Crystal structures of the four new quaternary copper(I) selenides $A_{0.5}$ CuZrSe₃ and A CuYSe₃($A =$ Sr, Ba)

Stefan Maier¹, Jai Prakash², David Berthebaud¹, Olivier Perez¹, Svilen Bobev², Franck Gascoin^{1*}

¹Laboratoire CRISMAT UMR 6508 CNRS ENSICAEN, 6 boulevard du Maréchal Juin, 14050 *Caen Cedex 04, France*

²*Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716, USA*

 \overline{a}

^{*} Corresponding author. Tel: +33-2-31452605. Fax: +33-2-31951600. *E-mail address*: franck.gascoin@ensicaen.fr (F. Gascoin).

Abstract

The four new quaternary copper(I)-selenides, S_{r_0} , $CuZrSe_3$ ($a = 3.8386(7)$, $b = 14.197(2)$, $c = 10.1577(17)$ Å), Ba_{0.5}CuZrSe₃ $(a = 3.8386(7)$, $b = 14.196(2)$, $c = 10.1577(17)$ Å), SrCuYSe₃ ($a = 10.620(2)$, $b = 4.1000(8)$, $c = 13.540(3)$ Å) and BaCuYSe₃ ($a = 4.1800(7)$, $b = 13.940(2)$, $c = 10.6200(17)$ Å) were synthesized by high-temperature solid state reactions and their crystal structures were determined using single-crystal X-ray diffraction. A_0 ₅CuZrSe₃ ($A = Sr$, Ba) and BaCuYSe₃ crystallize in the KCuZrS₃ structure type (*Cmcm*), while $S_{rcu}YS_{e3}$ is isostructural to $Eu₂CuS₃(Pnma)$. All compounds form layered structures in which the charge of the ${}_{\infty}^{2}$ [CuZrSe₃]⁻ and ${}_{\infty}^{2}$ [CuYSe₃]²⁻ layers as well as the site occupancy of the *A* cations depend on the transition metal. Combining the alkaline earth metals Sr and Ba with tetravalent Zr leads to the formation of cation vacancies between the $\frac{2}{\infty}$ [CuZrSe₃]⁻ layers and structure type as well as symmetry are determined by the ratio between the cation and transition metal ionic radii $r(A^{2+})/r(M^{3+/4+})$.

Introduction

Previous studies of transition metal chalcogenides, which contain open layers or channels unveiled interesting thermoelectric and magnetic properties.^[1-4] These open structural frameworks can be obtained by a charge transfer from strong cations such as Sr and Ba towards an anionic network containing transition metals and Se/Te. Copper chalcogenides are of particular interest due to the high Cu mobility, which can result in a "phonon-liquidelectron-crystal" type behavior, low heat capacities, structural disorder, fast ion conduction, superionicity and promising thermoelectric properties.^[5-11] Combining strong cations such as Ba with a Cu–Q network $(Q = Se, Te)$ led towards a variety of new compounds with intriguing crystal structures containing Cu clusters and polychalcogen units such as hypervalent chains and square nets.^[12-15] The open, layered crystal structure of the $ACuMO_3$ $(Q = S, Se, Te; M = Zr, Hf, U$ and lanthanides) family with its first member $KCuZrQ_3^{[16]}$ has

a remarkable flexibility towards element substitution resulting in the same or a similar structure types with the group subgroup relationship *Cmcm-Pnma*.^[17] Up to now members of this family were obtained by combining di- (A^{2+}) and trivalent (M^{3+}) or mono- (A^+) and tetravalent (M^{4+}) cations with a $[CuSe_3]^{5-}$ network. Examples are combinations of alkaline earth and rare-earth metals (e.g. BaCuMSe₃with $M = La^{[18]}$, Ce^[19], Gd^[20] and SrCuMSe₃^[21] with $M = La-Pr$, Nd, Sm, Gd-Lu) or alkali and group 4 transition metals (e.g. KCuMSe₃^[16,22], RbCuMSe₃^[22], CsCuMSe₃^[20,22] with $M = Zr$, Hf). For the SrCuMSe₃ ($M = La$, Gd, Lu)^[17] series the crystal structure changes between three orthorhombic structures with different coordination environments for Sr^{2+} and M^{3+} depending on the ionic radii of the lanthanides. The smaller Gd^{3+} for example is coordinated by six Se^{2-} ions, while the larger La^{3+} has a coordination number (CN) of seven. Going towards the even smaller Lu^{3+} does not change its CN, but Sr^{2+} gains another Se^{2-} ligand. The crystal structures of $SrCuMSe_3$ are higher symmetric (*Cmcm*) for the smaller and heavier lanthanides (*M* = Lu-Ho), while the symmetry is reduced for $M = Dy-Gd$, Sm, Nd-La resulting in the space group $Pnma$ ^[17] Another example, where the M^{3+} cation radius changes the crystal structure is the study of $SrCuCeSe₃^[23]$ and $SrCuPrSe₃^[23]$, where the former crystallizes in its own structure type. The recent examples $BaAgTbS₃$, $BaCuGdTe₃$, $BaCuTbTe₃$, $BaAgTbTe₃$ and $CsAgUTe₃$ as new members of the 1113 family underline the remarkable flexibility of the $KCuZrS₃$ structure type towards ion exchange.^[24] Here we report on the first members of the 1113 family with cation vacancies between the layers, which can be obtained by combining the alkaline-earth metals Ba/Sr with tetravalent Zr. Furthermore we demonstrate that not only the $M^{3+/4+}$ $(M = Zr, Y)$ or A^{2+} $(A = Ba, Sr)$ ionic radii determine structure type and symmetry, but their ratio $r(A^{2+})/r(M^{3+/4+})$. This conclusion also holds for the analogous SrCuMSe₃ (*M* = La, Ce, Pr, Gd, Lu) compounds^[17,23], which makes the $r(A^{2+})/r(M^{3+/4+})$ ratio a powerful parameter for predicting the symmetry of new compounds belonging to the "1113 family".

Experimental

Synthesis

Single crystals of all title compounds were grown from conventional high-temperature solid state reactions. Ba_{0.5}CuZrSe₃ was synthesized from BaSe, Cu, Zr and Se precursors, $SrCuYSe₃$ from Cu₂Se, Sr, Y, Se and all other compounds were obtained from reactions of stoichiometric amounts of the elements. The BaSe precursor was synthesized by high-energy ball milling (700 rpm, 15 cycles of 2 min milling time using 10 mm tungsten carbide balls) from the elements. $Cu₂Se$ was prepared by heating a stoichiometric mixture of the elements up to 600°C, where it was kept for 24 h and subsequently cooled down to room temperature in 24 h. All manipulations were carried out in an argon-filled glove box. Stoichiometric amounts of Cu shots (Alfa Aesar, 99.5 %) or Cu₂Se powder, Ba pieces (Alfa Aesar, 99+%) or BaSe powder, selenium shots (Alfa Aesar, 99.999%) and Zr sponge (Alfa Aesar, 99.5 %) or Y chips (Aldrich 99.9 %) were heated up in 7 h to 500 °C in flame-sealed silica ampoules. The reaction temperature was kept constant for 24 h and subsequently raised to 800 °C and kept constant for another 48 h before cooling the samples to 200 °C within 96 h. Black needles with metallic luster were obtained for $A_{0.5}$ CuZrSe₃ ($A = Sr$, Ba) and yellow needles for $ACuYSe₃ (A = Sr, Ba)$. Attempts to obtain pure bulk samples for physical measurements failed due to unreacted Cu and Se as well as the presence of the stable binary side phases CuSe, $Cu₂Se$ and $ZrSe₃$.

Single crystal structure determination

All compounds are air-stable and therefore single crystals were picked in air under a thin film of oil. Intensity data was collected on a Bruker SMART diffractometer equipped with a SMART APEX II CCD area detector and a Mo-K α radiation source ($\lambda = 0.71073 \text{ Å}$) at a constant temperature of 293 K for $Sr_{0.5}CuZrSe₃$ and BaCuYSe₃ and 200 K for $Ba₀$, CuZrSe₃and SrCuYSe₃. Data collections at 200 K were performed under a constant stream of nitrogen heated to the target temperature.

Data acquisition and processing were performed using the software $SMARK^{[25]}$ and APEX II, while data reduction and integration were performed using $SAINT$ ^[26] Semiempirical absorption corrections were applied using $SADABS$.^[27] Structure solution and refinement were carried out using $SHELX^{[28]}$ and $Olex2^{[29]}$ was used as a Graphical User Interface for SHELX. The centrosymmetric, orthorhombic space groups *Pnma* for $Sr_{0.5}CuYSe₃$ and *Cmcm* for A_0 , $CuZrSe_3$ ($A = Sr$, Ba) and $BaCuYSe_3$ were established from the Laue symmetry, systematic absences and intensity statistics using the program XPREP and initial atomic positions were located by direct methods and the crystal structure data were standardized using the program STRUCTURE TIDY.^[30]

Important crystallographic information for all title compounds are provided in Table1. All final equivalent isotropic displacement factors and atomic coordinates are summarized in Table2, while Table3 gives an overview over selected interatomic distances in $Sr₀$, $CuZrSe₃$, Ba_{0.5}CuZrSe₃, SrCuYSe₃ and BaCuYSe₃.

Crystal Structure Description and Discussion

 $Ba_{0.5}CuZrSe₃$ and $Sr_{0.5}CuZrSe₃$ crystallize in the layered KCuZrS₃ structure type with the orthorhombic space group *Cmcm* ($a = 3.8386(7)$ Å, $b = 14.197(2)$ Å, $c = 10.1577(17)$ Å and $a = 3.8386(7)$ Å, $b = 14.196(2)$ Å, $c = 10.1577(17)$ Å respectively). The crystal structure (*cf.*) Fig.1) consists of ${}_{\infty}^{2}$ [CuZrSe₃]⁻ layers (*cf.* Fig.2) in the *ac* plane stacked along [010] and A^{2+} cations and vacancies, which are separating the anionic layers. The ${}_{\infty}^{2}$ [CuZrSe₃]⁻ layers (*cf.* Fig.3) consist of an infinite ${}_{\infty}^{2}[ZrSe_{2/2}Se_{4/2}]^{2}$ network and ${}_{\infty}^{1}[CuSe_{2/1}Se_{2/2}]^{5}$ chains. The former is built up by ZrSe_6 octahedra, which share edges along [100] and vertices along [010] and the latter by vertex-sharing CuSe₄ tetrahedra. Two parallel ${}_{\infty}^{1}[CuSe_{2/1}Se_{2/2}]^{5}$ chains are rotated by 180° towards each other and the A^{2+} cations between the $\frac{2}{\infty}$ [CuZrSe₃]⁻ layers are

coordinated by 8 Se atoms forming a AS e₈ bicapped trigonal prism (*cf.* Fig.3), where *A* is either occupied by Sr/Ba or vacant.

BaCuYSe₃ ($a = 4.1800(7)$ Å, $b = 13.940(2)$ Å, $c = 10.6200(17)$ Å) is isostructural to KCuZrS₃, while SrCuYSe₃ (*a* = 10.620(2) Å, *b* = 4.1000(8) Å, *c* = 13.540(3) Å) crystallizes in the Eu_2CuS_3 structure type (*Pnma*). The change in symmetry observed for $SrCuYSe_3$ does neither affect the building blocks in the ${}_{\infty}^{2}$ [CuMSe₃] layers described for the Zr compounds, nor their connectivity. Hence, the previous structural description for $Ba₀$, $CuZrSe₃$ and $Sr_{0.5}CuZrSe₃$ (*cf.* Fig.1-3) can be used for both $ACuYSe₃$ ($A = Sr$, Ba) compounds. For $SrCuYSe₃$ the stacking direction of the layers changes from [010] to [001] and the $\frac{1}{\infty}$ [CuSe_{2/1}Se_{2/2}]⁵⁻ chains run along [010] instead of [100].

Replacing tetravalent Zr by trivalent Y causes an increase in the negative charge of the ${}_{\infty}^{2}$ [CuMSe₃] layers from -1 to -2 and the cation position becomes fully occupied by Ba or Sr. Between the two compounds $Ba₀ sCuZrSe₃$ to $BaCuYSe₃$ the symmetry does not change despite the different ionic radii of Zr^{4+} (0.72 Å)^[31] and Y^{3+} (0.90 Å)^[31]. However, in the corresponding lanthanides the change of the M^{3+} ionic radius results in a different orthorhombic symmetry.^[17] Hence, only comparing the cation or the transition metal/lanthanum ionic radii is not sufficient to understand the change in symmetry upon element substitution. Comparing the ratio between the cation and transition metal/lanthanum ionic radii $r(A^{2+})/r(M^{3+1/4+})$ on the other hand clearly shows, that the higher symmetric KCuZrS₃ structure type (*Cmcm*) forms for $r(A^{2+})/r(M^{3+/4+}) > 1.32$, while the lower symmetric space group *Pnma* adopted for example by the Eu_2CuS_3 and $PbCuLaS_3$ structure types is favored for $r(A^{2+})/r(M^{3+/4+})$ < 1.41 (*cf.* Fig.4). Hence, the threshold for a change from the higher symmetric space group *Cmcm* to the lower symmetric subgroup *Pnma* lies in between these two values. The difference in symmetry observed for SrCuYSe₃, which is accompanied by a change in the local coordination environment of the A^{2+} cation from a bicapped trigonal

BaSe₈ prism to a monocapped trigonal SrSe₇ prism can therefore be explained by its $r(Sr^{2+})/r(Y^{3+})$ ratio of 1.32 – the lowest for the four title compounds. Hence, Yttrium represents the frontier between transition metal and lanthanide chemistry in the "1113 family".

Replacing tetravalent Zr by trivalent Y also leads to an increase in unit cell volume (*cf.* Fig.5) from 553 \AA^3 to 619 \AA^3 going from Ba_{0.5}CuZrSe₃ to BaCuYSe₃ due to a larger ionic radius of Y^{3+} (0.90 Å)^[31] compared to Zr^{4+} (0.72 Å)^[31]. The larger cell volume is a net result of a simultaneous increase in all intralayer transition metal distances and a decrease in the interlayer distances (*cf.* Fig.6-7) causing *a* and *c* to enlarge and *b* to contract (*cf.* Fig.5). Replacing the larger Ba²⁺ (ionic radius: 1.42 Å for CN = 8)^[31] by the smaller Sr²⁺ (ionic radii: 1.26 Å for CN = 7 and 1.21 Å for CN = 7 ^[31] in *A*CuYSe₃ decreases the unit cell volume (*cf*. Fig.5) from 619 \AA^3 for BaCuYSe₃ to 590 \AA^3 for SrCuYSe₃, which is mainly caused by shorter interlayer distances (visualized as $A^{2+} \cdots A^{2+}$ distances in Fig.6) in SrCuYSe₃ compared to BaCuYSe₃. Fig.8 shows the range of the cation-selenium distances of all four title compounds. The A-Se distances are significantly larger in BaCuYSe₃ compared to $SrCuYSe₃$ due to the different ionic radii of Ba^{2+} and Sr^{2+} , which explains the shorter interlayer distances in SrCuYSe₃ compared to BaCuYSe₃ and the difference in unit cell volume.

The maximum cation-selenium distances (cf. Fig. 8) increase with a decreasing $r(A^{2+})/r(M^{3+/4+})$ ratio (*cf.* Fig.4 and Fig.8) and the distortion around the CuSe₄ and MSe₆ polyhedra is largest for BaCuYSe₃ with a $r(A^{2+})/r(M^{3+/4+})$ ratio closest to the critical one before the *Cmcm*-*Pnma* transition. Hence, it is probable that too long cation-selenium distances in combination with a certain degree of structural distortion around the $CuSe₄$ and $MSe₆$ polyhedra trigger the change in $A²⁺$ coordination number and symmetry, which is accompanied by a reduction in structure distortion and maximum cation-selenium distances (cf. Fig.8).

Conclusion

The four new quaternary copper(I)-selenides, $Sr_{0.5}CuZrSe₃$, $Ba_{0.5}CuZrSe₃$, $SrCuYSe₃$ and $BaCuYSe₃$ were synthesized by high-temperature solid state reactions and their crystal structures were determined using single-crystal X-ray diffraction. A combination of the alkaline-earth metals Ba and Sr with the group 4 transition metal Zr leads to a stabilization of the $KCuZrS₃$ structure type accompanied by the formation of cation vacancies. Replacing tetravalent Zr by trivalent Y causes an increase in the negative charge of the α _∞[CuMSe₃] layers from -1 to -2 and the cation position is fully occupied by Ba or Sr. Ba_{0.5}CuZrSe₃, $Sr₀ sCuZrSe₃$ and BaCuYSe₃ crystallize in the higher symmetric KCuZrS₃ structure type (*Cmcm*), while SrCuYSe₃ is isostructural to $Eu₂CuS₃$ crystallizing in the orthorhombic space group *Pnma* - a subgroup of *Cmcm*. The cation coordination environment in BaCuYSe₃ and $SrCuYSe₃ changes from a bicapped trigonal $BaSe₈$ prism towards a monocapped trigonal$ SrSe₇ prism, the ${}_{\infty}^{2}$ [CuMSe₃] layers are stacked along [001] instead of [010] and the $\frac{1}{\infty}$ [CuSe_{2/1}Se_{2/2}]⁵⁻ chains run along [010] instead of [100]. The ratio between the cation and transition metal ionic radii $r(A^{2+})/r(M^{3+/4+})$ determines symmetry and structure type, which does not only apply to the four title compounds, but also to the previously reported SrCu*M*Se³ $(M = La, Gd, Lu)$ family and it can even be extended to SrCuPrSe₃ and SrCuCeSe₃. Compounds with $r(A^{2+})/r(M^{3+/4+}) > 1.32$ crystallize in the higher symmetric KCuZrS₃ structure, while the lower symmetric Eu₂CuS₃ and PbCuLaS₃ structure types (*Pnma*) are favored for $r(A^{2+})/r(M^{3+/4+})$ < 1.41. A transition from the higher to the lower symmetric space group occurs between these two values, which explains the lower symmetry observed for SrCu*MSe₃* (*M* = La, Gd, Lu, Ce, Pr) and SrCuYSe₃. The $r(A^{2+})/r(M^{3+/4+})$ ratio can therefore be used as a very intuitive and powerful parameter to explain and predict structure type and symmetry for compounds belonging to the 1113 family.

Acknowledgement

Financial support from the LABEX EMC3 (energy material and clean combustion center) is gratefully acknowledged by the authors.

References

[1] F. Gascoin, A. Maignan, Chem. Mater. 23 (2011) 2510-2513.

[2] H. Takahashi, N. Raghavendra, F. Gascoin, D. Pelloquin, S. Hébert, E. Guilmeau, Chem. Mater. 25 (2013) 1809-1815.

[3] R. Lefèvre, D. Berthebaud, O. Perez, D. Pelloquin, S. Hébert, F. Gascoin, Chem. Mater. 27 (2015) 7110-7118.

[4] S. Maier, R. Lefèvre, X. Lin, N. Raghavendra, D. Berthebaud, S. Hébert, A. Mar, F. Gascoin, J. Mater. Chem. C 3 (2015) 10509-10517.

[5] G. D. Mahan, J. Appl. Phys. 117 (2015) 045101-045103.

[6] K. S. Welder, W. G. Zeier, T. W. Day, M. Panthöfer, G. J. Snyder, W. Tremel, J. Am. Chem. Soc. 136 (2014) 12035-12040.

[7] D. R. Brown, T. Day, K. A. Borup, S. Christensen, B. B. Iversen, G. J. Snyder, APL Mater. 1 (2013) 052107-1-052107-10.

[8] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 11 (2012) 422-425.

[9] J. B. Boyce, B. A. Huberman, Phys. Rep. 51 (1979) 189-265.

[10] *Superionic conductors*, edited by G.D. Mahan, W. L. Roth (Plenum, New York, 1976)

[11] B. Yu, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, Z. Ren, Nano Energy 1 (2012) 472-478.

[12] O. Mayasree, C. R. Sankar, K. M. Kleinke, H. Kleinke, Coord. Chem. Rev. 256 (2012) 1377-1383.

- [13] P. Böttcher, Angew. Chem. Int. Ed. Eng. 27 (1988) 759-772.
- [14] P. Böttcher, T. Doert, Phosphorous Sulfur Silicon 136 (1998) 255-282.
- [15] C. Graf, A. Assoud, O. Mayasree, H. Kleinke, Molecules 14 (2009) 3115-3131.
- [16] M. F. Mansuetto, P. M. Keane, J. A. Ibers, J. Solid State Chem. 101 (1992) 257-264.
- [17] S. Strobel, T. Schleid, J. Alloys Compd. 418 (2006) 80-85.
- [18] A. E. Christuk, P. Wu, J. A. Ibers, J. Solid State Chem. 110 (1994) 330-336.
- [19] P. Wu, A. E. Christuk, J. A. Ibers, J. Solid State Chem. 110 (1994) 337-344.
- [20] F. Q. Huang, K. Mitchell, J. A. Ibers, Inorg. Chem. 40 (2001) 5123-5126.
- [21] S. Strobel, Doctoral Thesis, University of Stuttgart, 2004.

[22] A. Kolb, K. O. Klepp, Proceedings of the Ninth European Conference on Solid State Chemistry, Stuttgart (D) September 3-6, 2003, p. 219 (Book of Abstracts)

- [23] S. Strobel, Th. Schleid, Z. Naturforsch. 59 b (2004) 985-991.
- [24] J. Prakash, A. Mesbah, J. C. Beard, J. A. Ibers, Z. Anorg. Allg. Chem. 641 (2015) 1253- 1257.
- [25] SMART, Bruker AXS Inc, Madison, Wisconsin, USA, 2003.
- [26] SAINT, Bruker Bruker AXS Inc, Madison, Wisconsin, USA, 2003.
- [27] SADABS, Bruker AXS Inc, Madison, Wisconsin, USA, 2003.
- [28] G. M. Sheldrick, Acta Cryst. A64 (2008), 112-122.
- [29]O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 42 (2009) 339-341.
- [30] L. M. Gelato, E. Parthé, J. Appl. Cryst. 20 (1987), 139-143.
- [31] R. D. Shannon, Acta Cryst. A32 (1976) 751-767.

Table 2

Equivalent isotropic displacement factors $(\AA^2)^a$ and positional parameters.

Table 3 Selected interatomic distances

Atom pairs	Distances (Å).	Atom pairs	Distances (Å).
Ba _{0.5} CuZrSe ₃			
Bal…Bal	3.8386(7)	$Zr1 \cdots$ Sel $(4x)$	2.7068(5)
Sel $(4x)$	3.3057(7)	Se2(2x)	2.7193(5)
Sel $(2x)$	3.4696(9)	Cu $1 \cdots$ Sel $(2x)$	2.4098(9)
Se $2(2x)$	3.1647(11)	Se2 $(2x)$	2.4407(9)
$Zr1$ …Cu1 $(4x)$	3.2278(4)		
Sr _{0.5} CuZrSe ₃			
$Sr1$ \cdots $Sr1$	3.8386(7)	$Zr1 \cdots$ Sel $(4x)$	2.7640(5)
Sel $(4x)$	3.2254(10)	Se2(2x)	2.7566(5)
Sel $(2x)$	3.4798(11)	$Cu1 \cdots Se1 (2x)$	2.4476(10)
Se2(2x)	3.1210(16)	Se2 $(2x)$	2.4823(10)
$Zr1 \cdots Cu1 (4x)$	3.2224(4)		
BaCuYSe ₃			
Bal…Bal	4.1800(7)	$Y1 \cdots$ Sel (4x)	2.8849(6)
Sel $(4x)$	3.3404(7)	Se2 $(2x)$	2.8242(5)
Sel $(2x)$	3.6392(9)	Cul \cdots Sel $(2x)$	2.4723(11)
Se $2(2x)$	3.2404(10)	Se2 $(2x)$	2.5275(10)
$Y1$ …Cu1 $(4x)$	3.4099(4)		
SrCuYSe3			
$Sr1$ \cdots $Sr1$	4.1000(8)	$Y1 \cdots \text{Sel}(2x)$	2.8641(8)
Sel $(2x)$	3.2033(9)	Se2(2x)	2.8628(10)
Se $2(2x)$	3.1096(9)	Se3 $(2x)$	2.8822(8)
Se3	3.4705(12)	$Cu1 \cdots Se1 (2x)$	2.4646(12)
Se3 $(2x)$	3.1998(9)	Se2	2.5130(8)
		Se3	2.4742(12)

Fig. 1 Crystal structure of $A_{0.5}$ CuZrSe₃ ($A =$ Sr, Ba). ${}_{\infty}^{2}$ [CuZrSe₃]⁻ layers in the *ac*-plane are separated by A^{2+} cations and stacked along *b*. red: A; white: vacancies, blue: Cu, dark green: Zr, light green: Se.

Fig. 2The ${}_{\infty}^{2}$ [CuZrSe₃]⁻ layer, which is built up by one dimensional chains of corner-sharing $CuSe₄ tetrahedra running along *a* and the two dimensional network of ZrSe₆ octahedra$ sharing edges along *a* and corners along *c*. Two separated $\frac{1}{\infty} [\text{CuSe}_{2/1} \text{Se}_{2/2}]^{5-}$ chains are rotated by 180°.

Fig. 3a) linear $\frac{1}{\infty}$ [CuSe_{2/1}Se_{2/2}]⁵⁻ chains built up by corner sharing CuSe₄ tetrahedra; b) edgeand corner sharing ZrSe₆ octahedra forming an infinite two dimensional Zr-Se network. The same building blocks and connectivity can be found in the ${}_{\infty}^{2}$ [CuYSe₃]²⁻ layers with YSe₆ octahedra; c) A_0 ₅Se₈ bicapped trigonal prism in A_0 ₅CuZrSe₃ ($A =$ Sr, Ba).

Fig. 4 Ratio between the cation and transition metal/lanthanum ionic radii $r(A^{2+})/r(M^{3+/4+})$. Black squares: the four title compounds containing transition metals; blue squares: SrMCuSe₃ compounds with $M =$ Lu, Gd, Pr, Ce, La. The image shows the symmetry dependence on the $r(A^{2+})/r(M^{3+/4+})$ ratio with a change from the higher symmetric space group *Cmcm* to the lower symmetric space group *Pnma* between $1.41 \le r(A^{2+})/r(M^{3+/4+}) \le 1.32$. All ionic radii were taken from [31].

Fig. 5 Changes in the lattice parameters and unit cell volume depending on the transition metal and the cation in the structure. The first letters on the *y* axis correspond to the lattice parameters and unit cell volume of the compounds crystallizing in the higher symmetric *Cmcm* space group $(Ba_{0.5}CuZrSe_3)$ and $BaCuYSe_3$, while the second ones correspond to $SrCuYSe₃ crystallizing in the lower symmetric space group *Pnma*. Changing from Zr^{4+} (ionic$ radius: 0.72 Å) to Y³⁺ (ionic radius: 0.90°Å) results in a larger unit cell volume due to a simultaneous decrease in *b* and increase in *a* and *c*. Changing the cation from Ba^{2+} (ionic radius: 1.42 Å) to Sr^{2+} (ionic radius: 1.21 Å for CN = 7) in *ACuYSe*₃ decreases the unit cell volume due to a simultaneous decrease in the stacking direction of the ${}_{\infty}^{2}$ [CuYSe₃]²⁻ layers and the direction along the $\frac{1}{\infty}$ [CuSe_{2/1}Se_{2/2}]⁵⁻ chains.

Fig. 6 Differences in the $A^{2+}\cdots A^{2+}$ interatomic distances (representing the intra- and interlayer distances) between $Ba₀$ \leq $UZrSe₃$, $BaCuYSe₃$ and $SrCuYSe₃$. Black, blue and red arrows mark the corresponding distances in the structure (red: Ba, Sr; white: vacancies in the case of $Ba_{0.5}CuZrSe₃$; light green: Se, dark green: Zr/Y , blue: Cu). Changing the transition

metal from Zr^{4+} (ionic radius: 0.72 Å) to Y^{3+} (ionic radius: 0.90°Å) results in a simultaneous increase/decrease in the intra-/interlayer cation distances causing the increase in *a* and *c* going from Ba_{0.5}CuZrSe₃ to BaCuYSe₃ due to the larger ionic radius of Y^{3+} . Changing the cation from Ba²⁺ (ionic radius: 1.42 Å) to Sr²⁺ (ionic radius: 1.26 Å for CN = 8 and 1.21 Å for $CN = 7$) in $ACuYSe_3$ decreases the interlayer cation distances, which causes the decrease in the lattice parameters along the stacking direction of the α_0^2 [CuYSe₃]^{2–} layers.

Fig. 7 Differences in the intralayer transition metal distances between $Ba_{0.5}CuZrSe₃$, BaCuYSe₃ and SrCuYSe₃. Orange, blue and red arrows mark the corresponding distances in the ${}_{\infty}^{2}$ [CuZrSe₃]⁻ and ${}_{\infty}^{2}$ [CuYSe₃]²⁻ layers (light green: Se, dark green: Zr/Y, blue: Cu). Changes in these layers are much more pronounced for a change in the transition metal compared to a change in the cation. The simultaneous increase of all intralayer transition metal distances upon a change from the smaller Zr^{4+} (ionic radius: 0.72 Å) to the larger Y^{3+} (ionic radius: 0.90°Å) causes the observed increase in *a*, *c* and the unit cell volume going from $Ba₀$, CuZrSe₃ to BaCuYSe₃. The decrease in the intralayer transition metal distances for the direction along the $\frac{1}{\infty} [\text{CuSe}_{2/1} \text{Se}_{2/2}]^{5-}$ chains corresponds to the decrease in the lattice parameter from $BaCuYSe₃$ to $SrCuYSe₃$ in this direction.

Fig. 8 Red: $A \cdot \cdot \cdot$ Se ($A = \text{Sr}$, Ba), blue: Cu $\cdot \cdot \cdot$ Se and green: $M \cdot \cdot \cdot$ Se ($M = \text{Zr}$, Y) distance ranges in the four title compounds (1: $Ba_{0.5}CuZrSe₃$, 2: $Sr_{0.5}CuZrSe₃$, 3: $BaCuYSe₃$, 4: $SrCuYSe₃$). The largest distortion in the $CuSe₄$ tetrahedra and $MSe₆$ octahedra is present for BaCuYSe₃with a $r(A^{2+})/r(M^{3+/4+})$ ratio closest to the critical one and an increase in the maximum cation-selenium distances with a decreasing $r(A^{2+})/r(M^{3+/4+})$ ratio was found for the three higher symmetric title compounds.

