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Decades of research on neuromotor circuits and systems has provided valuable

information on neuronal control of movement. Computational models of several elements

of the neuromotor system have been developed at various scales, from sub-cellular to

system. While several small models abound, their structured integration is the key to

building larger and more biologically realistic models which can predict the behavior

of the system in different scenarios. This effort calls for integration of elements across

neuroscience and musculoskeletal biomechanics. There is also a need for development

of methods and tools for structured integration that yield larger in silico models

demonstrating a set of desired system responses. We take a small step in this direction

with the NEUROmotor integration and Design (NEUROiD) platform. NEUROiD helps

integrate results from motor systems anatomy, physiology, and biomechanics into an

integrated neuromotor system model. Simulation and visualization of the model across

multiple scales is supported. Standard electrophysiological operations such as slicing,

current injection, recording of membrane potential, and local field potential are part of

NEUROiD. The platform allows traceability of model parameters to primary literature.

We illustrate the power and utility of NEUROiD by building a simple ankle model and

its controlling neural circuitry by curating a set of published components. NEUROiD

allows researchers to utilize remote high-performance computers for simulation, while

controlling the model using a web browser.

Keywords: neuromotor, integrated model, simulator, spinal cord model, design platform

1. INTRODUCTION

Understanding key components of neuromuscular coordination is essential to exploring various
aspects of complex locomotion or neuromuscular disorders. Research in neuromotor systems spans
across the domains of neuroscience and musculoskeletal systems, and covers the disciplines of
anatomy, physiology, and biomechanics. Like any other system, a neuromotor system also consists
of components whose scale varies from sub-cellular to systems. Thus, motor systems research in
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general (Table 1) and computational model development in
particular (Table 2) must deal with phenomena across these
scales and disciplines. Despite the loss of biophysical realism,
several models of various components of the neuromotor
systems have been developed as they provide new opportunities
to perform in silico experiments when in vivo or in vitro
experiments are infeasible. Consequent to proliferation of
component models, efforts to build neuromotor systems in part
or whole have come into sharp focus. Such system level modeling
has mainly advanced in three distinct directions:

1.1. Neural Control of Locomotion
One of the important functions of the nervous system is
sensorimotor control. Understanding the complex interplay
between neural circuits and their control of musculoskeletal
elements have been a strong motivation for research in this
direction. For example, models of motor unit recruitment (Cisi
and Kohn, 2008; Elias et al., 2012; Capogrosso et al., 2013;
Heidlauf et al., 2013; Castronovo et al., 2015), computational
models exploring central pattern generators (Matsuoka, 1987;
Iwasaki and Zheng, 2006; Rybak et al., 2006; Rubin et al.,
2009), locomotion and posture control (Jo and Massaquoi, 2004;
Shevtsova and Rybak, 2016; Danner et al., 2017) have been
developed. Physics based models that mimic locomotion without
detailed neural circuitry are also explored (Geyer and Herr, 2010;
Song and Geyer, 2015).

1.2. Stimulation Therapy
Understanding the effect of electrical stimulation therapies on
locomotion has been a key focus area for research, especially
due to its downstream clinical applications. This involves
understanding of electromagnetic fields generated, the effect
on locomotor circuitry and the activation of limbs due to
stimulation. Computational models are built to understand the
effect of epidural electrical stimulation (EES) on gait (Capogrosso
et al., 2013) and modulation of spinal circuits for correction of
gait (Courtine et al., 2016). Models are built to study the optimal
EES electrode geometry (Holsheimer and Wesselink, 1997)
and position (Rattay et al., 2000) for spinal cord stimulation.
Modeling of spinal cord circuitry to study the effect of dorsal
column stimulation for treatment of neuropathic pain (Arle et al.,
2014a) and the effect of scarring (Arle et al., 2014b) have been
carried out, which have clinical significance in pain management.

1.3. Biomimetics and Robotics
Creating artificial systems with functional equivalence to human
movement and locomotion has been an area of interest for
technologists. Often, these neurorobotic systems (Krichmar,
2018) do not recreate all the internal mechanisms of a biological
system, but instead try to mimic them at a functional level.
Such models are explored for tasks such as control of robotic
arms (Bakkum et al., 2007; Casellato et al., 2012), navigation and
planning (Cuperlier et al., 2007). Platforms which provide an
environment to test the behavior of neuromotor models have also
been developed (Goodman et al., 2007; Cofer et al., 2010; Falotico
et al., 2017). Of late, evolutionary algorithms (Nolfi and Floreano,
2000; Massera et al., 2007) and reinforcement learning (Sutton

et al., 1999; Mnih et al., 2015) techniques are also applied in the
field of neurorobotics.

The Brain Simulation Platform1 is designed for collaborative
brain research and visualization (Abdellah et al., 2018).

A significant trend in the last decade has been the emergence
of platforms to leverage numerous simulators (Hines and
Carnevale, 1997; Gleeson et al., 2007; Ray et al., 2008; Plesser
et al., 2013; Bower et al., 2014), model databases (Hines et al.,
2004; Halavi et al., 2008), atlases (Lein et al., 2007; Sengul
et al., 2012), and programmer-friendly interfaces (Davison
et al., 2008; Eppler et al., 2008) to create larger systems
(Delorme and Thorpe, 2003; Goodman and Brette, 2008; Sousa
and Aguiar, 2014; Cope et al., 2017).

In the context of neuromotor platforms, there have been
only a handful of such efforts (Cisi and Kohn, 2008; Kim and
Kim, 2018). Development of neuromotor systems and platforms
present some unique challenges. A primary challenge is to build
systems that straddle across the domains of neuroscience and
musculoskeletal biomechanics. Further, to model stimulation
therapies, it becomes imperative to fuse models of neuroanatomy
and physiology. This multidisciplinary requirement presents a
challenge that has not been addressed satisfactorily so far.

Further, creation of a multiscale system involves systematic
integration of multiple components at lower scale resulting in a
larger component that demonstrates an emergent phenomenon.
A controlled integration process must be able to control the
choice of components, tune their parameters and arrive at an
integrated model. The system response of the integrated model
may include the unison of all the component responses and
some emergent responses. Current platforms do not support this
controlled integration process. This is a limitation that needs to
be overcome.

We introduce our platform, NEUROiD, which tries to
address multidisciplinary, multiscale simulation and integration.
NEUROiD is intended to be a platform for designing neuromotor
systems by integration of existing models and information from
literature—both neuroscience and biomechanics. NEUROiD
currently focuses on the spinal cord andmusculoskeletal systems.
However, it can be extended to incorporate other supra spinal
components involved in motor actions or interface with external
models of the supra spinal components. NEUROiD also tries to
exploit the stereotypical nature of spinal cord circuits along the
rostro-caudal axis. A suite of tools in the platform will enable
creation of integrated models. The interface of NEUROiD is
designed to encourage non-programmers to actively participate
in the design and development of neuromotor system models.
NEUROiD is designed as a web-based platform, where the
resource intensive simulations are run on a powerful server.
The user can interact with the server using a relatively resource
constrained computer. The platform is focused on enabling the
study of neural control of movement, movement disorders (with
locus in spinal cord or downstream) and electrical stimulation-
based therapies.

1https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-

platform/
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TABLE 1 | References to published literature in experimental neuromotor systems.

Anatomy Physiology Biomechanics

Micro Morphological properties

like dendritic architecture,

projections etc

(Light and Metz, 1978; Schoenen, 1982;

Andrew et al., 2003)

Ion channel mechanisms

(Hounsgaard and Kiehn, 1989; Safronov and Vogel,

1995; Lombardo and Harrington, 2016)

Motoneurons

(Burke, 1968; Fleshman et al., 1981; Hounsgaard

and Kiehn, 1989)

NeuroMuscular Junctions

(Land et al., 1981),

Interneurons

(Jankowska, 2001, 2008; Berkowitz, 2008;

Jankowska et al., 2009) and

Renshaw Cells

(Renshaw, 1941; Lloyd, 1946; Eccles et al., 1954;

Pierrot-Deseilligny and Hultborn, 1979)

Internal morphology and

mechanical properties of

muscle fibers and

sarcomeres

(Hill, 1953; Bottinelli et al., 1996; Brown et al.,

1999; McNulty and Macefield, 2005)

Meso Histology of spinal laminae,

rexed classification

(Rexed, 1954; Sengul et al., 2012)

Various spinal reflex circuits

(Duysens and Loeb, 1980; Burke et al., 1983;

Pierrot-Deseilligny and Burke, 2012)

Central pattern generators

(Duysens and Loeb, 1980; Marder and Bucher,

2001; McCrea, 2001; Marder and Rehm, 2005;

Kiehn, 2006, 2016)

Mechanical properties of

muscle like force-length

relationships etc

(Durfee and Palmer, 1994; Bottinelli et al.,

1996; Maganaris, 2001)

Macro Spinal cord atlas

(Sengul et al., 2012),

Brain Atlas

(Hawrylycz et al., 2012),

Spinalcord length and gross

properties

(Ko et al., 2004),

Stereotactic spinal cord models

(Gabriel and Nashold, 1996; Nadvornik, 2015)

Control and regulation of

locomotion by spinal cord

(Sherrington, 1913; Giulio et al., 2009)

and brain

(Eccles, 1964; Barthélemy et al., 2011)

Local field potentials

(Rall and Shepherd, 1968; Henrik et al., 2011;

Reimann et al., 2013)

Measurement of gross

musculoskeletal properties

using various techniques

motion trackers, ultrasound etc.

(Lee and Piazza, 2009; Sikdar et al., 2014)

These are categorized based on the scale (micro, meso, macro) and discipline (anatomy, physiology, biomechanics).

In this paper, we present the first version of NEUROiD and
describe the features enabling curation, creation, simulation,
validation, and visualization of neuromotor models. We
demonstrate the same using a model of the human ankle joint
with its controlling neural circuitry in L4 and L5 segments of
the spinal cord. We also demonstrate the process of creating
an integrated cell model. The integrated model demonstrates
cellular level properties such as spike rate adaptation, frequency-
current curve, and bistable firing. and system level responses such
as reflex recruitment curve, orderly recruitment of the constituent
models. Hence, NEUROiD allows creation of models capable
of demonstrating a wide array of results spread across multiple
scales (sub-cellular to network) and disciplines (anatomy,
physiology, biomechanics).

2. METHODS

2.1. Design Philosophy
In order to integrate and build larger system models, an
implicit need was to reuse existing models and encourage non-
programmers to define, simulate, and visualize neuromotor
systems. Thus, the following design principles have guided the
development of NEUROiD:

1. Enable model definitions with little or no need for
programming. Allow integration of multiple existing models
or components.

2. Model neuromotor systems as a multiscale and
multidisciplinary systems, where the scales span from sub-
cellular to systems, and disciplines span over neuroanatomy,
physiology, and musculoskeletal mechanics.

3. Build virtual electrophysiological tools to probe the models
and design intervention.

4. Enable compact model definitions by exploiting recurring
patterns characteristic to neuromotor systems.

5. Separate compute and memory intensive from lightweight
modules, allowing for a client-server architecture.

2.2. Architecture
The architecture of NEUROiD is best represented by a 3x3x3
cube (Figure 1A). The Function axis represents the operations
that the user can perform with NEUROiD. The user can define
the model, perform a simulation, and visualize the output.
Model definition involves creating a neuromotor systems from
scratch or using an existing component library provided by
NEUROiD. Simulation uses a numerical solver such as NEURON
and evaluates the response of model for user defined inputs.
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TABLE 2 | References to published literature in computational modeling of neuromotor systems.

Anatomy Physiology Biomechanics

Micro Morphologically realistic

electronic models of

motoneuron

(Balbi et al., 2014, 2015)

and Renshaw

(Bui, 2003)

Computational models of ion

channels responsible for

unique properties of neurons

like PIC, plateau potential

(Booth et al., 1997; Destexhe, 1997; Huss et al., 2008),

Synapses

(Destexhe et al., 1994, 1998; Best et al., 2010),

Neuromuscular junction

(Dionne and Leibowitz, 1982),

Physiologically realistic

motoneuron model

(Fuglevand et al., 1993; McIntyre et al., 2002; Cisi and Kohn,

2008),

Interneuron

(Guet-McCreight et al., 2016),

Renshaw

(Bui, 2003; Cisi and Kohn, 2008)

Models of muscle behavior

(Fuglevand et al., 1993; Brown et al., 1999),

Mechanical models of Muscle

Spindle

(Mileusnic, 2006),

and GTO model

(Mileusnic and Loeb, 2006)

Meso 3D localization of neurons

(Gleeson et al., 2007)

Computational models of CPG

(Matsuoka, 1987; Prinz et al., 2003; Iwasaki and Zheng,

2006; Rybak et al., 2006; Rubin et al., 2009; Shevtsova and

Rybak, 2016; Danner et al., 2017)

Muscle Force-Velocity models

(Cheng et al., 2000),

and joint coordination

(Morasso and Mussa Ivaldi, 1982; Flash and

Hogan, 1985)

Macro Models of spinal connectomes

(Borisyuk et al., 2011)

Electrical stimulation and

neuromodulation of gait

(Capogrosso et al., 2013; Courtine et al., 2016),

Efficacy of stimulation in

pain modulation

(Arle et al., 2014a,b),

LFP

(Diwakar et al., 2011),

Optimum electrode geometry

for stimulation

(Holsheimer and Wesselink, 1997)

Models of human locomotion

and control

(Geyer and Herr, 2010; Schultz and Mombaur,

2010; Song and Geyer, 2015),

Force estimation during

movement

(Seth and Pandy, 2007)

These are categorized based on the scale (micro, meso, macro) and discipline (anatomy, physiology, biomechanics).

Visualization allows inspection and analysis of the model and
simulation results. The Discipline axis represents anatomy,
physiology, and biomechanics. The Scale axis is used to classify
the function and discipline into three hierarchical levels, labeled
as micro, meso and macro. At the macro scale, we consider 3D
spinal section boundaries, their length, location, and alignment
as anatomical properties. Electromyography (EMG) and local
field potential (LFP) measurements are examples of Macro level
physiology. The angle made at a joint in the neuromuscular
model is an example of macro level biomechanical property. At
the micro scale, 3D cell morphology, cell sections, position, and
orientation are examples of anatomical features. The channel
mechanisms inserted in the cell membranes are examples of
physiological property. The response of a muscle fiber to a single
motor unit action potential forms the micro scale biomechanical
property. All properties falling between the macro and micro
scales are grouped under meso scale in NEUROiD. For example,
the laminae boundaries at various spinal segments and cell
groups in laminae form the meso scale anatomical features.
Synaptic connections between various cell groups, statistical
connection properties such as convergence and divergence
ratios form meso scale physiological properties. Changes in
muscle fiber length, contraction velocity and afferent feedback
form meso scale biomechanical properties. The scales micro,

meso and macro loosely translate to cellular, network, and
system, respectively.

2.3. Model Curation and Definition
A high-level overview of the operations involved in curation
and definition of a model is shown in Figure 1B. This involves
study of various relevant published literature and extraction of
information from them to form a curated model. The curated
model is a well-structured and concise representation of the
model information. NEUROiD mostly uses tables (stored in
xlsx files), json2 or raw text files to store this information. A
model definition is created from the curated model. The model
definition contains detailed model information obtained by fully
enumerating the individual components of model from the
curated model. The format of model definition is suitable for
generating code used in simulations, rendering 3D model on a
web browser and tuning of specific components of the model.

NEUROiD primarily targets simulation of neuromotor
systems and the corresponding musculoskeletal systems.
Curation of data and creation of model definition represents the
define plane in the 3x3x3 cube (Figure 1A).

2https://www.json.org
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FIGURE 1 | (A) Architecture of NEUROiD is best represented as a 3x3x3 cube with function, scale, and discipline being the three axes. The function axis represents

major operations performed on a neuromotor system, namely model definition, simulation/virtual experimentation (on the defined model), and visualization (of model

and results). The scale axis represents micro, meso, and macro scales of a neuromotor model. The discipline axis represents different disciplines that come together in

a virtual neuromotor system, namely anatomy, physiology, and biomechanics. The cubelet corresponding to visualization of micro physiology is highlighted in red.

(B) Workflow for model curation and definition (read from left to right). Published literature is scoured manually for the parameters required for the model of interest.

The parameters pertaining to different scales and disciplines are separated and entered in the relevant tables in xlsx. For instance, micro/anatomy information is

curated in cell_template_map.xlsx and cell_template_def.xlsx, Micro/Physiology in relevant .mod files and so on. Python scripts are used to parse the structured

curated xlsx sheets to create a composite model definition in the form of a json file.

2.3.1. Curation

2.3.1.1. Macro/anatomy
Macro scale (system level) anatomy, forming the
Macro/Anatomy component of the model defines sections
of spinal cord along the neuraxis. This is known to have

clinical significance (Decq, 2003) in localization of the
spinal cord. The length of each spinal cord section, the
number of sections, their length, 3D location, orientation,
alignment, and other such parameters form the macro level
anatomical definitions.
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The default values used in NEUROiD for the lengths of spinal
sections are based on the published results from Ko et al. (2004).
We use the “central canal” region in each section of spinal cord,
to align the sections.

2.3.1.2. Meso/anatomy
Meso scale anatomy, forming the Meso/Anatomy component
of the model is defined by the 3D laminae regions in all the spinal
cord sections and cell groups. A functionally homogenous group
of cells situated in a 3D lamina region is defined as a “cell group”
in NEUROiD (for example, motoneurons innervating the tibialis
anterior muscle, present in Lamina 9 of L4 section of spinal cord
form a “cell group”). The lamina contours are obtained from
scanned high-resolution microscopy images of sections from the
spinal cord Atlas (Sengul et al., 2012).

Python scripts are used to extract the contours of laminae in
each spinal cord section. The extracted contours for each lamina
are stored as lists of points (x and y coordinates). A 3D surface
is formed by stitching contours of the same lamina in multiple
spinal sections. The 3D space enclosed by this surface is defined
as a region in NEUROiD. Cells are placed at random locations
inside these 3D regions.

For the model and simulations discussed in this paper, cell
groups present in the L4 and L5 laminae are identified by
literature survey (for example, Watson et al., 2008; Sengul et al.,
2012) and tabulated.

2.3.1.3. Micro/anatomy
Micro scale (cellular and sub-cellular level) anatomy forming the
Micro/Anatomy component of the model is defined by the
cell morphology. Sections in the cell model (for example, soma,
axon, and dendrite), their 3D position, number of compartments,
diameter, length, and connection between sections form the
micro level anatomical definitions. This curated information is
stored in a structured, tabulated form.

Neuronal parameters from multiple published literature
(Fuglevand et al., 1993; Booth et al., 1997; Destexhe, 1997;
Courtine et al., 2016) are used in NEUROiD to create the default
library of cell models.

The cell models from this default library are used to create cell
instances in various cell groups of the spinal cord model.

2.3.1.4. Macro/physiology
Algorithms and parameters used for evaluation of
local field potential (LFP) forms an important part of
Macro/Physiology component. Mathematical computation
of the local field potentials, which are generated by complex
interactions of current sources can be evaluated in NEUROiD.
Extension of the same to study ephaptic interactions is planned
for a future release. LFP evaluation techniques have been
used in single neuron models (Holt and Koch, 1999; Diwakar
et al., 2011) and in network models (Henrik et al., 2011;
Reimann et al., 2013). LFPSim (Parasuram et al., 2016) is a
NEURON-based tool for calculating the local field potentials
in various parts of simulated brain and spinal cord. Point
source approximation (Rall and Shepherd, 1968; Holt and Koch,
1999), line source approximation (Gold et al., 2006) and low

pass RC (Bédard et al., 2004), which are the popular models
for analyzing extracellular current sources, can be simulated
in LFPSim.

NEUROiD uses LFPSim to evaluate the LFP at any
user selectable point in 3-dimensional space of the model.
Extracellular potentials are simulated by LFPSim using the
extracellular mechanism available in NEURON.

2.3.1.5. Meso/physiology
The Meso/Physiology component of the model comprises
of the synaptic properties between and within various cell groups.
The combination of source cell group, destination cell group, and
synaptic properties for connecting synapse is defined as a “net
connection” in NEUROiD. Physiological information related
to the synapses (for example, neurotransmitter, connection
strength, and delay) are curated from published literature and
stored as connection properties in a structured form. The
connection rules and statistics of synaptic connections can either
be explicitly specified in NEUROiD, or automatically generated.
For automatic generation, NEUROiD currently supports two
methods; a functional method and another based on anatomy,
which are described below:

1. Muscle Synergy based Sensory Motor Circuit Generation:

The musculoskeletal behavior is a mirror of neuronal
activity in the brain and spinal cord. This phenomenon
is substantiated by the somatotopic organization of central
nervous system (Swett and Woolf, 1985; Cohen et al., 1991;
Hauk et al., 2004). The fact that spinal cord can produce
partial or complete locomotion devoid of supra-spinal inputs
signifies the presence of local spinal based neuronal controller
(Mushahwar and Horch, 1998; Giszter and Hart, 2013;
Desrochers et al., 2019).

The spinal controllers comprising of sensory, motor and
interneurons are organized into intricate circuits catering to
stereotypical motor functions (Shefchyk et al., 1990; McCrea
and Rybak, 2008; Kiehn et al., 2010; Talpalar et al., 2011;
McLean and Dougherty, 2015). Themotor circuits responsible
for different motor functions are topographically organized in
specific regions of the spinal cord (Tresch et al., 2002; Lemay
andGrill, 2004;Moritz et al., 2007; Overduin et al., 2014). Such
an organization of spinal networks shows the significance of
anatomical localization and its functional interpretation.

Further the connection modalities within the
proprioceptive feedback circuits and central pattern
generators (CPGs) rely strongly on muscle synergy
(Windhorst, 2007; Markin et al., 2012; Takei et al., 2017;
Desrochers et al., 2019). Drawing inspiration from spinal
circuit organization pattern and based on an extensive review
of proprioceptive circuits and spinal interneuronal pathways
(Jankowska, 1992, 2001, 2008; Pierrot-Deseilligny and Burke,
2012), we build a framework capable of generating sensory-
motor circuits for musculoskeletal functions. This generated
circuitry is projected in a 3D segmental map of Spinal cord
in NEUROiD. The technique used to generate the circuitry
using the curated information is illustrated in Figure 2 and
explained below:

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2019 | Volume 13 | Article 56



Iyengar et al. NEUROiD

FIGURE 2 | NEUROiD generates net connections between various cell groups using a muscle synergy based motor circuit generation technique. Lists of agonist and

antagonist muscles are derived from the tabulated set of movement types mediated by each muscle (muscle synergy). Repeating connection motifs are defined under

connection rules. The neuronal cell groups associated with muscles are specified under neuronal cell types. NEUROiD’s muscle synergy based connection generator

connects various cell groups associated with various muscles according to the connection motifs specified.

(a) Neuronal Cell Types: Motoneurons, interneurons, and
neurons of dorsal root ganglion (DRG) are major
constituent neuronal types of the sensory-motor circuitry
in spinal cord (Loeb, 2014; Côté et al., 2018). Each of these
classes of neurons are associated with either sensory, motor
or modulatory aspects of nervous system. In NEUROiD,
the anatomical locations (specified as spinal segment
and lamina) of these neurons and their properties (for
example, neurotransmitter, target muscle, and number of
neurons) are tabulated and an exhaustive list of cell groups
is obtained.

For example, the details in neuronal cell types
table of Figure 2 results in the creation of
alphamotoneuron cell group at designated crural extensor
(lamina 9) region of L5 segment in the 3D spinal map
of NEUROiD with gastrocnemius as its target muscle.
Thus, unique cell groups defined by a combination of
spinal segment, spinal cord side, lamina, neuron type, and
sub-cell type (target muscle) are formed in NEUROiD.
The cell group formed in the above example is called as
Human_L4_CEx9_L_AlphaMoto_Gas. Please refer to the
Supplementary Material for further information.

(b) Connection Rules: The net connections among the
various cell groups are obtained through connection
rules in NEUROiD. The stereotypical connection rules
established via histological tracing studies (Matsuyama
et al., 2006; Levine et al., 2014) or electrophysiological

and neurophysiological characterization (Jankowska, 1992,
2008; Zhang et al., 2010; Pierrot-Deseilligny and Burke,
2012) can serve as a connection template to generate net
connections inNEUROiD. Each template is specified by the
source neuron type, target neuron type, synaptic properties,
and target muscle group.

For example: IaExcitation pathway defined
by “IaAfferent neurons from muscle spindles,
upon stimulation can monosynaptically excite
alphamotoneurons, targeting both homonymous muscles
and agonist muscles groups of ipsilateral side” (Jankowska,
1992), is specified as a connection template in NEUROiD
as shown in connection rules table of Figure 2. The
source cell group is defined as the IaAfferent cell group
and the destination cell group as the alphamotoneuron. In
this case, the destination cell group innervates the same
muscle group from which the IaAfferents arise. These
rules are used to create template net connections between
various cell groups. The motoneuron groups to be used for
specific connections are derived using the muscle synergy
information as described below.

(c) Muscle synergy: Coordinated activation of a group of
muscles producing a particular movement constitutes
toward muscle synergy. Each movement can further be
decomposed into flexion and extension synergies. The
muscles that coordinate to either flex or extend a joint
can be grouped as agonists while the muscles of flexion

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2019 | Volume 13 | Article 56



Iyengar et al. NEUROiD

and extension forms an antagonist pair (Fernando, 2017).
This information is specified in NEUROiD as shown in
muscle synergy tables of Figure 2. The muscles and
their movement types along with a list of humanmovement
types and their antagonist movements are tabulated. Using
both tables, the muscles are segregated into agonist and
antagonist groups.

Plantar-flexion and dorsi-flexion are defined as
antagonistic movement types in a table as seen in Figure 2.
Along with this in another table, we define that the
gastrocnemius and tibialis anterior muscles are the
major contributors for plantar-flexion and dorsi-flexion
respectively. This is used to obtain the agonist and
antagonist muscle groups to create net connections based
on connection rules (here gastrocnemius and tibialis
anterior form antagonist group of muscles).

Based on muscle synergy and connection rules, an
exhaustive list of net_connections present in the
model is created.

Further details on this circuit generation technique can be
found in Supplementary Material.

2. Axon-Dendrite and Axon-Soma co-locations based Circuit

Generation:

The co-location of source cell group axon and destination
cell group soma or dendrite are used as indicators of
potential synaptic connections. This putative equivalence,
commonly referred to as Peters’ rule (Peters and Feldman,
1976; Braitenberg and Schüz, 1991; Peters and Payne, 1991)
has been quantitatively confirmed (Peters and Feldman, 1976;
Binzegger et al., 2004; Krishnaswamy et al., 2015), as well
as challenged (Li et al., 1992; Freund and Buzsáki, 1996) in
some cases. Recent meta-studies (Rees et al., 2017) however,
show that this is a reasonable assumption to make, as most
of the exceptions to Peter’s rule were attributed to a couple
of families of neurons with well-known targeting specificity.
When enabled by the user, NEUROiD uses the cell group
and its 3D positional information to obtain potential net
connections using this rule.

Either one or both of the methods described above can be used to
generate net connections in NEUROiD.

2.3.1.6. Micro/physiology
The Micro/Physiology component of the model is defined
by the channel mechanisms inserted into the cell models, and
their properties. NEUROiD database of components largely
uses .mod files published in existing literature or downloaded
from public repositories such as ModelDB (Hines et al., 2004).
In future, the micro scale physiology information too will
be stored in a structured, tabulated form. This will allow
NEUROiD to generate the cell mechanism .mod files using the
stored parameters.

The channel mechanisms used in the examples used in this
paper are obtained from the published works of Courtine et al.
(2016), Booth et al. (1997), Destexhe (1997), and McIntyre
et al. (2002). All references to mod files in this paper imply
NEURON .mod files.

2.3.1.7. Biomechanics
The generated output of a simulated neuromotor system in
NEUROiD is best appreciated when it is interfaced to a
musculoskeletal model.

We hereby show two different methods for definition,
simulation and visualization of the biomechanics, namely (a)
through a native mechanism within NEUROiD and (b) through
use of the OpenSim software. In the former method, the user is
responsible for encoding the differential equation corresponding
to all the musculoskeletal segments, their interactions and the
like by means of differential equations. The differential equations
may be defined in the system by means of NEURON .mod file
mechanism (Figure 3A). The second method uses OpenSim To
define the musculoskeletal model. NEUROiD provides a glue
code for NEUROiD to interact with Opensim and run a co-
simulation (Figure 3B).

Motoneuron activations are calculated based on the action
potentials observed at their axon terminals. This activation is
used to excite the corresponding muscles in the musculoskeletal
model. The Lengths, velocities of contraction and the joint angles
are returned by the musculoskeletal model, which are then used
to calculate the afferent firing.

The Macro/Biomechanics component consists
of the joint angles of the musculoskeletal model. The
Meso/Biomechanics component includes the transfer
function between motoneuron activation and resulting
change in muscle length, velocity or force, while the
Micro/Biomechanics component consists of the twitch
responses of individual muscle fibers.

2.3.1.7.1. Neuro-musculoskeletal glue The interactions between
the neuromotor model and the musculoskeletal model are
handled by a glue layer in NEUROiD. This layer calculates the
activations (a value between 0.0 and 1.0) for the muscles in
the musculoskeletal model using the spike train observed in the
axons of motoneurons of corresponding cell groups. A model for
proprioception is used to evaluate the afferent firing frequency
using the muscle length and velocity at every time step.

Afferent feedback calculation is based on the quantitative
approach suggested by Prochazka and Gorassini (1998). We use
the equations described in Prochazka (1999) which are derived
from Prochazka and Gorassini (1998) but normalized by the
resting length of the muscle. Similar equations have been used
in the calculation of afferent feedback in various models (Markin
et al., 2010; Sreenivasa et al., 2013). The firing frequency of Ia
afferents and II afferents are calculated using the below equations:

IaFiring = α1 ∗ v
γ1 + β1 ∗ disp+ η1 ∗ act + base (1)

IIFiring = β2 ∗ disp+ η2 ∗ act + base (2)

where v is the velocity of contraction and disp is the displacement
of muscle, both normalized by the resting length of muscle. α1,
γ1, β1, η1, β2, and η2 are constants whose values are derived
from Prochazka (1999). act is the component of firing rate which
is proportional to the alphamotoneuron activity, while the base
represents the mean firing rate.
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FIGURE 3 | NEUROiD interfaces to biomechanical models for a complete and realistic neuromotor simulation. As an example, we have integrated NEUROiD with two

sample biomechanical models of ankle joint for this paper. (A) A simplistic rigid body model of the ankle joint. The differential equations governing the model are coded

in a mod file. The state of this model is evaluated at every timestep by NEURON along with rest of the neuromotor system model. (B) An OpenSim (Seth et al., 2011)

model of lower body mechanics (Delp et al., 1990). OpenSim is used to solve the state of this model at every time step and runs as a co-simulation along with

NEURON. The solid lines represent the efferent connections and the dashed lines represent the afferent connections. The extensor connections are shown in blue and

the flexor connections are shown in red. The activation of motoneurons are used to excite the muscles in one of the two musculoskeletal models. The afferent firing

frequency is evaluated by the musculoskeletal model.

The equation highlights the power law relationship between
the spindle afferent firing rate and rate of changes in the
spindle length. We obtain the velocity and displacement
from one of the musculoskeletal models described before
and use them in the above equations to obtain the afferent
feedback frequency. These afferent rates are used for stimulation
of the interneurons and motoneurons, hence closing the
control loop.

2.3.2. Definition
The curated model, which is in a structured and concise form, can
be used to generate amodel definition.

Generation of simulator agnostic, structured model definition
of the neuromotor system using the curated model is done by
python scripts in NEUROiD (Figure 1B).

The model definition consists of a core model and some
auxiliary information:

1. Definition of the core model is segregated into five
sections: info, regions, segments, cell_groups,
and net_connections. The info section contains meta
information about the model (for example, name and viewing
resolution). The segments section contains the details of
spinal cord segments. The regions section contains all
the 3D laminae in various spinal cord segments, while the
cell_groups section holds the details about all the cell
groups in the model. The net_connections section stores
the details of network connections and their properties.
Number of cells in a cell group, convergence ratio of neural
connection and weight of synaptic connections are modeled
as normal random variables in NEUROiD. Please refer to
the Supplementary Material for further information on the
structure of model definition.

2. Definition of random cell positions for cell placement in
every cell group forms a part of auxiliary information.
NEUROiD generates random positions (x, y, and z
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coordinates) inside the defined 3D region for every cell
group. This ensures consistency in the 3D positions of cells
displayed in visualization and the 3D positions used during
simulation experiments.

This setup allows Monte Carlo type of simulations to
be performed with different randomly chosen cell positions
in every simulation run. The distribution function used
to generate cell positions is configurable. While uniform
random distributions is supported currently, support for other
distributions will be added in future.

3. Definition of cell model templates (in hoc file format) used
for simulation forms another auxiliary information and it is
generated by NEUROiD using the curated model. The curated
model allows users to provide cell parameters (such as channel
mechanism parameters, diameter, and length of section) as
a random number. We use the NEURON Random() to
generate normally distributed random numbers.

4. The contours of various laminae are translated with reference
to a central canal region so that they are aligned along
the neuraxis. NEUROiD uses these translated contours for
simulation and 3D rendering.

5. Definition of cell morphology which is used to display the
3D structure of a cell also forms a part of model definition.
NEUROiD stores the cell morphology information (derived
from cell template definition) into a structured form suitable
for visualization.

2.4. Simulation
The model definition is a simulator agnostic model
representation. This is used to generate code that will be
compiled and executed on simulation platforms. For the
examples in the current paper, we run our simulations on
NEURON (Hines and Carnevale, 1997). NEUROiD uses
Simulation Definition from the user along with model definition
to generate code for simulation. The simulation definition
includes the parameters necessary for simulation such as
duration of simulation, details of input stimulations to be
provided and variables to be monitored during simulation.

The simulation definition can either be provided through the
NEUROiD user interface (explained in section 2.5.1.1), or loaded
from a saved file (explained in section 2.5.1.2), which stores the
definition in a structured (json) format.

The model and simulation definition are used to generate
the source code for the defined model in hoc format that
can be simulated using NEURON. Python scripts are used
to manage and monitor the simulation. These scripts create
a hoc environment, load the model in hoc format, enable
the input stimulations, record variables, store results into
files, provide activation to the musculoskeletal model, calculate
afferent feedback and close the sensorymotor loop. NEUROiD
adopts a client-server architecture and performs compute and
memory intensive simulation operations on a server machine
with sufficient compute and memory resources (such as a
high-performance computing cluster). The server runs on a
dockerized ubuntu environment. Please refer to section 2.6 for
more details on activities performed on the client and server side
in chronological order during typical usage.

2.5. Visualization
NEUROiD uses a web-browser (client) for user interaction and
visualization. An initial view of the spinal cord rendered on the
web-browser is shown in Figure 4A. Note that the spinal sections,
3D boundaries of laminae, cells and net connections between cell
groups are clearly visible. NEUROiD allows the user to zoom
in, zoom out, translate, perform virtual electrophysiological
operations such as placing current injection & measurement
probes (section 2.5.1.1, Figure 4B), slicing (section 2.5.1.3,
Figure 4C), viewing the results of experiments (section 2.5.1.4),
and displaying stored literature references for the model (section
2.5.1.5, Figure 4B).

2.5.1. Features
We describe the suite of features available in
NEUROiD for user interaction, visualization, and virtual
physiological experimentation.

2.5.1.1. Current injection and measurement response
Injecting current at a specific cell or cell group is commonly
used to study the electrophysiology of various cell types and
circuits. NEUROiD provides a feature to inject current at any
desirable location in the model. Since we render the 3D model
of spinal cord on a 2D display, it is challenging to inject current
at cell groups that are not rendered in the foreground. We solve
this problem by listing all the cell groups that are intersected
by the ray formed by a user click. User can select the specific
region from the list where current injection is needed. Further
the user can select either NetStim (a train of presynaptic stimuli
in NEURON) or iclamp (current clamp inNEURON) and specify
the amplitude of current, duration of current, initial delay in
current injection and relevant parameters. The user can choose
specific cell groups to view the response after a simulation.
Similar to current injection, user can also select a cell group that
is not present in the foreground but is intersected by the ray
formed by a user click. The user can choose to record membrane
current, membrane voltage or contributions of specific channel
currents to be visualized in the response. NEUROiD displays a
red electrode with the tip at the target injection cell group and a
blue electrode for measurement (Figure 4B). LFP electrodes (in
green) are also visible in the figure. NEUROiD allows users to
specify large sets of injection and recording using json files. This
is described below.

2.5.1.2. Restore simulation definition
NEUROiD allows users to load a simulation setup saved in
a structured (json) format. The json structure has five major
sections: inputs, responses, setup, runs, and plots.
The inputs section defines the various simulation inputs that
the user intends to provide for simulation. This includes the
type of input (for example, iclamp, NetStim) and cell groups
to which the input is provided. The user can provide arbitrary
functions to describe the input magnitude using piecewise linear
approximations. The responses section defines the model
parameters that the user wants to record during simulation.
This includes the type of parameter to record (for example,
voltage, current, spike) and cell groups to record from. The
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FIGURE 4 | (A) The initial view of spinal cord rendered by NEUROiD. L4 and L5 sections of the cord are seen along the neuraxis in caudal-to-rostral direction. Various

laminae boundaries (3D surfaces), cell groups (spheres) and the net connections (red lines) are seen. (B) NEUROiD allows users to inject current (red electrodes),

measure current or voltage (blue electrode) and position an LFP electrode (green electrode). These can be placed manually, or a pre-defined setup in json format can

be loaded using the “Save/Restore Setup” option to perform an experiment. LFP is evaluated using LFPSim (Parasuram et al., 2016) (C) NEUROiD allows users to

slice the 3D model of spinal cord and visualize the laminae boundaries in 2D cross section at any point along the length of cord. The slicing plane can also be tilted to

change the pitch and yaw angles before slicing.

plots section is used to define the parameters to be plotted
and type of plots the user would like to view. This design
where the measurement of responses and their plots are
separated, allows us to record as many simulation variables
as needed and save them in files, and use them later for
plotting and post-processing. The runs section is used to
define the parameters that control the simulation (for example,
duration of simulation, the piecewise linear inputs). Please refer
to the Supplementary Material for further information on the
structure of simulation definition json.

2.5.1.3. Slice
Since their first description by Rexed (1954), the concept of
laminae has been very popular for describing cytoarchitectonic

boundaries in the spinal cord. The laminae are organized in a
series of layers from dorsal to ventral, lamina 1 being the most
dorsal. The structure, cytoarchitecture, and chemoarchitecture
for each lamina is summarized in Sengul et al. (2012). The
slicing feature in NEUROiD allows the users to slice the model
at a specific location and view the cross section in an inset
(Figure 4C). The slicing can be done anywhere along the length
of the model (neuraxis). Further, the slicing plane can be tilted
along the x (yaw) and/or y (pitch) axis to view the slice at a
specific angle.

2.5.1.4. Plotting
NEUROiD plots the results of experiment in javascript dialog
windows. Primary variables (for example, membrane potential,
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spike train) or secondary evaluated variables (for example,
frequency-current curve, spike rate adaptation curve) can be
plotted. The user can specify the list of variables to be plotted
in the simulation definition file. NEUROiD uses plotly 3 library
for plotting, which allows users to view, edit, and analyze the
plots online.

2.5.1.5. Reference
NEUROiD is an easily referenceable collection of relevant
information curated from literature. Quite often, models are
viewed with skepticism as they are not wholly transparent
with respect to the parameters that went into their creation.
To ensure transparency and traceability, NEUROiD includes a
feature to store and display all the references used for creating
the model. When the user performs a right click on a specific
point on the spinal cord model, the references window (top
right in Figure 4B) shows the references used for the specific
model element. This information is parsed from the curated
model which collates all the references that went into the
curation process.

Further details on the features and organization of NEUROiD
can be found in Supplementary Material and the documents
available along with the source code.

2.6. Typical Usage
A typical set of activities performed on NEUROiD are shown
here (Figure 5) in chronological order. The model definition
is generated from the curated model. NEUROiD uses a
NodeJS server 4 to perform all server-side operations. The
node server waits for connection request from a client (a
web-browser such as firefox5). On receiving the connection
request, the node server sends the model definition to the
connected client. The client uses the model definition to
render a 3-dimensional view of the neuromotor system,
using the threejs 6 javascript library. An initial view of the
spinal cord rendered by the client is shown in Figure 4A.
The client also allows the user to interact with the model.
In section 2.5.1, we have described some of the client-
side features offered by NEUROiD in more detail. The
client also allows the user to specify a simulation definition
(current injections to be made, voltage/currents to be
measured, plots to be displayed). Details of such setup
are provided in Supplementary Material. The server then
generates code (in hoc7 format) using the model definition,
and the simulation definition sent by the client. Generated
code is used by NEURON (Hines and Carnevale, 1997)
simulation environment to simulate the experiment(s)
requested by the user on the defined model. The results of
simulation are then sent back to the client for rendering on
the web-browser.

3https://plot.ly/javascript/
4https://nodejs.org/
5https://www.mozilla.org/en-US/firefox/new/
6https://threejs.org
7https://www.neuron.yale.edu/neuron/static/new_doc/programming/hocsyntax.

html

2.7. Model Integration in NEUROiD
One of the core philosophies of NEUROiD is to create a
user-friendly platform for model definition by curation and
combination of multiple existing models. The integrated model
created from multiple constituent models should exhibit the
properties of interest from all the constituent models. Creation
of such a model is a non-trivial task requiring comparison of
multiple models, exploration, and tuning of model parameters.

Figure 6 shows the process of parameter search and creation
of an integrated model at a high level. We use a coordinate
ascent based approach to explore for optimal parameters in the
integrated model. Coordinate descent (Wright, 2015) is a widely
used parameter search algorithm in machine learning, control
systems (Luo and Tseng, 1992; Patrascu and Necoara, 2015; Chen
et al., 2017) and recently in gene selection methods (Ghalwash
et al., 2016). Though such parameter search algorithms provide
optimumparameters for a convex optimization function, they are
known to converge to a local optimum (and not global optimum)
for high dimensional non-linear error surfaces. This is generally
acceptable because recovering the global minimum becomes
harder as the dimensionality of the error hypersurface increases
and the global minimum may lead to overfitting (Choromanska
et al., 2014; Pascanu et al., 2014).

The process of creating an integrated model involves the
following steps:

1. Comparison of constituent models:

NEUROiD stores all model information in a structured
and tabulated form. This allows for an efficient comparison
between two models. NEUROiD provides a tool (called
compare_cells) that shows the difference between two
constituent cell models in a tabulated, clear and concise
format. This allows the users to identify the parameters from
constituent cell models that should be imported and tuned in
the integrated model. Currently, this is a command line tool
which compares two cell types. In future releases, this tool
will be integrated to show the output on the web-browser and
compare models at Meso and Macro scales as well.

2. Identification of parameter space:

An integrated cell model is created based on the cell
parameters of one or more of the constituent models. Based
on the output of compare_cells and the properties of
interest in each of the constituent models, a set of parameters
is manually chosen. These parameters are the ones which
most likely define the properties of interest in the constituent
models. The goal now is to explore and identify values for
these parameters such that the integrated model displays the
properties of interest observed in all the constituent models
along with some emergent properties.

3. Identification of desired system response:

In order to perform automatic parameter search on any
system, it is essential to define the desired system response
and a corresponding objective function. The desired system
response is the ideal output of the system for a given input. The
objective function measures how close the system response
(with current parameter set) is, to the ideal system response.
Hence, the goal of parameter search algorithm is to now
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FIGURE 5 | Typical workflow in NEUROiD. In the Define plane, the “model curated” state indicates the completion of manual curation of data into xls, txt and mod

files. This is then converted to json model definition using python scripts and the state changes to “Model defined.” A NodeJS server is started in the Simulate plane

and waits in the “server started” state for connection request from a client. On the Visualize plane, a client (written in javascript) tries to connect to the server upon user

initiation. Upon successful connection, the client and the server enter the “Server connected” and “Client connected” state respectively. The server sends the model

definition to the client which renders the 3D model and performs user interaction. Upon a simulation request from the user, the client enters the “Simulation” state and

the server enters the “Generate code” state to generate the hoc code. This hoc code is used to perform simulation with NEURON backend. The results of the

simulation are sent back to the client for visualization.

converge to a set of parameters for the integrated model
which maximizes the objective. For the integrated model,
the desired system response could include one or more of
the micro, meso, or macro level properties identified in
constituent models. The objective function is defined as the
sum of Pearson’s correlation coefficients between current
system response and each of the constituent model responses.
The parameters for the integrated model are typically identical
to one of the constituent models, except for the parameters
that are identified in step “identification of parameter
space” above.

4. Parameter search:

With a desired system response and an objective function, the
parameter space is explored to find the set of parameters that
maximizes the objective function.
Finding an analytical expression to indicate how the objective
function changes with respect to each of the search parameters
is difficult for a complex and non-linear system such as
the one we are dealing with now. It becomes even more
challenging in our case where we are interested in finding a
set of parameters that should provide multiple results from the
same model.
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FIGURE 6 | Creation of an integrated model. Constituent models used for creation of an integrated model are identified and compared. A set of parameters

responsible for the key features of constituent models are identified. The desired system response and objective function are identified. The parameter space is

divided into subspaces. Coordinate ascent is performed on each parameter subspace with an aim to achieve the desired system response on the integrated model.

Our Coordinate ascent search has two aspects:

(a) The direction and magnitude of change in the parameter
hyperspace depends on the amount of correlation with
ideal results. For every set of parameters that the
algorithm proposes, the constituent system responses and
the objective function are evaluated. The parameters are
changed, few at a time to gradually approach an optimum
set of parameters.

(b) We perform this coordinate ascent on the individual
parameter subspaces and obtain a few seed points. These
are then used to perform search in the hyperspace formed
by the set of all the parameters.

3. RESULTS

In section 3.1.1, we describe a simple motoneuron model built
in NEUROiD based on parameters from a published model
(Courtine et al., 2016). We then build a system level neuromotor
model of L4 and L5 segments of spinal cord. Instances of
alphamotoneuron cells in this systemmodel use the motoneuron
model that was previously created. In section 3.1.2, we describe
how our model is validated. In section 3.1.2.1, we validate
its single cell neurophysiological properties (frequency-current
curve). The system level property (spinal reflex recruitment
curve) is validated in section 3.1.2.2 by comparing with the results
from published model. In section 3.1.2.3, we describe integration
of the neuromotor model with an OpenSim musculoskeletal

model. In section 3.2.1, we describe additional cell models built in
NEUROiD based on parameters from published literature (Booth
et al., 1997; Destexhe, 1997; Cisi and Kohn, 2008). The single
cell neurophysiological properties of these cells are validated in
sections 3.2.2.1–3.2.2.3 by comparing the properties of reference
models. In section 3.2.2.4, we validate the orderly recruitment of
motoneuron cell types in the neuromotor model by comparing
the rheobase of cell models with published values. In section
3.2.3, we describe the construction of an integrated cell model
in NEUROiD and validation of its single cell neurophysiological
and system properties by comparing with the properties of
constituent cell models.

3.1. Simple Motoneuron Model
We built a motoneuron cell model based on parameters from
Courtine et al. (2016). The cell model was validated by comparing
single cell neurophysiological properties of the model with the
reference model. This motoneuron cell model was used in a
spinal cord model of L4 and L5 segments in NEUROiD. Meso
scale properties of the neuromotor model were validated by
comparing the spinal reflex recruitment curves of the model with
the reference. We also demonstrate the integration of OpenSim
musculoskeletal model with NEUROiD.

3.1.1. Model Definition and Generation
We defined the cell sections, topology, and ligand gated channel
properties of the motoneuron cell model derived from Courtine
et al. (2016) and populated the appropriate input xlsx file

Frontiers in Neuroinformatics | www.frontiersin.org 14 August 2019 | Volume 13 | Article 56



Iyengar et al. NEUROiD

in NEUROiD. This forms the Micro/Anatomy property of
the model. We defined the soma, inseg (axon hillock), node,
paranode, and dendrite sections along with the corresponding
channel mechanisms and parameters. We set the soma diameter
to be a random variable with a mean of 82µm, to match
the published values for slow type motoneuron (Fleshman
et al., 1981). The topological connections between the sections
were also derived from reference and defined along with the
ligand gated channels and their parameters. The mod files
for the channel mechanisms form the Micro/Physiology
component of the model. These are obtained from ModeldDB
(Hines et al., 2004).

To validate the network properties of our model with the
reference, we developed two different models for the ankle joint
along with its controlling neural circuitry. These models are
described below:

1. Native Ankle Model:

Wenow show an example of musculoskeletal model definition
using native NEUROiD interface. A biomechanical model
for the specific musculoskeletal subsystem is identified
and the governing differential equations are obtained.
These equations can then be coded as mod files which
can be solved by NEURON along with rest of the
neuromotor system.

The default ankle model consists of a rigid body model
of the foot (Figure 3A). R, O, and Q represents heel, hinge,
and toe, respectively. PQ and PR represent lengths of tibialis
anterior and gastrocnemius muscles respectively. The ankle
makes an angle θ with the positive X axis. As the forces
along the muscles change, the ankle rotates about the origin
O. The governing differential equation that determines the
configuration of ankle is as follows:

M = Iθ̈ (3)

Where M is the moment of forces (due to contraction of
tibialis anterior and gastrocnemius muscles) about O, I is the
moment of inertia and θ is the angle made by the ankle with
the positive X axis (Figure 3A).

This model is implemented as a mod file so that the
ankle angle is solved using NEURON solver at every step
of simulation.

The Meso/Biomechanics component consists of the
transfer function between the motoneuron activation and the
change in muscle properties.

In the default model, an action potential from the
motoneuron is approximated using δ(t), which is the unit
impulse function. Force produced by motor units is modeled
as the output of a linear time invariant system whose unit
impulse response is the twitch response (Fuglevand et al.,
1993; Cisi and Kohn, 2008).

The twitch response of a motor unit to an
action potential in associated motoneuron forms
the Micro/Biomechanics component of
the model.

At every timestep, the ankle angle (θ), length of tibialis
anterior (PQ), and gastrocnemius (PR) muscles are obtained.

2. OpenSimModel:

The lower body mechanics model (Delp et al., 1990) was
integrated with NEUROiD. This model (Figure 3B) internally
implemented all the aspects (Micro, Meso, and Macro) of the
biomechanical model.

We define a model of the 4th and 5th lumbar segments
of the spinal cord that has the cell groups and synaptic
connections (derived using muscle synergies) responsible for
ankle movement.

Tibialis anterior and gastrocnemius are the dominant muscles
for ankle dorsi-flexion and plantar-flexion respectively. The
muscle synergy information for these muscles are updated.
The anatomical localization (Sharrard, 1955) and properties of
associated motoneurons in lamina-9, excitatory, and inhibitory
interneurons in lamina-6 and afferent neurons in dorsal root
ganglion are updated in neuronal cell types table. The
synaptic connection rules between the defined cell groups
are updated.

The generatedmotoneuron cell groups (Figure 7A) are placed
in the left crural extensor (CEx_L) laminae in lumbar section 5
and in the left crural flexor laminae (CFl_L) in lumbar section
4. The generated afferent neuron cell groups are the IaAfferent
and IIAfferent neuron groups in the dorsal root ganglion region.
IaInterneuron and excitatory interneuron cell groups in the
laminae-6 of spinal gray matter are also generated in both L4 and
L5 sections.

In our simulations, we modeled 169 alpha motoneuron
cells, 60 Ia and II afferent cells each, and 400 interneurons in
each segment of the spinal cord (Courtine et al., 2016). The
membrane potential at soma of each alpha motoneuron cell is
described using a modified Hodgkin-Huxley model. It consists of
sodium, calcium activated potassium, N-type and L-type calcium
channels (McIntyre et al., 2002). The interneurons were modeled
as integrate-and-fire cells.

From the derived synaptic connections (Figure 7B), we can
see that the afferent fibers form excitatory connections with
agonist motoneurons, excitatory, and inhibitory interneurons.
Ia inhibitory interneurons form inhibitory connections to
antagonist motoneurons while the excitatory interneurons form
excitatory connections with agonist motoneurons (Pierrot-
Deseilligny and Burke, 2012). These synaptic connections are also
shown as red lines between cell groups in Figure 7A.

We call this cell model M_cell_srr, since we
plan to reproduce spinal reflex recruitment curves from
this model.

3.1.2. Simulation and Visualization
Here we describe selected single-cell neurophysiological
experiments performed on the created
cell model.

Frequency-current (FI) relationships of motoneurons
demonstrate the active properties of the cell for suprathreshold
current injections. Step current injections have been used to
study the instantaneous firing frequency adaptation (Granit
et al., 1963; Kernell and Monster, 1981) while triangular current
injections have been used to study effect of persistent inward
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FIGURE 7 | (A) This figure shows the network and system level model description of the model used for all systems level experiments. The various motoneuron,

interneuron, and dorsal root ganglion cell groups placed within their respective 3D laminae boundaries can be seen here. The net connections between different cell

(Continued)
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FIGURE 7 | groups are also shown as red line. (B) The representation of the feedback circuit and net connections for the flexor and extensor group used in simulation

to obtain spinal reflex recruitment curves, orderly recruitment and integration with OpenSim. (C) A Typical view of output screen in NEUROiD after simulation. The 3D

model of spinal cord with the current injection probes (red) and the measurement probes (blue) is seen in the background. The experimental results are plotted in small

windows on the screen. Here, we see the FI-curve of M_cell_srr (top-right). We see the firing frequency increase with an increase in the amplitude of injected current for

a ramp input current (bottom-left). The membrane potential at the soma (bottom-right) is also recorded and plotted. The cell morphology for the motoneuron is defined

by the user in the cell template definition xls file. This information is used to render a 3D model of the cell with detailed morphology (bottom-center). The soma is shown

as a sphere in red while the axon and dendrite sections are shown as cylinders in blue. We can also record the channel mechanism currents in NEUROiD. The Na+

ion current is recorded and plotted (top-left) in this example. The simulation definition file is used to specify all the parameters that need to be recorded and plotted.

currents and plateau potentials (Booth et al., 1997; Kiehn and
Eken, 1998; Lee and Heckman, 1998) in motoneurons.

NEUROiD allows users to start a simulation and visualize the
results on the client (web-browser). Figure 7C shows a typical
output screen on NEUROiD. After completion of an experiment,
results are plotted in small windows. The results of a simulation
performed to obtain the FI curve of M_cell_srr are shown
here. The FI curve (top-right), membrane potential (bottom-
right), current due to specific channel mechanism (top-left), cell
morphology (bottom-left), and injected current (bottom-center)
can be seen in the figure.

3.1.2.1. FI (Frequency-Current) curve
This experiment involved stimulating the cell model with an
increasing ramp current and measuring the instantaneous firing
frequency. The current input is defined as a linear piecewise part
in the "inputs" section of the experiment setup json file. The
current ramps up from 0 nA amplitude at 0 ms to 50 nA at 1,000
ms. It is known that the rheobase of the FF type motoneuron
is highest (17.5–25.1 nA) and that of the S type motoneuron is
the lowest (3.5–6.5 nA), while the FR type has a rheobase that
lies in between the two (6.5–17.5 nA) (Fleshman et al., 1981; Cisi
and Kohn, 2008). Fifty nanoamperes is well above the threshold
current needed for all the three types of motoneurons to fire.

Figure 8A shows the FI curve that was obtained with the
reference motoneuron model from Courtine et al. (2016). We
see that the FI curve displays type 2 dynamics and the rheobase
matches with the typical value expected for a S type motoneuron
(Cisi and Kohn, 2008, Table 2). The FI curve for M_cell_srr
is shown in Figure 8B. We note that this is very similar to the
reference FI curve in (a).

3.1.2.2. Spinal reflex recruitment curve
This experiment aims to validate the meso scale properties of the
motoneuron model and spinal network created in NEUROiD.
For this, we define “EES” type input to stimulate the cell groups in
the extensor network. The setup was defined to run 12 different
experimental runs each for a duration of 160 ms and for different
EES current amplitude. The first experimental run used a current
of 7µA as input and the subsequent experiments increased the
input current by 1µA each. The EES frequency was set to 8Hz
with a delay of 10 ms.

The average soma membrane potential in extensor
motoneuron group is shown in Figure 8C. Since the EES is
set to have a frequency of 8 Hz with a delay of 10 ms, the first
input pulse is triggered at 135 ms. The responses observed
with a latency of 9–11 ms, 4.5–5 ms, and less than 3 ms are
considered as late, medium and early respectively (Gerasimenko

et al., 2006). The medium-late responses are observed due to
activation of monosynaptic and disynaptic pathways in reflex
circuit, while the early response is due to direct recruitment
of motoneurons (Capogrosso et al., 2013). We observe that
neither the medium-late nor the early response are not seen
below a threshold (10 mA). Above the threshold, medium-late
responses increase rapidly and then decrease as the input
stimulation intensity is increased, while the early response
increases with increase in stimulation intensity monotonically
until all the fibers are recruited. The spinal reflex recruitment
curves elicited by EES stimulation for extensor network are
show in Figure 8D. The stimulation amplitude is defined in
terms of motor threshold, which is the minimum magnitude
of input stimulation for which the early response is observed.
We also observe that the medium-late response came below
20% of its maximum value when the stimulation amplitude was
twice the motor threshold. The spinal reflex recruitment curves
of extensor network observed in Courtine et al. (2016) are also
shown in Figure 8E for comparison. We observe again that the
medium-late response falls below 20% of its maximum for a
stimulation amplitude that is twice the motor threshold.

To gain more insight into the spinal reflex recruitment curves,
we plotted the individual component currents due to channel
mechanisms adopted (McIntyre et al., 2002). We see that the
inward sodium current (ina) (Figure 8F) and outward delayed
rectifier K+ (ikrect) show the behavior that leads to the
recruitment curves. Though linear leakage (il), N-type Ca2+

(icaN), and L-type Ca2+ (icaL) show the same pattern, they
are an order of magnitude smaller and hence, unlikely to have any
major effect. This agrees with the observation in Capogrosso et al.
(2013) that sodium current is a major contributor in medium and
late responses. These additional plots were obtained by specifying
the new parameters to be recorded and plotted in the setup
json file. No other change in the simulation setup or model
were required.

3.1.2.3. Integration with OpenSim
In this experiment we demonstrate the integration of NEUROiD
with an external musculoskeletal simulator such as OpenSim
(Seth et al., 2011). A lower body mechanics model (Delp et al.,
1990), which modeled the tibialis anterior and gastrocnemius
muscles was used. The firing rate of the action potential
spike train of the flexor and extensor motoneuron group from
NEUROiD was converted to activation values as expected (a
value between 0.0 and 1.0) by the OpenSim model. For every
simulation step, the activation values were sent to the OpenSim
model. After a single step of Opensim simulation, the updates in
muscle length and velocity were used by NEUROiD to calculate
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FIGURE 8 | (A) FI curve of the reference motoneuron cell model derived from Courtine et al. (2016). (B) FI curve of M_cell_srr, a motoneuron model in NEUROiD. The

rheobase of this model is close to 3nA, same as the reference model in (A). (C) The extensor soma voltage for various EES stimulations, averaged over all the cell

instances in the cell group. It is seen that the early response activation (first set of spikes after 125 ms) increases with increase in EES stimulation magnitude, but the

medium-late response (second set of spikes after 125 ms) first increases and then decreases. The bottom most plot (shown in blue) in the figure is obtained for an

EES stimulation of 7 mA. The stimulation amplitude is increased in steps of 2 mA to obtain other plots. (D) Spinal reflex recruitment curves elicited by EES Stimulation

of the extensor network simulated in NEUROiD. The medium-late response reduces to less than 20% of its peak value when input stimulation is twice the motor

threshold. (E) Spinal reflex recruitment of extensor group, reproduced from Courtine et al. (2016). The early and medium-late response is plotted here. Similar to (D),

we see that the medium-late response reduces to less than 20% of its peak value when input stimulation is twice the motor threshold. (F) The Na+ ion current is

recorded and plotted for various EES stimulations.
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the afferent feedback as suggested by Prochazka and Gorassini
(1998), hence controlling the ankle muscles in a biologically
realistic closed loop.

We define two inputs of type “EES” (implemented using
NetStim in NEURON), one each for the flexor and extensor
motoneuron group. The extensor network is stimulated between
0 and 60 ms, while the flexor network is stimulated between 130
and 160 ms from start of the experiment.

We see the flexormuscle being activated during the simulation
in Figure 9A thereby causing a dorsi-flexion, while Figure 9B

shows the extensor being activated and causing a plantar-flexion.
In Figure 9C we show the LFP evaluated during this

experiment when the electrode was placed close to the
motoneuron group in the L4 segment of spinal cord. LFPSim
evaluates LFP using point source approximation, line source
approximation and low pass RC methods. LFPSim uses the
extracellular mechanism available in NEURON to simulate
extracellular potentials.

Figure 10 summarizes visualization of the 3x3 cubelets
across scales and disciplines for the experiments performed
on the example neuromotor model. In the Macro/Anatomy
cubelet, we see the 3D model of L4 and L5 segments
of spinal cord. Contours in the sliced L4 segment are
seen in the Meso/Anatomy cubelet. The cell morphology
that forms the Micro/Anatomy component, can also be
seen. In the Macro/Physiology cubelet we see the local
field potential evaluated at a user specified point in 3D
space. The Meso/Physiology cubelet shows the synaptic
connections and neural circuits that we have defined in
the L4 and L5 segments. Ionic currents due to channel
mechanisms forming the Micro/Physiology component
is seen in the corresponding cubelet. Along the biomechanics
discipline, the ankle model and angle made at the ankle
joint are seen in the Macro/Biomechanics cubelet. Force
generated in muscles as a response to the motoneuron
activation is seen in the Meso/Biomechanics cubelet. The
Micro/Biomechanics component is defined by twitch
response of a muscle fiber.

Such a visualization may also influence the choice of cell
models to achieve specific network or system level behaviors.

3.2. Integrated Cell Model
Our goal is to build an integrated cell model that can reproduce
properties of constituent cell models. For this, we first build
additional cell models in NEUROiD.We validate these models by
comparing the neurophysiological properties with reference. We
then build an integrated cell model using techniques described
in section 2.7.

3.2.1. Additional Cell Models - Definition and

Generation
We created additional motoneuron cell models in NEUROiD
and validated their neurophysiological properties. Firstly, we
defined a model based on Destexhe (1997) and called it
M_cell_Slow. Being an integrate-and-fire model, this had
lesser computational complexity compared to the previous
model. The Micro/Anatomy and Micro/Physiology

properties were populated in relevant xlsx files as done for
the previous model. We also added fast fatigue resistant
(M_cell_FR) and fast fatigable (M_cell_FF) motoneurons in
a similar manner. The electrotonic parameters for these cell types
were specified based on Cisi and Kohn (2008).

It is known that in presence of certain ion channel blockers or
neurotransmitters, more complex firing patterns can be evoked
in motoneurons. For a ramp current input, the action potential
firing frequency increases with increasing current injection. Due
to increase in average dendritic voltage, a dendritic plateau
potential is achieved that causes the action potential firing
frequency during the descending input ramp to be higher
than the corresponding value during the ascending phase.
Such a bistable firing pattern endows motoneurons with a
mechanism for translating short lasting synaptic inputs into
long-lasting motor output (Hounsgaard and Kiehn, 1989). This
firing behavior is explained by activation of a plateau potential
mediated by an L-like Ca2+ current. A computational model of
motoneurons displaying the bistable firing pattern is discussed in
Booth et al. (1997). We implemented a motoneuron cell model
in NEUROiD based on parameters from Booth et al. (1997) and
called it M_cell_bistable.

3.2.2. Additional Cell Models - Simulation and

Visualization

3.2.2.1. FI (Frequency-Current) curve
The experiment setup for FI curve is same as the setup used to
obtain FI curve of M_cell_srr.

Figures 11A,B shows the FI curve of M_cell_FR and
M_cell_FF respectively. We see that the FI curves displays
type 2 dynamics and the rheobase matches with the typical value
expected for FR (fast fatigue resistant) and FF (fast fatigue) type
motoneurons (Cisi and Kohn, 2008, Table 2).

3.2.2.2. SRA (Spike Rate Adaptation) curve
This experiment involved stimulating the cell model with a step
current and measuring the instantaneous firing frequency. Step
input is defined as a piecewise linear approximation with value
0 nA upto 100 ms and an amplitude greater than the firing
threshold of the cell, thereon upto 1,000 ms. The same is defined
in experiment setup json file in the “inputs” section.

The spike rate adaptation (also called firing rate adaptation)
curves of Slow, FR and FF type motoneuron models was
obtained in Cisi and Kohn (2008) and reproduced in Figure 11C.
Figure 11D shows the firing rate adaptation curve of Slow
type motoneurons obtained in NEUROiD. The basal firing rate
of 22 Hz for the Slow type motoneurons is achieved within
a few interspike intervals. This can also be observed in the
reference plot (subplot (i) of Figure 11C) An input stimulation
current of 12 nA was used for this simulation. Similar behavior
is observed with FR (Figure 11E) and FF (Figure 11F) type
motoneurons. A basal firing rate of 32 Hz is achieved with
a stimulation of 18 nA for the FR type motoneurons and 25
nA for the FF type motoneurons. Thus, the results obtained
on NEUROiD are similar to the spike rate adaptation plots in
Cisi and Kohn (2008).
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FIGURE 9 | (A) This figure shows NEUROiD and OpenSim integration. The OpenSim model is driven by the motoneuron activations evaluated in NEUROiD and the

calculated afferent firing rates are used by NEUROiD as a proxy for afferent stimulation (refer Figure 3). The OpenSim model is seen performing a dorsi-flexion when

the flexor motoneurons (tibialis anterior) were activated during simulation. (B) OpenSim model performing plantar-flexion when the extensor motoneurons

(gastrocnemius) were activated during simulation. (C) An LFP probe was placed at a point close to the L4 segment of spinal cord during the simulation. The 3D

location of the probe was (x:3438, y:–1062, z:500). This figure shows the plot of recorded LFP. LFP is evaluated using the LFPSim (Parasuram et al., 2016), which is

integrated into NEUROiD. LFPSim evaluates LFP using point source approximation, line source approximation and low pass RC methods. LFPSim uses the

extracellular mechanism available in NEURON to simulate extracellular potentials. We used the default values of extracellular capacitance (xc), extracellular resistance

(xaxial) and extracellular conductivity (xg) set by LFPSim. (D) This figure shows the orderly recruitment of motoneuron groups. We see that the S type motoneurons

start firing at 3 nA. The FR and FF type motoneurons are recruited at 15 and 25 nA, respectively. These thresholds match with the rheobase values of slow, fast fatigue

resistant and fast fatigue motoneuron models (refer Cisi and Kohn, 2008, Table 2).

3.2.2.3. Bistable firing
The instantaneous firing frequency plot for ascending and
descending ramp current and membrane potential plot
from Booth et al. (1997) is reproduced in Figures 12A,D,
respectively. Figure 12B shows the instantaneous firing

frequency with 5-HT (serotonin receptors) enabled and
Figure 12C shows the instantaneous firing frequency with
5-HT disabled for M_cell_bistable. we enable the 5-HT
by reducing the gkcabar_KCa parameter by 40% (Cisi
and Kohn, 2008). The membrane potential at the soma of
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FIGURE 10 | The figure shows snapshots from various simulations in NEUROiD representing the 9 cubelets of the visualization plane. In the Macro/Anatomy cubelet,

we see the 3D model of L4 and L5 segments of spinal cord. Contours in the sliced L4 segment are seen in the Meso/Anatomy cubelet. The cell morphology that

forms the Micro/Anatomy component, can be seen in the corresponding cubelet. In the Macro/Physiology cubelet we see the local field potential evaluated at a user

specified point in 3D space. The Meso/Physiology cubelet shows the synaptic connections and neural circuits that we have defined in the L4 and L5 segments. Ionic

currents due to channel mechanisms forming the Micro/Physiology component is seen in the corresponding cubelet. Along the biomechanics discipline, the ankle

model and angle made at the ankle joint are seen in the Macro/Biomechanics cubelet. Force generated in muscles as a response to the motoneuron activation is

seen in the Meso/Biomechanics cubelet. The Micro/Biomechanics component is defined by twitch response of a muscle fiber is also seen.

M_cell_bistable is shown in Figure 12E. The results
obtained in NEUROiD are similar to the bistable firing plots in
Booth et al. (1997).

3.2.2.4. Orderly Recruitment
It is known that motoneuron recruitment is size-ordered
(Henneman et al., 1965). The smaller, low force, long endurance
slow (S-type) motoneurons are recruited first, while the larger
FR and FF type motoneurons are recruited when larger
muscular forces are needed for shorter durations of time
(Purves et al., 1989). This behavior is also observed in the
motoneurons contributing to the human H-reflex (Buchthal
and Schmalbruch, 1970). Table 2 in Cisi and Kohn (2008)
summarizes the typical values for size, rheobase and other
parameters of S, FR and FF type motoneurons, while Table 3
summarizes the twitch and force properties for the three types
of motoneurons.

We define an input of type “iclamp” to stimulate the S,
FR, and FF motoneuron cell groups directly, representing
the cumulative stimulus to the motoneuron cell groups. The
iclamp input is varied from 3 to 30 nA in steps of 3 nA.
The recruitment plot is shown in Figure 9D. We see that the
S, FR, and FF type motoneurons start firing at 3, 15, and
25 nA, respectively, matching their respective rheobase values
(Fuglevand et al., 1993).

3.2.3. Creation and Validation of Integrated Cell

Model
We created an integrated motoneuron cell model using
the techniques mentioned in section 2.7 and called it
M_cell_Integrated.

Figure 13A shows the output of compare_cells tool
which was used to compare the parameters of M_cell_srr
and M_cell_bistable. The output of the script contains
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FIGURE 11 | (A,B) FI curve of M_cell_FR and M_cell_FF motoneuron cell models in NEUROiD. The rheobase from these plots matches with the values listed in Cisi

and Kohn (2008) (Table 2). (C) The spike rate adaptation of Slow, FR and FF type motoneurons [(i), (ii), and (iii), respectively], reproduced from Cisi and Kohn (2008).

(D) Spike rate adaptation curves of Slow type motoneuron model in NEUROiD. The basal firing rate of 22 Hz is achieved within a couple of inter spike intervals. This

matches with the subplot (i) in (C). (E,F) Spike rate adaptation curve for FR and FF type motoneuron, respectively. Basal firing rate of 32 Hz is achieved with a

stimulation of 18 nA for FR type motoneurons and 25 nA for FF type motoneurons. Similar to subplot (ii) and (iii) from (C), the basal firing rate is achieved within a

couple of inter spike intervals.

three columns. The first column shows the parameter
that is being compared, while the other two columns
show the parameter value in the two cell models being

compared. If a parameter is not defined explicitly in a
cell model template, the corresponding entry is shown as
KeyNotFound. The initial values for all the parameters
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FIGURE 12 | (A,B) Membrane potential at soma of the motoneuron and instantaneous FI curve of motoneuron (with 5-HT) respectively, reproduced from Booth et al.

(1997). (C) The membrane potential recorded at soma for an increasing followed by decreasing ramp input current for M_cell_bistable in NEUROiD (with and without

5HT). (D–E) The instantaneous FI curve for an increasing followed by decreasing ramp input current of M_cell_bistable in NEUROiD (with and without 5 HT

respectively).

in our integrated model were chosen to match the values
in M_cell_srr.

We identified gkcabar_KCa, gkcanbar_CaN,
gkcalbar_CaL, and range (the indices of perisomatic

sections where the CaL, CaN, and KCa mechanisms were
inserted) as the parameters whose values need to be modified in
the integrated model so that the model can display the properties
of both the constituent models.
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FIGURE 13 | (A) The tabulated results of compare_cell tool, showing the difference in cell model parameters for M_cell_srr and M_cell_bistable. (B) Four

parameters (gkcabar_KCa, gcanbar_CaN, gcalbar_CaL, range) were identified to be tuned using coordinate ascent search. For every set of parameters, we evaluate the

(Continued)
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FIGURE 13 | integrated cell model by measuring the gain, which is a measure of closeness of the constituent model response (bistable firing property and spinal

reflex recruitment curves) to the desired response. The parameters are plotted two at a time for visualization. (C) The bistable firing property of M_cell_bistable is also

observed in the integrated model. (D) The spinal reflex recruitment curves elicited by EES were also observed with the integrated motoneuron cell model. The

medium-late response reduces to less than 20% of its peak value when input stimulation is close to twice the motor threshold. These early and medium-late response

in this curve is similar to the response observed with M_cell_srr.

For every set of parameters, we evaluate the integrated cell
model by measuring the constituent model properties (bistable
firing property and spinal reflex recruitment curves). The
direction and magnitude for change in each of the parameter is
decided based on the closeness of the response of the current
model with the desired system response.

Figure 13B shows the pairwise plots of the parameters that
were searched during the coordinate ascent. Each triangle in the
plot indicates one set of parameters that were evaluated.Whenwe
ran the coordinate ascent on a parameter space consisting of all
the four parameters for 50 iterations, we found that the top-1 and
top-2 (which was 98% of the top-1 result for the defined objective
function) result gave us parameters that resulted in an integrated
model that demonstrated all the constituent model responses
such as bistable firing and spinal reflex recruitment curves.

In Figure 13C, we see that the integrated cell model displays
the bistable firing property observed in M_cell_bistable.
Then, we ran the experiment to obtain the spinal reflex
recruitment curves on the new model definition. Figure 13D,
shows the reflex recruitment curves obtained on the integrated
cell model. The spinal recruitment curves of extensor network
observed in Courtine et al. (2016) are shown in Figure 8C

for comparison. We also plotted the FI curve and spike rate
adaptation of the integrated cell model. The rheobase and steady
state firing frequency was observed to match with that of the S
type motoneuron values from Cisi and Kohn (2008).

An interesting observation made during the integration
process was that it was necessary to add the CaL, CaN and KCa
mechanisms in the perisomatic dendritic sections of the model.
Adding them in all dendritic sections or in the distal dendritic
sections resulted in models that could not reproduce results from
one or the other of the constituent models. This observation
concurs with recent findings (Manuel et al., 2014) that the L-type
current is closer to the soma.

4. DISCUSSION

In this paper, we have presented NEUROiD, a novel
NEUROmotor integration and Design platform that allows
systematic and structured integration of component models
to create a neuromotor system. Using the human ankle
and its controlling spinal circuitry as an example, we have
demonstrated the use of NEUROiD in definition, simulation
and visualization of the anatomy, physiology, and biomechanics
at micro, meso and macro scales. This simultaneous visibility
into multiple scales and discipline (Figure 10) is a contribution
toward enabling construction of larger neuromotor system
models. Further, enabling a concise definition of connection
rules and repeating network motifs allow modelers to exploit

recurring patterns for automatic or semi-automatic generation of
neural circuits.

Various computational models reproduce one or the other
aspect of the true biological system. In moving toward a model
that shows increasing likeness to the true biological system,
it may be important to create a single integrated model that
demonstrates the system responses of each of the component
models. It is also possible that the integrated model may be
called upon to demonstrate an emergent property that was not
apparent in any of the component models. In this work we
demonstrated the broad contours of a method for the same.
In the first step, tools provided within the NEUROiD platform
were used to compare and merge models. This was followed by
identification of the joint parameter space and iterative model
tuning coordinate ascent/descent in the parameter space in order
to converge toward a set of desired system responses. Though
there have been efforts to explore creation of models without
the need for any parameter tuning (Markram et al., 2015), it is
resource intensive and involves building models from primary
imaging data. However, when it is required to make use of the
existing large database of models to create modular systems by
integration, parameter tuning is inevitable.

Electrical stimulation modalities such as epidural electrical
stimulation (EES) and trans spinal electrical stimulation (tsES)
have shown promise as neuromodulation therapies for spinal
cord injury and other motor deficits (Cogiamanian et al., 2012;
Courtine et al., 2016). Designing electrical stimulation protocols
are non-trivial as the designer is required to predict the effect
of anatomical placement, orientation of stimulating electrodes,
and current waveform characteristics. Frequency and intensity
of stimulation is known to affect the recruitment patterns of
neuronal cells (Courtine et al., 2016). Stimulus received by spinal
cord elements are intricately related to cell sizes, orientations, and
positions with respect to the electrodes, anatomy, cellular and
synaptic electrophysiology and morphology of spinal cord (Kuck
et al., 2017, 2018).

Anatomically accurate models are necessary to understand
the effects of therapeutic stimulation on neuromuscular action.
The multiscale nature of NEUROiD allows creation of models
of neuromotor systems under consideration at the right scale
for the question being asked. For instance, if the objective is to
understand the differential effect of a stimulation protocol on
cells with different orientations, then models must factor in the
cell morphology and orientation. In the context of EES, it might
be more important to model the anatomy of the dorsal roots. The
electric field setup in the spinal cord due to a given stimulation
configuration can be generated using tools like COMSOL or built
into NEUROiD itself. Models of injured or severed spinal cords
can also be used in understanding pathology and regeneration in
spinal cord injury.
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Emerging technology areas often require simulation of
human nervous and muscular systems for a wide variety of
external stimuli. For example, game programming (Sanchez-
Crespo and Dalmau, 2004) and popular gaming engines8 are
typically physics based. Computational models of neuromuscular
functions (Valero-Cuevas et al., 2009) could be used to derive
biophysically realistic responses of gaming characters and make
them more realistic. There is also a greater push toward in silico
simulation in the biomedical industry (Viceconti et al., 2016).
A multi-scale system simulation tool will play an important
role during the design, development, and testing of drugs.
Development of medical devices and prosthetics will also be
accelerated if their interactions could be tested on a multi-scale
simulation platform before clinical trials. These industry trends
are still in their infancy and will probably take a long time to
materialize. However, there is certainly a need for platforms to
accelerate in silico design and development.

The client-server architecture of NEUROiD allows the
compute intensive operations to be performed on a high-
performance server. We are cognizant of the challenges involved
in simulating large biologically realistic networks and intend to
employ suitable CPU/GPU parallelization techniques, such as
(Ben-Shalom et al., 2013; Hoang et al., 2013; Vooturi et al., 2017)
in future releases of NEUROiD to improve the simulation time.
Integration of other parameter search techniques such as Van
Geit et al. (2016) and Sutton et al. (1999) lie within the scope
of future work to help the users in efficient curation of models.
With continuous integration of multiple neuromotor models,
we hope that NEUROiD can simulate multiple neuromotor and
movement behaviors in the future.
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