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Abstract—The period after the COVID-19 wave is called the Echo-period. Estimation of

crowd size in an outdoor environment is essential in the Echo-period. Making a simple and

flexible working system for the same is the need of the hour. This article proposes and

evaluates a nonintrusive, passive, and cost-effective solution for crowd size estimation in

an outdoor environment. We call the proposed system as LTE communication

infrastructure based environment sensing or LTE-CommSense. This system does not

need any active signal transmission as it uses LTE transmitted signal. So, this is a

power-efficient, simple, low-footprint device. Importantly, the personal identity of the

people in the crowd cannot be obtained using thismethod. First, the system uses practical

data to determine whether the outdoor environment is empty or not. If not, it tries to

estimate the number of people occupying the near range locality. Performance evaluation

with practical data confirms the feasibility of this proposed approach.

& WITH THE OUTBREAK of COVID-19 virus, we are

forced to rethink visiting public areas1–4. After

the current primary wave of infection improves,

we will be living in a period when we will need to

run business “almost” as usual without a vac-

cine. This phase is sometimes called the Echo-

period.5 In this scenario, a device to measure the

crowd size is urgently required. Crowd sensing

is an active area of research because of its

diverse applications.

Digital Object Identifier 10.1109/MCE.2020.3032791

Date of publication 21 October 2020; date of current version

2 February 2021.

Special Section: Consumer Technology-Based
Solutions for COVID-19
Special Section: Consumer Technology-Based
Solutions for COVID-19

92
2162-2248 � IEEE 2020. This article
is free to access and download, along
with rights for full text and data mining,
re-use and analysis

Published by the IEEE Consumer Electronics Society IEEE Consumer Electronics Magazine



Keeping this in mind, a passive system, called

CommSense (communication-based environment

sensing system), is proposed here for measuring

crowd size in an outdoor environment. The con-

cept of CommSense was proposed and verified by

the authors in simulation and with field-collected

data for various indoor applications, such as

indoor object detection, indoor localization, and

indoor occupancy estimation.6 The system was

also tested for outdoor vehicle detection and clas-

sification.7 These give the confidence to apply the

CommSense principle. A major advantage of the

CommSense system, compared to audio or

vision-basedmethods, is that our system is nonin-

trusive. It cannot identify the persons.

The experiments and analyses performed

here are as follows.

1) First, we considered that the people in the

outdoor crowd are static. Crowd detection

using a threshold-based method was per-

formed first. If a crowd is detected, it triggers

the investigation of the deriving number of

persons in the crowd.

2) In the next step, the same analysis was

repeated when the people in the crowd were

moving freely.

3) Finally, we have performed these two experi-

ments on a different day and time to examine

the consistency of this approach.

STATE OF THE ART
As crowd sensing is vital for many other appli-

cations,8,9 there have been attempts to perform

outdoor-crowd-size estimation in the past. Video-

based crowd-size estimation was proposed by Li

et al.10 The performance of video processing for

crowd-monitoring applications was analyzed by

Bailas et al.11 A crowd-counting method was pro-

posed by Xing et al.,12 which uses detection flow

along the temporal video sequence. Automated

video analytic was used for crowd monitoring and

counting in the work by Cheong et al.13 Counting

the number of people present in a crowd with a

real-time network of image sensors was proposed

by Yang et al.14. A motion-based crowd density

estimation method was proposed by Chondro

et al.15 A crowd-counting method based on image

processing and convolutional neural network was

proposed by Liu et al.16 But these vision-based

approaches require the crowd to be in the line-of-

sight of the cameras. Their performance also

depends on the overlapping of the objects, the rel-

ative positioning of the crowd, visibility at the time

of the day, weather conditions, pollution level, etc.

Additionally, it also posesprivacy concerns. Danie-

lis et al.17 tried to estimate the size of dense

crowds, using a distributed protocol that relies on

mobile device-to-device communication. This

required active transmission at all times and was

verified in simulation. In addition, we need crowd-

size estimation on a smaller scale. Khan et al.18 use

smartphones’ acoustic sensors in the presence of

human conversation, and motion sensors in the

absence of any conversational data, for crowd-size

estimation. There has been few attempts to use

LTE-based systems for crowd-density estima-

tion.19,20 Tripathy et al.21 presented an Internet-of-

Medical-Things-enabled wearable called EasyBand

for autocontact tracing. Currently, the world is

almost coming to a halt to reduce COVID-19

spread. Official recommendations for social dis-

tancing have pushed people into ever-smaller

clusters.1

LTE-CommSense SYSTEM
Figure 1(a) shows a simple version of the pro-

posed system that uses a piece of single user

equipment (UE).6,7 In this article, a single UE

was considered for verification using practical

data. The LTE UE receiver works at Band-40

(2300–2400-MHz frequency band) in time divi-

sion duplexing topology. The signal captured

had a bandwidth of 10 MHz.

In the experimental setup, we have used a total

of 19 number of people in an outdoor roadside

environment. The CommSense prototype was

employed to collect LTE downlink (DL) data

affected by the presence of the crowd. The mod-

eled UE, which is a part of the proposed prototype,

then receives the DL data and performs standard

UE operations to evaluate state information (CSI).

The description and working principle of an

USRP N200 SDR platform can be obtained from

the work by Sardar et al.6,7 The SDR was modeled

as the CommSense prototype containing LTE

receiver. The LTE DL signal was captured via the

antenna and radio frequency (RF) daughter card
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connected to the N200 platform. Figure 1(b)

explains the relative position of the prototype,

crowd, and LTE base station (eNodeB) in the

outdoor environment in the experimental setup.

First, the LTE DL data were recorded without the

presence of the crowd, and then for different

numbers of people present. This method is per-

formed for two scenarios. In one case, the per-

sons in the crowd are static, and in another

case, they were moving without any restriction

within the premises. For each DL data capture, a

thousand CSI values were extracted.

CASE STUDY DESIGN

Detection for Static and Dynamic Crowd

As per the experimental setup, there are a

total of eight different cases. The first class cor-

responds to the outdoor environment with the

absence of any crowd. The next category

denotes the presence of only one person. Cate-

gory three is for the presence of four persons. In

a similar manner, we keep on increasing the

number of persons by 3 until the 8th category

corresponding to the presence of 19 persons

was reached. For all these eight categories, 1000

CSI values were extracted. Now, to detect the

presence of a person, principal component anal-

ysis (PCA) was performed for feature extraction

of the CSI values.6

Principal components for all the categories

corresponding to the largest eigenvalue are plot-

ted in Figure 2(a). Figure 2(b) depicts the three-

dimensional scatterplots of the principal compo-

nents for the largest three eigenvalues. The

description of the categories for Figure 2(b) is

explained in Table 1. In this plot, distinguishable

clusters are visible corresponding to the

absence of crowd and the presence of different

sizes of the crowd. In Figure 2(a), for the case

where only one principal component corre-

sponding to the largest eigenvalue was consid-

ered, the overlap between the clusters was

more, and this overlap decreases gradually

when more number of principal components

were considered.

Figure 1. (a) Block diagram of LTE-CommSense

system that uses a single UE for outdoor crowd-size

estimation. (b) Relative position of LTE receiver,

crowd, and LTE eNodeB in the outdoor environment.

Figure 2. Static crowd detection. (a) Histogram of

principal component for largest eigenvalue. (b)

Scatterplot corresponding to highest three

eigenvalues.
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The aforementioned analysis was performed

next when the persons were in random motion

in the locality. Principal components for all the

categories corresponding to the largest eigen-

value are plotted in Figure 3(a). Figure 3(b)

depicts the three-dimensional scatterplots of the

principal components for the largest three eigen-

values. The description of the categories for

Figure 3(b) is same as in Table 1. In this plot, dis-

tinguishable clusters are visible corresponding

to the absence of crowd and the presence of dif-

ferent sizes of the crowd. In Figure 3(a), i.e., for

the case where only one principal component

corresponding to the largest eigenvalue was

considered, the overlap between the clusters

was more.

Threshold-Based Detection and Verification of

Consistency

Threshold-based detection performance cor-

responding to different values of the selected

threshold may be analyzed for both static and

dynamic case. For static crowd, as shown in

Figure 2(a), the error percentage of crowd detec-

tion versus the selected threshold was shown in

Figure 4. The percentage of error in detection

was obtained to be 0:65% for a threshold value

of 0.80. The same analysis was performed for the

dynamic crowd shown in Figure 3(a). The error

percentage of 1:7% was evaluated for a threshold

value of 0.82 [see Figure 2(d)]. Both these results

are depicted in Figure 4, labeled as “Static Crowd

Day 1” and “Dynamic Crowd Day 1,” respectively.

We evaluated the performance consistency of

the proposed approach to ascertain the reliabil-

ity of the developed prototype. The exercise was

repeated on a different day with a new set of peo-

ple. In Figure 4, we can see the detection perfor-

mance for the other day (Day 2) was also along

with the initial day data. In “Day 2,” for these two

different types of crowds, minimum detection

errors achieved a minimum value of 0:8% and

1:55%, respectively. Comparison with the per-

formances of Day 1 concludes that both the

days’ detection performance was consistent.

Estimation of Crowd Size for Static and

Dynamic Crowd

Detection of the crowd triggers the next stage

of analysis. Here, we attempt to estimate crowd

Table 1. Category Description in the Three-Dimensional

Clusterplot for Three Principal Components

corresponding to Highest Three Eigenvalues.

Figure 3. Dynamic crowd detection. (a) Histogram

of principal component for largest eigenvalue. (b)

Scatterplot corresponding to highest three

eigenvalues.

Figure 4. Consistency of CommSense detector

performance: Comparison of detection performance

at two different days.
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size, i.e., the number of persons in the crowd.

Table 2 depicts the evaluated accuracy for differ-

ent numbers data for training and size estima-

tion. A simple nearest neighbor classifier was

chosen for this purpose. When new sample data

are input to the system, using the nearest neigh-

bor classifier the distance of that from the near-

est data available in the training dataset

was evaluated. The results reveal that the pro-

posed approach is a promising candidate for

crowd detection and its size estimation in an

outdoor environment consisting of either static

or dynamic persons present in the crowd.

Table 3 shows the confusion matrix for the

lowest accuracy achieved in Table 2. The

corresponding accuracy achieved for the static

and dynamic crowd cases are 86:02% and

84:55%, respectively.

CONCLUSION
This article proposes a passive nonintrusive

solution for outdoor crowd detection and subse-

quently, its size estimation. The feasibility of

this novel approach was verified with practical

signal captured using SDR-based prototype

developed by the authors. The results prove the

feasibility of our proposal.

Consistency of the performance of this pro-

posal was evaluated by calculating the detection

accuracy for static and dynamic crowd on a dif-

ferent day with a different set of people. Similar

performance was observed, which proves the

performance consistency.

For the static as well as dynamic crowd

cases, the nearest neighbor classifier provided

acceptable performance.

The analysis in this article with practical data

confirms that LTE-CommSense principle can suc-

cessfully detect crowd in outdoor environment.

After detection, it can estimate the crowd size as

well with reasonable accuracy.
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