on ncRGB-Con image and ncRGB-Cam images of maize and rice on different DOYs in 2018 either

without (MIor) or with (MImatched) histogram color matching. Figure S1: Examples of subplots in

the fields of maize on DOY 354 in both 2018 (a) and 2019 (b), rice on DOY 328 in 2018 (c). Figure S2:

Model-TN for tcRGB to ncRGB image conversion. The architecture of Model-TN composed with only

one residual block which is highlighted in dashed box is shown in (a). The whole process of ncRGB

image conversion is shown in (b), model training in red box and prediction in blue box. Figure S3.

Model-NM for ncRGB image to MSIs conversion. The architecture of Model-NM composed with

three residual blocks which are highlighted in dashed box is shown in (a). The whole conversion

process from ncRGB image to MSIs is shown in (b). Figure S4: The flowchart of the detailed analysis.

Figure S5: The ncRGB-Con images of maize on DOY 354 (a) and rice on DOY 328 in 2018 (b) used for

visualization in Figures 3 and 4, respectively.
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