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Abstract: We study the cyclic, supercyclic and hypercyclic properties of a composition operator Cϕ on the

Segal-Bargmann spaceH♣Eq, where ϕ♣zq ✏ Az � b, A is a bounded linear operator on E, b P Ewith ⑥A⑥ ↕ 1

and A✝b belongs to the range of ♣I ✁ A✝Aq 12 . Specifically, under some conditions on the symbol ϕ we show

that if Cϕ is cyclic then A✝ is cyclic but the converse need not be true. We also show that if C✝ϕ is cyclic then

A is cyclic. Further we show that there is no supercyclic composition operator on the spaceH♣Eq for certain
class of symbols ϕ.
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hypercyclic and supercyclic operators
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1 Introduction

It is known that every bounded linear operator on an infinite dimensional complex separable Hilbert space

is the sum of two hypercyclic operators [3, p. 50]. It is interesting to note that this result holds true with the

summands being cyclic operators. Therefore, it is very important to study the cyclic operators in order to study

bounded operators. We know that every hypercyclic operator is cyclic and supercyclicity is a property which

is intermediate between these two.

Since the closed linear span of Orb♣T, xq is the smallest closed T-invariant subspace that contains the

vector x, the cyclic property is connected with the study of invariant subspaces. Analogously, hypercyclicity

has the same connectionwith invariant subsets. On afinite dimensional space there does not exist a linear op-

erator which is hypercyclic . But this is not the casewith the bounded linear operators on infinite dimensional

spaces. This was first observed by G.D. Birkhoff [4], who showed that the translation operator f ♣zq → f ♣z�1q
is hypercyclic on the Fréchet space of all entire functions. Details on dynamical properties of operators can

be found in [3].

Let E be a separable Hilbert space of complex valued functions on a nonempty set X and ϕ : X → X be a

map. The composition operator Cϕ is defined by

♣Cϕ f q♣xq ✏ f ♣ϕ♣xqq for all f P E, x P X.

Such operators are clearly linear. The basic idea in the study of composition operators is to describe the op-

erator theoretic properties of Cϕ with the help of function theoretic properties of ϕ and vice versa.
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Since nth-powers of the composition operator Cϕ is related with the composition induced by the nth-

iterates of ϕ, the cyclic property of Cϕ is connected with the dynamics of ϕ. In [8], Guo, Kunyu; Izuchi, Keiji

gave a necessary and sufficient condition for a holomorphic mapping to be a cyclic vector of a composition

operator on Fock type space.

In [9], Jiang, Liangying; Prajitura, Gabriel T.; Zhao, Ruhan gave a necessary and sufficient condition for

the cyclicity of composition operator on the classical Fock space F2♣Cq. In [11], T. Mengestie proved that the
cyclicity of weighted composition operator Cψ,φ on the classical Fock space F

2♣Cq depends on the inducing
map φ♣zq ✏ az � b, where ⑤a⑤ ↕ 1, b P C and the weight function ψ.

In the remaining part of this section, we give brief details of the basic material that we need to prove

our main results. In the second section, we study the cyclic behaviour of the composition operator Cϕ and

establish the connection between dynamical behaviour of Cϕ and the Hilbert space operator A✝. In other

words, we are able to show that the cyclic behaviour of a composition operator is strongly influenced by the

dynamical properties of its inducing map, ϕ♣zq ✏ Az� b for z P E. In the third section, we show that there is

no supercyclic composition operator on the Segal-Bargmann space under certain conditions on the inducing

map. Later we discuss about the hypercyclic property.

1.1 The spaceH♣Eq

Let E be an arbitrary infinite dimensional complex Hilbert space. For each integerm ➙ 1, we write Em for the

symmetric tensor product ofm copies of E. Define E0 ✏ Cwith its usual inner product, E1 ✏ E and form ➙ 2,

E
m is the closed subspace of the full tensor product E❜m consisting of all elements that are invariant under

the natural action of the symmetric group Sm. Precisely,

E
m ✏ tx P E

❜m : πx ✏ x for all π P Sm✉.

The action of Sm on E
❜m is defined on elementary tensors by

π♣x1 ❜ x2 ❜ ☎ ☎ ☎ ❜ xmq ✏ xπ♣1q ❜ ☎ ☎ ☎ ❜ xπ♣mq.

For any z P E, we use zm ✏ z❜ ☎ ☎ ☎❜ z P E
m to denote the tensor product ofm copies of z. Each E

m is a Hilbert

space with an inner product ①☎, ☎②Em defined by

①zm , wm②Em ✏ ①z, w②mE ,

where ①☎, ☎②E denotes the inner product on E.

Definition 1.1. A function pm : E → C is called continuous m-homogeneous polynomial on E if there exists

an element ζ P E
m such that pm♣zq ✏ ①zm , ζ ② for z P E.

Definition 1.2. A function f : E → C is called continuous polynomial if f can be written as a finite sum of

continuous homogeneous polynomials. That is, there is an integerm ➙ 0 and there are elements aj P E
j , j ✏

0, 1, ☎ ☎ ☎ ,m such that

f ♣zq ✏
m➳
j✏0

pj♣zq ✏
m➳
j✏0

①zj , aj②.

We denote the space of all continuous m-homogeneous polynomials and the space of all continuous poly-

nomials on E by Pm♣Eq and P♣Eq, respectively. For more about m-homogeneous polynomials we refer to [12,

p. 12].

For f , g in P♣Eq, we can find an integer m ➙ 0 and elements aj , bj P E
j for 0 ↕ j ↕ m such that

f ♣zq ✏
m➳
j✏0

①zj , aj② and g♣zq ✏
m➳
j✏0

①zj , bj②.
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Define,

①f , g② ✏
m➳
j✏0

j!①bj , aj②. (1.1)

Then ①, ☎, ② defines an inner product on P♣Eq. The completion of P♣Eq in the norm induced by the above

inner product is called the Segal-Bargmann space and it is denoted byH♣Eq. For more details see [10, Section

2.1].

Proposition 1.3. [10] Each element f in H♣Eq can be identified as an entire function on E having a power

series expansion of the form

f ♣zq ✏
✽➳
j✏0

①zj , aj② for all z P E,

where aj P E
j , j ✏ 0, 1, 2, . . . . Furthermore, ⑥f ⑥2 ✏

✽➳
j✏0

j!
✎✎aj✎✎2 .

Conversely, if
✽➳
j✏0

j!
✎✎aj✎✎2 ➔ ✽, then the power series

✽➳
j✏0

①zj , aj② defines an element inH♣Eq.

Applying Proposition 1.3 to the function

K♣z, wq :✏ Kw♣zq ✏ exp①z, w② for all z, w P E,

we can say that this function is the reproducing kernel function forH♣Eq and the normalized kernel function

is defined by

kw♣zq ✏ exp♣①z, w② ✁ ⑥w⑥2
2

q.
The linear span of the set tKw : w P E✉ is dense in H♣Eq. As a result, H♣Eq is a reproducing kernel Hilbert
space. For each f P H♣Eq, we have ①f , K♣☎, xq② ✏ f ♣xq for all x P E. For a general theory of these spaces, see

Chapter 2 of [1] and [13].

1.2 Composition operators

Let E1 and E2 be Hilbert spaces and K1 and K2 be the kernel functions for H♣E1q and H♣E2q respectively.
We denote K as the kernel function for both the spacesH♣E1q andH♣E2q since the kernel functions on these
spaces have the same form.

For any mapping ϕ : E1 → E2, the composition operator Cϕ : H♣E2q → H♣E1q is defined by
Cϕ♣hq ✏ h ✆ ϕ for all h P H♣E2q,

for which h ✆ϕ also belongs toH♣E1q. Since Cϕ is a closed operator, it follows from the closed graph theorem

that Cϕ is bounded if and only if h ✆ ϕ belongs toH♣E1q for all h P H♣E2q.
If Cϕ is bounded, then we have the following identities:

1. C✝ϕKz ✏ Kϕ♣zq for all z P E1,

2. Let a P E2. If f ♣wq ✏ ①w, a② for all w P E2, then

♣Cϕ f q♣zq ✏ ①ϕ♣zq, a② for any z P E1.

Theorem 1.4. [10, Theorem 1.3] Let ϕ : E1 → E2 be a mapping. Then the composition operator Cϕ : H♣E2q →
H♣E1q is bounded if and only if ϕ♣zq ✏ Az � b for all z P E1, where A : E1 → E2 is a bounded linear operator

with ⑥A⑥ ↕ 1 and A✝b belongs to the range of ♣I ✁ A✝Aq 1
2 . Furthermore, the norm of

✎✎Cϕ✎✎ is given by✎✎Cϕ✎✎ ✏ exp
✁1
2
⑥v⑥2 � 1

2
⑥b⑥2

✠
,

where v is the unique vector in E1 of minimum norm satisfying A
✝b ✏ ♣I ✁ A✝Aq 1

2 v.
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Theorem 1.5. [10, Theorem 3.7] Let ϕ : E1 → E2 be a mapping. Then the composition operator Cϕ : H♣E2q →
H♣E1q is bounded if and only if there is a bounded linear operator A : E1 → E2 with ⑥A⑥ ↕ 1 and a vector b in

the range of ♣I ✁ AA✝q 1
2 such that ϕ♣zq ✏ Az � b for all z P E1. Furthermore, the norm of

✎✎Cϕ✎✎ is given by
✎✎Cϕ✎✎ ✏ exp

✁ ⑥u⑥2
2

✠
,

where u is the unique vector in E2 of minimum norm that satisfies the equation b ✏ ♣I ✁ AA✝q 1
2 u.

For E1 ✏ E2 ✏ C
n, the boundedness and compactness of Cϕ are discussed by Carswell, MacCluer, and

Schuster in [6].

1.3 Cyclicity

Unless mentioned otherwise, we consider infinite dimensional complex separable Hilbert spaces which will

be denoted by E, E1, E2 etc.

Definition 1.6. [3, p. 1] A bounded linear operator T : E → E is said to be cyclic if there exists a non zero

vector x P E such that spantTnx : n ➙ 0✉ ✏ E. In this case x is said to be a cyclic vector of T.

We call the set tTnx : n ➙ 0✉ as the orbit of T and is denoted by Orb♣T, xq. It may happen that the Orb♣T, xq
itself is dense or the projective orbit is dense, without the linear span; in this case we have the following

definitions.

Definition 1.7. [3, p. 1] A bounded operator T : E → E is said to be hypercyclic if Orb♣T, xq is dense in E. In

this case x is said to be a hypercyclic vector.

The operator T is said to be supercyclic if the set tλTnx : n ➙ 0, λ P C✉ is dense in E.

In the classical Fock space F2♣Cq, the following is known:

Proposition 1.8. [9, Proposition 5.1] Let φ : C → C be a holomorphic map given by φ♣zq ✏ az � b with

⑤a⑤ ↕ 1. Let Cφ : F2♣Cq → F
2♣Cq be the associated composition operator on the Fock space F2♣Cq. Then we

have

(i) If b ✏ 0 and ⑤a⑤ ✏ 1, then Cφ is cyclic if and only if a
n ✏④ a for every n → 1.

(ii) If ⑤a⑤ ➔ 1 and a ✏④ 0, then Cϕ is cyclic.

Definition 1.9. Let T : E → E be a bounded linear operator. The set ρ♣Tq :✏ tλ P C : T ✁ λI : E →

E is invertible and ♣T ✁ λIq✁1 is bounded✉ is called the resolvent set and the complement σ♣Tq ✏ C③ρ♣Tq is
called the spectrum of T.

It is well known that σ♣Tq is a non empty compact subset of C.

2 Cyclic properties of Cϕ

In this section, we discuss the existence of a fixed point of the inducing map ϕ satisfying a few conditions.

Here we show that for a non zero vector z P E, if the kernel function Kz is a cyclic vector for the bounded

composition operator Cϕ, then z is a cyclic vector for the bounded operator A
✝. Next we also show that if C✝ϕ

cyclic, then the operator A is cyclic.

We say that a map ϕ on E has the property P, if it satisfies the following:

(i) ϕ♣zq ✏ Az � b for all z P E
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(ii) A : E → E is a bounded linear operator with ⑥A⑥ ↕ 1 and b P E

(iii) A✝b belongs to the range of ♣I ✁ A✝Aq 1
2 .

Remark 2.1. Let ϕ : E → E be a mapping. Then ϕ satisfies the property P if and only if the induced composi-

tion operator Cϕ is bounded on the Segal-Bargmann spaceH♣Eq.
For any z P E, we have Cϕ f ♣zq ✏ f ♣ϕ♣zqq for all f P H♣Eq. For any positive integer m, we have Cmϕ f ♣zq ✏
f ♣ϕm♣zqq. Here ϕm denotes the m times composition of ϕ. So we have the following identity:

ϕm♣zq ✏ Amz � Am✁1b � ☎ ☎ ☎ � Ab � b, for all z P E. (2.1)

Therefore,

Cmϕ f ♣zq ✏ f
�
Amz � Am✁1b � ☎ ☎ ☎ � Ab � b✟. (2.2)

So, for any kernel function Kz, we have

CmϕKz♣wq ✏ Kz
�
Amw � Am✁1b � ☎ ☎ ☎ � Ab � b✟

✏ Kz
�
Amw

✟
Kz

�
Am✁1b � ☎ ☎ ☎ � Ab � b✟

✏ K♣A✝qmz
�
w
✟
Kz

�
Am✁1b � ☎ ☎ ☎ � Ab � b✟.

(2.3)

From the above relation it is clear that the dynamical properties of the composition operator Cϕ depend on

the behaviour of the iterates of A.

Let us begin with the following lemma which will be useful in later part of this paper.

Lemma 2.2. Let A be a bounded linear operator on E such that ⑥A⑥ ↕ 1. Then ker♣I ✁ A✝q ⑨ ker♣I ✁ A✝Aq 1
2 .

Proof. Suppose v P ker♣I ✁ A✝q with ⑥v⑥ ✏ 1, then A✝v ✏ v. As ⑥A⑥ ↕ 1, we have

1 ➙ ⑥Av⑥ ✏ ⑥Av⑥ ⑥v⑥ ➙ ⑤①Av, v②⑤ ✏ ⑤①A✝v, v②⑤⑤①v, v②⑤ ✏ 1. (2.4)

That is,

⑤①Av, v②⑤ ✏ ⑥Av⑥ ⑥v⑥ . (2.5)

This implies that Av ✏ λv for some λ P C, and hence

λ ✏ ①λv, v② ✏ ①Av, v② ✏ ①v, A✝v② ✏ ①v, v② ✏ 1. (2.6)

This shows that Av ✏ v. From this we can get that A✝Av ✏ A✝v ✏ v, which implies that v P ker♣I ✁ A✝Aq 1
2 .

Hence we get the desired conclusion.

The next result describes the fixed point property of the symbol ϕ which induces a bounded composition

operator Cϕ onH♣Eq.

Proposition 2.3. Let ϕ be a mapping on E satisfying the property P. Then ϕ has a fixed point in each of the

following cases:

1. A is compact with ⑥A⑥ ↕ 1.

2. 1 P④ σ♣Aq.

Proof. Note that Cϕ is bounded and ϕ♣zq ✏ Az � b for all z P E. If A ✏ 0 then ϕ♣zq ✏ b fixes the point b P E.

Now assume that A ✏④ 0. Also note that if b ✏ 0, then ϕ♣zq ✏ Az and 0 is the fixed point of ϕ.

Proof of (1):

Since A is compact, by [14, p. 68], we have ran♣I✁Aq and ran♣I✁A✝Aq 1
2 both are closed. We claim that ϕ has

a fixed point. That is, we show there exists a point z0 P E such that Az0 � b ✏ z0. This means b P ran♣I ✁ Aq.
Since ran♣I ✁ Aq is closed, to prove our claim it is enough to prove b P ker♣I ✁ A✝q❑.

Since ϕ satisfies P, we have A✝b P ran♣I ✁ A✝Aq 1
2 ✏ ♣ker♣I ✁ A✝Aq 1

2 q❑ ⑨ ker♣I ✁ A✝q❑, by Lemma 2.2.

Hence there exists z0 P E such that ϕ♣z0q ✏ z0, and this proves our claim. That is, ϕ fixes a point in E.
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Proof of (2):

1 P④ σ♣Aq implies that ♣I ✁ Aq is invertible, and in this case the fixed point is ♣I ✁ Aq✁1b.

Remark 2.4. By (2) of Proposition 2.3, we can say that if ⑥A⑥ ➔ 1, then ϕ has a fixed point in E.

Corollary 2.5. Let ϕ : Cn → C
n be a mapping such that Cϕ is bounded on F

2♣Cnq. Then ϕ has a fixed point.

Proof. Proof follows by (1) of Proposition 2.3.

The assumption in (2) of Proposition 2.3 that 1 P④ σ♣Aq cannot be removed and this is illustrated with the

following example.

Example 2.6. Let µ be a real number such that 0 ➔ µ ↕ 1. Define the weighted unilateral shift on ℓ
2♣Nq by

S♣x1, x2, x3, . . . q ✏ ♣0, µx1, x2, x3, . . . q, ❅ txn✉ P ℓ
2♣Nq. (2.7)

The adjoint S✝ of S is given by

S✝♣x1, x2, x3, . . . q ✏ ♣µx2, x3, x4, . . . q, ❅ txn✉ P ℓ
2♣Nq. (2.8)

Now we see that S✝S ✏④ SS✝.
The spectrum σ♣Sq is given by σ♣Sq ✏ tλ : ⑤λ⑤ ↕ 1✉. Observe that 1 P σ♣Sq.
Note that S✝S♣x1, x2, x3, . . . q ✏ ♣µ2x1, x2, x3, . . . q, ❅ txn✉ P ℓ

2♣Nq. It can be seen that

♣I ✁ S✝Sq♣x1, x2, x3, . . . q ✏ ♣♣1✁ µ2qx1, 0, 0, . . . q, ❅ txn✉ P ℓ
2♣Nq.

Hence

♣I ✁ S✝Sq 1
2 ♣x1, x2, x3, . . . q ✏ ♣

❜
♣1✁ µ2qx1, 0, 0, . . . q, ❅ txn✉ P ℓ

2♣Nq. (2.9)

Let b̂ ✏ ♣1,
❄
1✁µ2
µ , 0, 0, . . . q. Then we have

♣I ✁ S✝Sq 1
2 e1 ✏ S✝b̂, (2.10)

where e1 ✏ ♣1, 0, 0, . . . q. Nowconsider themap ψ̂ : ℓ2♣Nq → ℓ
2♣Nqdefinedby ψ̂♣xq ✏ Sx�b̂, for all x P ℓ

2♣Nq.
Since ⑥S⑥ ✏ 1,we conclude that ψ̂ satisfies thepropertyP. Therefore, the corresponding compositionoperator

C
ψ̂
is bounded onH♣ℓ2♣Nqq. Explicitly the map ψ̂ can be written as

ψ̂♣x1, x2, x3, . . . q ✏ ♣1, µx1 �
❛
1✁ µ2
µ

, x2, x3, . . . q, ❅ txn✉ P ℓ
2♣Nq. (2.11)

It can be easily verified that ψ̂ has no fixed point in ℓ
2♣Nq.

Theorem 2.7. Let ϕ be a mapping on E satisfying the property P and has a fixed point. If C✝ϕ : H♣Eq → H♣Eq
is cyclic, then A : E → E is cyclic.

Proof. Let z0 P E be a fixed point of ϕ. Then ϕ♣zq ✏ A♣z ✁ z0q � z0 and so for all n ➙ 0,

ϕn♣zq ✏ An♣z ✁ z0q � z0 ✏ ♣I ✁ Anqz0 � Anz.

Also, we have

♣I ✁ Anqz0 ✏ An✁1b � ☎ ☎ ☎ � Ab � b. (2.12)

Note that

C✝ϕKw♣zq ✏ Kϕ♣wq♣zq ✏ e①z,Aw�b②

✏ e①z,b②e①A
✝z,w②

✏ Kb♣zqKw♣A✝zq.
(2.13)
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Therefore, C✝ϕ ✏ MKbCτ, where τ♣zq ✏ A✝z andMKb is multiplication by the kernel function Kb. Observe that

Cnϕ ✏ Cϕn , where ϕ
n ✏ ϕ ✆ ϕ ☎ ☎ ☎ ✆ ϕ❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥

n-times

. Hence

♣C✝ϕqn ✏ C✝ϕn ✏ MK♣I✁Anqz0
Cτn , (2.14)

where τn♣zq ✏ ♣A✝qnz.
Let f P H♣Eq be a cyclic vector for C✝ϕ. As f P H♣Eq, we have

f ♣zq ✏
✽➳
j✏0

①zj , aj②, aj P E
j

with ⑥f ⑥2 ✏
✽➳
j✏0

j!
✎✎aj✎✎2 ➔ ✽.

Next, we consider

C✝ϕ
n
f ♣zq ✏ K♣I✁Anqz0♣zqf ♣♣A✝qnzq

✏
✽➳
i✏0

①zi , ♣♣I ✁ A
nqz0qi
i!

②
✽➳
j✏0

①zj , ♣Anq❜j aj②

✏
✁
1� ①z, ♣I ✁ Anqz0② � ①z2, ♣♣I ✁ A

nqz0q2
2

② � ☎ ☎ ☎
✠

✂
✁
a0 � ①z, Ana1② � ①z2, ♣Anq❜2 a2② � ☎ ☎ ☎

✠
✏ a0 � ①z, Ana1 � ā0♣♣I ✁ Anqz0q② � ☎ ☎ ☎
✏ a0 � ①z, An♣a1 ✁ ā0z0q � ā0z0② � ☎ ☎ ☎ .

We claim that a1 ✁ ā0z0 ✏④ 0. If not, then a1 ✏ ā0z0. Hence

f ♣zq ✏ a0 � ①z, ā0z0② � ①z2, a2② � ☎ ☎ ☎ (2.15)

and

C✝ϕ
n
f ♣zq ✏ a0 � ①z, ā0z0② � ☎ ☎ ☎ . (2.16)

Now choose an element η P E③t0✉ such that ①z0, η② ✏ 0 and consider the function h♣zq ✏ ①z, η② for all z P E.

Then we see that ①C✝ϕ
n
f , h② ✏ a0①z0, η② ✏ 0 for all n ➙ 0. This contradicts that f is a cyclic vector for C✝ϕ. This

proves the claim.

Now we claim that v ✏ ✁ā0z0 � a1 is a cyclic vector of A. Let ζ P E such that

①Anv, ζ ② ✏ 0 for all n ➙ 0.

Define H♣zq ✏ ①z ✁ z0, ζ ② for all z P E. Clearly H P H♣Eq. For n ➙ 0,

♣CϕnHq♣zq ✏ H♣ϕn♣zqq ✏ ①ϕn♣zq ✁ z0, ζ ②
✏ ①An♣z ✁ z0q, ζ ② ✏ ✁①z0, ♣A✝qnζ ② � ①z, ♣A✝qnζ ②.

It follows that

①H, C✝ϕ
n
f ② ✏ ①CϕnH, f ②

✏ ✁ā0①z0, ♣A✝qnζ ② � ①a1, ♣A✝qnζ ② ✏ ①Anv, ζ ② ✏ 0.

Since the linear span of t♣C✝ϕqn f : n ➙ 0✉ is dense inH♣Eq, we conclude that H♣zq ✏ 0 for all z P E, which

implies ζ ✏ 0. Therefore, the set tAnv : n ➙ 0✉ is dense in E, which means that v is the cyclic vector for A as

required.
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Corollary 2.8. Let ϕ be a mapping on E satisfying the property P with b ✏ 0. If Cϕ : H♣Eq → H♣Eq is cyclic,
then A✝ : E → E is cyclic.

Proof. Letϕ♣zq ✏ Az, then Cϕ ✏ ♣Cψq✝,whereψ♣zq ✏ A✝z and0 is thefixedpoint, andhencebyTheorem 2.7,

the conclusion follows.

The converse of the above result is not true and this is illustrated with the following examples:

Example 2.9. Let A ✏
✄

1
2 0

0 0

☛
, and b ✏ 0. Then it is clear that both A, and A✝ are cyclic (see [7, p. 86]) but

the corresponding bounded composition operator Cϕ is not cyclic on the Fock space F2♣C2q, where ϕ♣zq ✏
Az, and ⑥A⑥ ↕ 1 as the matrix A is not invertible (see [9]).

Let B ✏
✄
0 1

2

0 0

☛
, and b ✏ 0. We can easily verify that both B, and B✝ are cyclic but the corresponding

bounded composition operator Cϕ is not cyclic on the Fock space F2♣C2q, when ϕ♣zq ✏ Bz, and ⑥B⑥ ↕ 1 as

the matrix B is not invertible (see [9]).

The following result is well known in the literature of composition operators. In fact this result is true for any

composition operator. Since it is important in our context, we state it here.

Proposition 2.10. [3] Suppose the mapping ϕ : E → E has two fixed points, then the bounded composition

operator Cϕ cannot be cyclic operator onH♣Eq.

Proof. To prove this, we use the fact that the adjoint of a cyclic operator can have only simple eigenvalues

(see [5, Proposition 2.7]). Suppose that there are two fixed points, namely α, and β. Then we have C✝ϕKα ✏
Kϕ♣αq ✏ Kα, and C

✝
ϕKβ ✏ Kϕ♣βq ✏ Kβ. This shows that 1 is the eigenvalue for C✝ϕ with multiplicity at least

two, and hence Cϕ cannot be cyclic.

Example 2.11. Consider the operator D on ℓ
2♣Nq, defined by

D♣x1, x2, x3, . . . q ✏ ♣x1, x2
2
,
x3
3
,
x4
4
, . . . q, for all txn✉ P ℓ

2♣Nq,

and the map ϕ♣zq ✏ Dz � e2, where e2 ✏ ♣0, 1, 0, . . . q. Then we see that ⑥D⑥ ✏ 1, and ♣I ✁ DD✝q 1
2 x̃ ✏

e2, where x̃ ✏ ♣0,
❜

4
3 , 0, . . . q. Hence the corresponding composition operator Cϕ is bounded operator on

H♣ℓ2♣Nqq. The elements of the form ♣α, 2, 0, 0, . . . q P ℓ
2♣Nq, where α P C are the fixed points of the map

ϕ defined on ℓ
2♣Nq. Now consider the elements p ✏ ♣0, 2, 0, 0, . . . q, q ✏ ♣1, 2, 0, 0, . . . q P ℓ

2♣Nq, and the

kernel functions Kp , Kq inH♣ℓ2♣Nqq, then it is easy see that Kp, and Kq are the eigenvectors corresponding

to the eigenvalue 1. This shows that 1 is the eigenvalue for C✝ϕ with multiplicity at least two, and hence Cϕ
cannot be cyclic. This shows that D✝ is cyclic but the associated composition operator Cϕ is not cyclic.

Remark 2.12. The above example shows that if ϕ♣zq ✏ Az � b be a mapping on E that satisfies the property

P, and A✝ is cyclic but the associated bounded composition operator Cϕ need not be cyclic.

Observe that not every cyclic operator on aHilbert spacehave adense range, but there are certain composition

operators which have a dense range. For example, composition operators on the Hardy space H2♣Dq have
dense range [5, Theorem 1.4]. The problem of determining which composition operators have dense range is

nontrivial. This forces us to investigate the proceeding theorem.

Theorem 2.13. Let ϕ be a mapping on E satisfying the property Pwith b ✏ 0. If Cϕ is cyclic, then the following

are true:

1. ker♣Aq ✏ t0✉. Consequently, ϕ is injective.

2. range of Cϕ is dense inH♣Eq.
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Proof. Proof of (1): Since Cϕ is cyclic, by Corollary 2.8, the operator A
✝ is cyclic. Therefore, the dimension of

the orthogonal complement of range of A✝ is at most one, that is, dimker♣Aq ✏ dim ran♣A✝q❑ ↕ 1.

First we suppose that dimker♣Aq ✏ 0. Then ker♣Aq ✏ t0✉. Hence ϕ is injective.

Now suppose that dimker♣Aq ✏ 1. Then there is a non zero vector x in E such that ker♣Aq ✏ spantx✉.
Clearly themapping ϕ is not injective. Hence there exists distinct pair of points η ✏④ ζ such that ϕ♣ηq ✏ ϕ♣ζ q.
This implies that η ✁ ζ P ker♣Aq, and hence η ✁ ζ ✏ Cx. From this we observe that there are infinitely many

such pair of distinct points. As a consequence the set G ✏ t♣z, wq : z ✏④ w, ϕ♣zq ✏ ϕ♣wq✉ is infinite.
For each pair ♣η, ζ q P G, consider the non zero function f ✏ Kη ✁ Kζ , then C✝ϕ f ✏ Kϕ♣ηq ✁ Kϕ♣ζ q ✏ 0.

This shows that the function f in the ker♣C✝ϕq ✏ ran♣Cϕq❑. Hence ran♣Cϕq❑ has infinite dimension as G is

an infinite set. This is a contradiction as we know that the orthogonal complement of the range of a cyclic

operator has dimension at most one. This completes the proof.

Proof of (2): Since Cϕ is cyclic, by (1), we have ker♣Aq ✏ t0✉. Hence ran♣A✝q is dense.
Note that if pn → p, then

lim
k→✽

①Kpn , f ② ✏ lim
k→✽

f ♣pnq ✏ f ♣pq ✏ ①Kp , f ② (2.17)

for every f P H♣Eq.
Therefore, we have Kpn converges weakly to Kp. It is easy to verify that ⑥Kpn⑥ → ⑥Kp⑥ as n → ✽. In a

complex Hilbert space, if zn → z weakly and ⑥zn⑥ → ⑥z⑥, then ⑥zn ✁ z⑥ → 0. Hence Kpn → Kp in norm.

Since range of A✝ is dense in E, for any z P E there is a sequence tA✝xn✉✽n✏1 such that A✝xn converges
to z in norm. That is,

✎✎A✝xn ✁ z
✎✎→ 0 and this will imply

✎✎A✝xn✎✎→ ⑥z⑥ as n → ✽. Also note that
✎✎KA✝xn

✎✎2 ✏
exp♣✎✎A✝xn✎✎2q → exp♣⑥z⑥2q ✏ ⑥Kz⑥2 as n → ✽. FromEq. (2.17), wehave KA✝xn → Kz weakly. Thus KA✝xn → Kz

in norm. Since

CϕKxn ✏ KA✝xn , (2.18)

we have for all z P E, Kz P❹ran♣Cϕq. Hence❹ran♣Cϕq ✏ H♣Eq.

In the forthcoming result, we show that if a kernel function Kw is a cyclic vector for the composition operator

Cϕ, where the inducing map ϕ : E → E satisfies the property P, then w is a cyclic vector for A✝, the adjoint
of A.

Theorem 2.14. Let ϕ be a mapping on E satisfying the property P. Then we have the following:

1. If Kw is a cyclic vector for Cϕ for some nonzero w P E, then w is a cyclic vector for A✝.

2. In the case of b ✏ 0, if f ♣zq ✏
✽➳
j✏0

①zj , aj② P H♣Eq is a nonzero cyclic vector for Cϕ, then aj ✏④ 0 for all

j ✏ 0, 1, 2, 3, . . . .

3. If f is a nonzero element inH♣Eq such that there exists x P E such that f ♣ϕn♣xqq ✏ 0 for every n ➙ 0, then

f cannot be a cyclic vector for Cϕ.

Proof. Proof of (1): Since Kw is a cyclic vector for Cϕ, we have spantCnϕKw : n ➙ 0✉ ✏ H♣Eq. Let p be a

nonzero vector in E such that

①♣A✝qnw, p② ✏ 0 for all n ➙ 0. (2.19)

Denote yn ✏ An✁1b � ☎ ☎ ☎ � Ab � b. Let g ✏ 1✁ Kp P H♣Eq. By using Eq. (2.3), we see that for all n ➙ 0,

①CnϕKw , g② ✏ ①K♣A✝qnwKw♣ynq, 1✁ Kp②
✏ Kw♣ynq ✁ Kw♣ynqK♣A✝qnw♣pq
✏ Kw♣ynq ✁ Kw♣ynqe①p,♣A

✝qnw②

✏ 0 by Eq. (2.19).

(2.20)

Since the spantCnϕKw : n ➙ 0✉ is dense inH♣Eq, it follows that g ✏ 0, which means Kp ✏ 1, and hence

p ✏ 0. Therefore, the linear span of t♣A✝qnw : n ➙ 0✉ is dense in E and thus w is a cyclic vector for A✝.
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Proof of (2): Since b ✏ 0, we have ϕ♣zq ✏ Az with ⑥A⑥ ↕ 1. Then

Cnϕ f ♣zq ✏ f ♣Anzq ✏
✽➳
j✏0

①♣Anzqj , aj②

✏ a0 � ①z, ♣A✝qna1② � ①z2, ♣♣A✝qnq❜2a2② � ☎ ☎ ☎ .
(2.21)

For the purpose of obtaining a contradiction, assume that ak ✏ 0 for some k. Then Cnϕ f ♣zq ✏
✽➳

j✏0;j✏④ k

①zj , ♣♣A✝qnq❜jaj②. Let g P H♣Eq be any continuous k-homogeneous polynomial, then we see that

①Cnϕ f , g② ✏ 0 for all n ➙ 0. This is contradiction to the fact that f is a cyclic vector for Cϕ.

Proof of (3): To prove this, it suffices to show that Kx P ❺spantCnϕ f : n ➙ 0✉❑. To see this, consider

①
k➳

j✏1
αjC

j
ϕ f , Kx② ✏

k➳
j✏1

αj①Cjϕ f , Kx② ✏
k➳

j✏1
αj①Cϕj f , Kx②

✏
k➳

j✏1
αj①f , C✝ϕjKx②

✏
k➳

j✏1
αj f ♣ϕj♣xqq ✏ 0.

Thus we conclude that f cannot be a cyclic vector for Cϕ.

3 Supercyclicity and Hypercyclicity

We know that if a bounded linear operator on a separable Hilbert space is hypercyclic then it is supercyclic.

In [9, Theorem 5.4], it is shown that there is no bounded supercyclic (hence no hypercyclic) composition

operator on F
2♣Cnq. In this section, we show this also holds true in the Segal-Bargmann spaceH♣Eq under

some suitable conditions, where E is any infinite dimensional separable complex Hilbert space.

Theorem 3.1. [2, Theorem 2.2] Let T be a bounded supercyclic operator on a Hilbert space H, and the set

tTn : n P N✉ is uniformly bounded. Then for each x P H,
lim
n→✽ Tnx ✏ 0.

Proposition 3.2. Let ϕ be amapping on E satisfying the propertyP. Then Cϕ cannot be supercyclic operator

in each of the following cases:

(i) b ✏ 0.

(ii) b ✏④ 0, and ⑥A⑥ ➔ 1.

Proof. If possible, let Cϕ be supercyclic. By Theorem 1.5, we have ϕ♣zq ✏ Az � b, where A : E → E is a

bounded linear operator with ⑥A⑥ ↕ 1 and b P ran♣I ✁ AA✝q 1
2 .

Proof of (i): b ✏ 0:

Then ϕ♣zq ✏ Az for all z P E. Therefore, ϕn♣zq ✏ Anz. Then by norm formula in Theorem 1.4, We have✎✎✎Cnϕ✎✎✎2 ✏ ✎✎Cϕn

✎✎2 ✏ 1 for all n ➙ 1. Hence we conclude that the set tCnϕ : n P N✉ is uniformly bounded. But

Cnϕ♣1q ✏ 1. Hence by Theorem 3.1, Cϕ cannot be supercyclic.

Proof of (ii): b ✏④ 0 and ⑥A⑥ ➔ 1. For any integer n ➙ 1, Cnϕ ✏ Cϕn , where ϕn ✏ ϕ ✆ ☎ ☎ ☎ ✆ ϕ is the

composition of n copies of ϕ. Since ⑥A⑥ ➔ 1, by Proposition 2.3, there exists a point z0 P E such that ϕ♣z0q ✏
z0. Then

♣I ✁ Anqz0 ✏ An✁1b � ☎ ☎ ☎ � Ab � b. (3.1)
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Therefore, ϕn♣zq ✏ Anz�An✁1b�☎ ☎ ☎�Ab�b ✏ Anz�♣I✁Anqz0. By using the norm formula in Theorem 1.5,

we have
✎✎✎Cnϕ✎✎✎2 ✏ ✎✎Cϕn

✎✎2 ✏ e⑥un⑥
2

, where un is the vector of smallest norm satisfying

♣I ✁ Anqz0 ✏ ♣I ✁ An♣Anq✝q 1
2 un . (3.2)

Since ⑥A⑥ ➔ 1, the operator ♣I ✁ An♣Anq✝q 1
2 is invertible. Therefore, un is uniquely determined by un ✏

♣I ✁ An♣Anq✝q✁ 1
2 ♣I ✁ Anqz0. Thus,

⑥um⑥ ↕
✎✎✎♣I ✁ An♣Anq✝q✁ 1

2

✎✎✎ ✎✎♣I ✁ Anqz0
✎✎

↕ ♣1✁ ⑥A⑥2nq✁ 1
2
✎✎♣I ✁ Anqz0

✎✎
↕ 2 ⑥z0⑥❛

1✁ ⑥A⑥ .

Hence we have
✎✎✎Cnϕ✎✎✎ ↕ e

⑥z0⑥❄
1✁⑥A⑥ .

Hencewe conclude that the set tCnϕ : n P N✉ is uniformly bounded. But Cnϕ♣1q ✏ 1. Hence by Theorem 3.1,

Cϕ cannot be supercyclic.

In thepreceding result,wehave seen that for amappingϕ♣zq ✏ Az�bwith ⑥A⑥ ➔ 1 such that the composition

operator Cϕ is bounded operator onH♣Eq, then Cϕ cannot be supercyclic operator. The only remaining case

is ⑥A⑥ ✏ 1 and b ✏④ 0. In this case we are not able to settle down the supercyclic behavior of Cϕ.

Next we can ask the following question.

Question 3.3. Letϕ be amapping onE satisfying the propertyP. Is it true that Cϕ is not supercyclic, whenever

b ✏④ 0 and ⑥A⑥ ✏ 1?

The following examples shows that there is a chance that Cϕ need not be supercyclic in the case of b ✏④ 0 and

⑥A⑥ ✏ 1.

Example 3.4. Consider the operator in Example 2.11. Then we see that ⑥D⑥ ✏ 1, b ✏④ 0 and Cϕ is not cyclic.

Therefore, Cϕ is not supercyclic composition operator onH♣ℓ2♣Nqq.

Example 3.5. Let us consider the map φ♣zq ✏ Az� b onC
n, where A is the n✂ nmatrix with ⑥A⑥ ✏ 1. Then

the corresponding bounded composition operator Cφ is not supercyclic on F
2♣Cnq (see, [9, Theorem 5.4]). In

fact there is no supercyclic bounded composition operator onH♣Eq whenever E ✏ C
n.

3.1 Hypercyclicity

In the remaining part of this section we discuss hypercyclicity of Cϕ onH♣Eq.

Theorem 3.6. [3, Proposition 1.17] If T is a bounded hypercyclic operator on an infinite dimensional complex

separable Hilbert space H, then the point spectrum σp♣T✝q ✏ ❍.

Proposition 3.7. Letϕ♣zq ✏ Az�b be amapping onE that satisfies the propertyP. Then Cϕ is not hypercyclic

if ϕ has a fixed point.

Proof. Suppose that ϕ has a fixed point. That is, there is some α P E such that ϕ♣αq ✏ α. Then we have for

every f P H♣Eq
①f , C✝ϕKα② ✏ ①f , Kϕ♣αq② ✏ ①f , Kα②.

This shows that the kernel function Kα is an eigenvector of C✝ϕ corresponding to the eigenvalue 1. Thus by

Theorem 3.6, we conclude that Cϕ is not hypercyclic.
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