
PHYSICAL REVIEW E 97, 063106 (2018)

Cross-stream migration of drops suspended in Poiseuille flow in the presence of an electric field
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The present study focuses on the cross-stream migration of a neutrally buoyant two-dimensional drop in a

Poiseuille flow in a channel under the influence of an electric field. In the absence of an electric field, the

important nondimensional parameters describing this problem are the viscosity ratio (λ) between the drop fluid

and the surrounding medium, the ratio of drop diameter to channel height (a∗), and the capillary number (Ca). The

influence of all these parameters on drop migration is investigated. It is observed that a large drop moves slowly

as compared to a smaller drop, but attains a steady shape at the center line of the channel. The increase in value

of the capillary number enhances the cross-stream migration rate, while the increase in viscosity ratio reduces

the tendency of the drops to move towards the channel center line. The presence of an electric field introduces

additional interfacial stresses at the drop interface, which in turn alters the dynamics observed in the absence of

an electric field. Extensive computations are carried out to analyze the combined effect of the electric field and the

shear flow on the cross-stream migration of the drop. The computational results for a perfect dielectric indicate

that the droplet migration enhances in the presence of an electric field. The permittivity ratio (S) and the electric

field strength (E) play major roles in drop migration and deformation. Computations using the leaky dielectric

model also show that for certain combinations of electrical properties the drop undergoes immense elongation

along the direction of the electric field. The conductivity ratio (R) is again a vital parameter in such a system of

fluids. It is further observed that for certain conditions the leaky dielectric drops exhibit rotation together with

translation.
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I. INTRODUCTION

The motion of a liquid drop suspended in Poiseuille flow

in another immiscible medium inside a microchannel is a

fundamental problem that stands very important from physical,

biological, and engineering viewpoints. The droplet motion

and deformation in microchannels and capillary tubes has

been studied by researchers for decades. The dynamics of a

droplet in hydrodynamics flows through channel or tube has

been experimentally studied by Goldsmith and Mason [1],

Olbritch [2], Ho and Leal [3], and Olbrtich and Kung [4], at

low Reynolds number. Ho and Leal [3] investigated the effects

of capillary number and viscosity ratio on droplet shapes.

Olbricht and Kung [4] studied experimentally the motion of

drops in a capillary tube for a large range of capillary numbers,

drop sizes, and viscosity ratios. They reported the effects of

drop size and viscosity ratio on the critical capillary number

above which the drop breakup occurs. In the Stokes flow limit,

Chan and Leal [5] and Nadim and Stone [6] investigated the

effects of the viscosity ratio and the capillary number Ca on

the migration of droplets with diameter much smaller that

channel height. In addition to the experimental and theoretical

studies, most of the numerical investigations for simulating

the behavior of a single gas bubble or drop in Poiseuille

flow at zero Reynolds number (Stokes flow approximation)

were carried out using the boundary-integral method [7–12].

*gtm@iitg.ernet.in

On the other hand, Mortazavi and Tryggvason [13] studied

the deformation and lateral migration of a two-dimensional

(2D) drop in a flow channel at finite Reynolds number using

the full Navier-Stokes equations with a finite-difference and

front-tracking approach. Konda et al. [14] numerically studied

migration of a droplet in a converging-diverging channel using

a finite-volume approach and demonstrated droplet shape

oscillations while it migrates inside the channel due to an

imposed pressure gradient. Nourbaksh and Mortazavi [15]

reported the dependency of the drop migration on the viscosity

ratio. Recently Nath et al. [16] studied the droplet motion in

capillary tubes adopting a coupled-level-set-volume-of-fluid

approach [17] and discussed the dynamics associated with

droplet breakup.

Several theoretical, numerical, and experimental studies

have also been carried out that explore the effects of application

of an electric field to various fluid systems. The pioneering

theoretical works of O’Konski and Thatcher [18] and Garton

and Krasucki [19] in the 1950s and 1960s involved electro-

hydrostatic analyses on droplet deformation. It was assumed

that the fluids are perfectly dielectric and mainly accounted

for the electric forces normal to the droplet interface. They

found that the droplet always deforms into a prolate shape.

Taylor [20] and Ajayi [21] proposed the leaky dielectric model,

which could account for the electric stresses tangential to the

interface and predicted the deformation of a droplet into an

oblate shape, as observed in the experiments of Allen and

Mason [22]. Tsukada et al. [23] and Feng and Scott [24] used a

finite element method to study the droplet derformation under
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the influence of a uniform electric field using a leaky dielectric

model. To study the interaction between a pair of droplets

placed in a uniform electric field Baygents et al. [25] developed

a boundary integral method and applied their formulation to

both dielectric and leaky dielectric models. Berry et al. [26]

simulated conducting drops in a nonconducting medium. Lac

and Homsy [27] used a boundary integral method to study the

deformation and breakup of a droplet in a uniform electric field

and obtained a phase diagram showing the variation of droplet

shapes under the influence of different electrical properties.

Fernandez and Trygvasson [28] incorporated finite-volume and

front-tracking methods to study the behavior of an emulsion

of leaky dielectric droplets in an electric field generated by

parallel plate electrodes. Fernandez [29,30] did a similar study

to investigate the response of an emulsion of a leaky dielectric

droplet in a shear flow by employing the same formulation.

Hua et al. [31] also utilized a front-tracking and finite-volume

method to solve the full Navier-Stokes equations and studied

the motion of a droplet suspended in a viscous medium

under the influence of an electric field. In their work, they

considered three different electrical models: a leaky dielectric

model, perfect dielectric model, and constant charge model.

Zhang and Kwok [32] developed a lattice Boltzmann method

employing dielectric theory to study the droplet behavior

in a uniform electric field. Sato et al. [33] experimentally

studied the deformation and breakup of silicone droplets in

the presence of an electric field. Timung et al. [34] reported

a noninvasive way to disintegrate a microdroplet into a string

of further miniaturized ones under the influence of an external

electrohydrodynamic field inside a microchannel.

The numerous studies discussed above constitute consider-

able progress towards understanding of the effects of an electric

field on droplet motion and deformation in tubes and channels.

However, in most of the previous studies, the dynamics was

investigated by placing the droplet at the center line of the

channel or tube. The cross-stream migration phenomenon of

droplets at low Reynolds number in channels still seems to be

less explored and needs more attention. Earlier work of Nath

et al. [16] may also be placed in perspective and extended

further. The presence of an electric field also has a profound

influence on the droplet migration. Therefore, in the present

work, we focus on the dynamics of droplet migration and

deformation starting from an initial of-center position and

investigate the effect of an electric field on the cross-stream

migration phenomenon.

The remainder of the paper is organized as follows: In

Sec. II the formulation of the problem is discussed. The

details of the computational domain, the pertaining governing

equations and the numerical method adopted are mentioned.

The qualitative and quantitative validations are conducted to

check the accuracy of the mathematical model. This leads to

Sec. III, where the results of our computations for a wide range

of parameters are discussed. The results include the study

of droplet migration in both the absence and presence of an

electric field. Finally, concluding remarks are given in Sec. IV.

II. FORMULATION

In this section, we introduce the mathematical model that is

employed to study the droplet migration in a 2D channel with

FIG. 1. The schematic representation (not to scale) of the lateral

migration of a droplet inside a channel under the influence of external

Poiseuille flow and uniform electric field.

and without the influence of an electric field and we examine

its accuracy in capturing the flow physics. Figure 1 shows a

schematic illustration of the computational domain considered

in the present study. The motion of an initially spherical droplet

of radius R0 is placed at a position (x0,y0). The hydrodynamics

are governed by the incompressible Navier-Stokes and con-

tinuity equations, along with an electrohydrodynamic model

to describe the electric field effects. The electromechanical

coupling occurs at the interface that separates the droplet

phase and the suspending fluid, since material and electrical

properties are taken to be constant in each phase.

A. Governing equations

In the present work, a Newtonian droplet is suspended in

another Newtonian medium inside a channel. Both the fluids

are considered to be immiscible and incompressible, and the

walls of the channel act as electrodes to provide an external DC

electrostatic field. A volume-of-fluid approach in the GERRIS

framework (see description below) is used. For this problem

the governing equations are

∇ · V = 0, (1)

ρ[∂V/∂t + (V · ∇)V] = −∇P + ∇ · [μ(∇V + ∇VT)]

+γ κnδ + ∇ · M, (2)

∂α/∂t + ∇ · (Vα) = 0, (3)

where V(u,v) represents the velocity field such that compo-

nents u,v are along the x and y axis, respectively. The pressure

field is denoted by p. The Maxwell’s stress tensor for the

electric field M is defined as M = ǫoǫr [E ⊗ E − 1
2
(E · E)I ].

The volume fraction (represented by α) has a value of 1

inside the drop and 0 in the suspending fluid. The surface

tension γ effect is considered by incorporating the continuum

surface force model of Brackbill et al. [35] into the momentum

equations. In Eq. (2), κ (≡ ∇ · n) is the curvature of the

interface, wherein n(≡ ∇α/|∇α|) is the outward pointing unit

normal to the interface.

The Gauss law for a perfectly dielectric medium can be

written in terms of the electric displacement (D = ǫE) as

∇ · D = ∇ · (ǫE) = qv . Here ǫ and qv represent the absolute

permittivity of the fluid and the volume density of free charges

inside the domain, respectively. For perfect dielectric fluids,

no free charge carriers exist (qv = 0), and hence, the electric
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field becomes

∇ · (ǫE) = 0. (4)

In the absence of a magnetic field, the irrotational

(∇×E = 0) electric field E employed across the channel can be

expressed in terms of the electric potential (V ) as E = −∇V .

Hence, Eq. (4) can be rewritten in terms of electric potential as

∇ · (ǫ∇V ) = 0. (5)

The electrostatic force acting on the dielectric fluids (fe) can

be represented as

fe = ∇ · M = − 1
2
ǫoE · E∇ǫr , (6)

where ǫo denotes the permittivity of free space and ∇ǫ is the

gradient of relative permittivity acting along the interface.

The present study also includes leaky dielectric fluids. The

charge conservation equation for such fluids can be expressed

as

∂qv/∂t + ∇ · (qvV) = −∇ · (σE). (7)

Here σ represents the electrical conductivity of the fluids.

The electric relaxation time is given by te = ǫ/σ , whereas

the viscous timescale can be expressed as tv = ρH 2/μ. For

leaky dielectric fluids, te ≪ tv and the charge may accumulate

at the interface almost instantaneously as compared to the

timescale of fluid motion. Hence, Eq. (7) can be simplified

with a quasistatic assumption and expressed as ∇ · (σE) = 0

which can be further converted in terms of electric potential as

∇ · (σ∇V ) = 0. (8)

The distribution of volume charge density can be obtained from

the Gauss law as qv = ∇ · (ǫE). With the calculated distribu-

tions of electric charge density and electric field strength, the

electrostatic force (fe) acting on the leaky dielectric fluids can

be written as

fe = ∇ · M = − 1
2
ǫoE · E∇ǫr + qvE. (9)

The volumed averaged fluid properties are given by

μ = μsα + μd (1 − α), (10)

ǫ = ǫsα + ǫd (1 − α), (11)

σ = σsα + σd (1 − α). (12)

B. Initial and boundary conditions

The following initial and boundary conditions are imple-

mented to solve the governing equations. Initially (at t = 0),

both the fluids are considered to be at rest [36]. A fully

developed velocity profile is imposed at the inlet of the channel

(x = 0), which is given by

u(x) = 1.5Vavg

[

1 −
y2

(H/2)2

]

and v(x) = 0, (13)

where Vavg is the average velocity of the imposed flow. The no-

slip and no-penetration conditions (u = v = 0) are imposed at

the channel walls, i.e., y = ±H/2. At the outlet of the channel

(x = L), the Neumann boundary conditions for the velocity

components and fixed pressure condition are applied and given

by

∂u

∂x
=

∂v

∂x
= 0 and p = p0. (14)

The external electric field is applied by imposing constant

voltage boundary conditions V = +Vo and V = −Vo at the

upper and lower walls of the channel, respectively.

C. Numerical method

A finite volume open source computer code, GERRIS [37],

is used for studying the dynamics of drop motion and de-

formation inside a microchannel. A volume-of-fluid method

with added capabilities of reduction in spurious currents at the

interface makes it suitable and appropriate for simulating fluid

flows with interface and has been used by many researchers

successfully in solving complex fluid flow problems [38–41].

Additionally, for the two-phase electrohydrodynamic simula-

tions, GERRIS was chosen because the electrohydromodule

[42] of GERRIS is capable of solving the incompressible

Navier-Stokes equations coupled with an electric potential and

electric charge density accurately [43,44]. Moreover, GERRIS is

equipped with dynamic adaptive mesh refinement ability that

allows more computational cells to be used near the desired

regions dynamically [37]. All the features discussed above are

advantageous for the present simulations.

D. Nondimensionalization

The results obtained from the numerical simulations are

presented in terms of dimensionless parameters. The height

of the channel, H , and average imposed velocity, Vavg, are

used as the length and velocity scales, while μs is used as the

viscosity scale. The aspect ratio, a∗, defined as the ratio of the

initial droplet diameter to the height of the channel, is given

by 2R0/H . The chosen reference quantities give rise to the

following set of dimensionless parameters:

Ca ≡
μsVavg

γ
, Re ≡

ρsVavgH

μs

, λ =
μd

μs

,

S =
ǫd

ǫs

, R =
σd

σs

, E∗ =
E

Vavg

√

ǫs

ρs

. (15)

The parameters in Eq. (15) correspond to the capillary

number, Reynolds number, viscosity, permittivity, and conduc-

tivity ratios, and a dimensionless electric field, respectively.

Here Ec is the characteristic scale for electric field strength

given as Ec = Vavg

√
ρs/ǫs . The seemingly uncommon scaling

for electric field is stimulated by the numerical work and

is adopted so that the dimensionless parameter associated

with the Maxwell stresses in Eq. (2) is unity. For the sake

of convenience, E∗ is represented as E for the rest of the

paper and denotes the dimensionless electric field strength.

In the present study, the Reynolds number is assumed to

be small (Re = 1), i.e., the influence of inertia force can

be assumed to be negligible compared to the viscous force.

Furthermore, we study the migration of a neutrally buoyant

droplet in the simulations, and the results are presented in

terms of dimensionless time, t∗ ≡ tVavg/H . We also introduce

a dimensionless term yc, which represents the lateral position
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FIG. 2. Comparison of drop shape for three different Ca: 0.05,

0.10, and 0.16. The other parameters are a∗ = 0.95 and λ = 0.99.

Left panel: Experimental results [4]; right panel: present simulations.

(area-averaged center) of the droplet in the channel. The value

of the yc ranges between −0.5 and +0.5. The length of the

channel is considered to be L = 40H .

E. Validation

1. Qualitative comparisons

For the purpose of validation, we compare our simulation

results with the experimental results of Olbricht and Kung

[4] for a drop of size a∗ = 0.95 suspended in a system with

λ = 0.99. Note that those authors investigated the dynamics of

droplet migration in a capillary tube, unlike in a 2D channel

as considered in the present study. Three different Ca are

considered: 0.05,0.10, and 0.16. Figure 2 depicts that the

present computational results possess a good qualitative match

with their experimental counterpart.

2. Quantitative comparisons

To examine the accuracy of the present numerical solver

for electrohydrodynamic simulations, the deformation of a

spherical drop suspended in a stationary fluid is examined.

The deformation is characterized by the Taylor’s deformation

parameter D = L−B
L+B

, where L and B are the end-to-end

length of the droplet measured along the x and y directions,

respectively. A positive D represents the deformation along the

field direction (prolate shape), whereas a negative D represents

the deformation perpendicular to the field direction (oblate

shape); D = 0 represents a spherical droplet. The analytical

solution for the drop deformation under electric field provided

by Taylor [20] is given by

D =
9CaE

8(2 + R)2

[

R2 + 1 − 2S +
3

5
(R − S)

2 + 3λ

1 + λ

]

, (16)

where CaE = E2ǫoRo

γ
is defined as the electrical capillary

number, which signifies the relative strength of the external

electric field over capillary force.

Figure 3 presents a quantitative comparison between the

theoretical prediction of Eq. (16) and the results obtained from

our current simulations. A good agreement can be observed

for the deformation parameter D under varying conditions of

CaE and R from Figs. 3(a) and 3(b), respectively.

FIG. 3. Comparison of drop deformation computed from the

present simulations with Taylor’s theory [Eq. (16)] for varying CaE

and R, respectively.

3. Grid independence test

The grid convergence test is conducted by simulating the

migration of a droplet in a channel with aspect ratio a∗ = 0.6.

The rest of the dimensionless parameters are Ca = 0.7 and

λ = 1.0. The adaptive mesh refinement feature of GERRIS

is employed to increase the grid density near the interfacial

region while maintaining a relatively coarser mesh elsewhere.

The refinement is done based on the gradient of volume

fraction. Figure 4(a) presents snapshots of different levels of

refinement deployed for the grid convergence test. The smallest

(dimensionless) cell sizes are 0.031, 0.016, 0.008, and 0.004

corresponding to grid levels 5, 6, 7, and 8.

The temporal variations of the drop yc for different grid

refinement levels are presented in Fig. 4(b). It is observed that

the drop yc measured at t∗ = 15 differs by ∼50% between

levels 5 and 6 and by ∼11% between levels 6 and 7, whereas

the difference between levels 7 and 8 is less than ∼3%. In

view of this, and optimizing the computational time and cost

without compromising the accuracy of the results, grids with

refinement level 7 are used to generate the rest of the results

presented in this study.

F. Fluid properties

The drops can be considered to be composed of silicon oil

and the suspending medium comprising castor oil. Different
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FIG. 4. Grid convergence test. (a) Snapshots of adaptive mesh

generation using different levels of refinement. The refinement level

of 7 is selected for the present study. (b) Comparison of yc for different

levels of grid refinement. The different parameters considered are

a∗ = 0.6, Ca = 0.7, and λ = 1.0.

grades of silicon oil help us to get different viscosity ratios

required for the parametric studies [45]. For perfect dielectric

fluids, s silicon oil droplet in a medium of castor oil or vice

versa can be considered depending on the permittivity ratio.

For leaky dielectric fluids, two system of fluids are considered.

System A represents a drop whose permittivity is lower but

conductivity is higher than that of the suspending medium.

System B represents a drop whose permittivity is higher but

conductivity is lower than that of the suspending medium. Such

fluid properties can be obtained by considering a silicone oil

drop in castor oil medium for system A and a castor oil drop in

a silicone oil medium for system B [46]. The conductivity of

silicone oils can be increased using doping in order to obtain

a large range of conductivity ratio, R [46].

III. RESULTS AND DISCUSSION

The lateral migration phenomenon of a drop inside a

microchannel is studied in both the absence and presence of

an electric field and are discussed in Secs. III A and III B,

respectively. The cross-stream locomotion of a drop placed

off-center inside a channel for low Reynolds number flows

can be attributed to the shape deformation of the drop under

the influence of the incident flow and the variation of shear

stress acting across the drop. The shape deformation leads

to an aerodynamically favorable shape for the drop to move

towards the center line. The deformation is more prominent

for larger drops which undergo larger shape deformation. A

similar mechanism was thoroughly discussed in Karimi et al.

[47] in the context of cell migration in microfluidics. Owing

to the proximity of an off-center drop to the channel wall,

the influence of shear force is significant, and the variation

of shear stress across the drop leads to the migration of the

drop from the initially released position to an equilibrium

position. Additionally, the rotation of the drop can result in the

generation of Magnus lift force and the strength of this force

is dependent on the angular velocity of the spinning droplet.

The rotational effect has been found to be negligible for a

significant portion of this study. However, the application of

an external electric field under certain conditions may result in

strong rotation of the drop as it traverses across the channel. The

lift force generated by the Magnus effect assumes significance

in such flow conditions.

A. Drop dynamics under the influence of Poiseuille

flow without electric field

The dynamics of drop deformation and lateral migration in

the Poiseuille flow in a microchannel (in the absence of electric

field) are dictated by the relevant nondimensional parameters:

drop size (a∗), capillary number (Ca), and viscosity ratio (λ).

Therefore, the effect of each one of these parameters for a drop

placed at an off-center position is discussed in this subsection.

1. Effect of drop position

To understand the effect of the initial position of the drop on

its migration phenomenon, a drop of moderate size (a∗ = 0.6)

was placed at different off-center positions along the y axis.

The capillary number and viscosity ratio were considered to be

0.7 and 1, respectively. Over a wide range of initial positions

of the drop, it is observed that the drop moves away from the

channel walls and drifts towards the center line and attains a

steady bullet shape with the drop center lying in the channel

center line. For the set of parameters, this phenomenon is

observed to be consistent regardless of the initial off-center

placement of the drop. Figure 5(a) shows the migration of

the drop towards the channel center from different off-center

positions. Mortazavi and Tryggvason [13] showed that the

migration of a small drop towards or away from the wall

depends on the viscosity ratio between the drop and medium,

but for the moderate size drops suspended in systems with

matching viscosities, the drops always tend to migrate towards

the channel center. A similar dynamics was also observed by

Griggs et al. [11] and Coulliette and Pozrikidis [10]. During

its movement to the channel center, the drop undergoes shape

deformations and finally attains a steady bulletlike shape.

The streamlines in and around the drop placed at yc = 0,

−0.1, and −0.15 are shown in Fig. 5(b). The images are

taken at t∗ = 5. At this particular time instant, the drop placed

initially at the center line (yc = 0) has already reached a steady

bulletlike shape and moves with a steady velocity. However,

the drops placed at off-center positions have not attained a

steady bullet shape; rather, they are observed to be laterally

migrating towards the channel center line while traversing in

the axial direction. It is clearly evident from Fig. 5(a) for the

drop placed initially at yc = −0.15 that the prominent vortices
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FIG. 5. A drop (a∗ = 0.6) initially placed at different off-center

positions gradually migrates towards the center line of the channel.

The other parameters are Ca = 0.7 and λ = 1. (a) The lateral position

of the drop versus time. (b) The streamlines around the drop placed

at yc = 0, −0.1, and −0.15, respectively. The flow field is presented

in the frame of reference of the drop.

formed around the drop promote the lateral deformation and

push the drops to drift towards the channel center line. Though

a little less pronounced, this phenomenon is also seen to be

exhibited well by the drop placed initially at yc = −0.1.

The confined flow inside a microchannel results in a sharp

gradient of velocity across the channel cross section, and the

shear force is stronger close to the walls. The initial migration

rate [slope of yc versus t∗ in Fig. 5(a)] of a drop for initial

yc = ± 0.15 is higher than that observed for initial yc = ± 0.1.

This can be attributed to the larger shear variation experienced

by such drops. As the drop approaches the center line, the

shear force acting on the drops decreases and the migration

rate attains a smaller value for both values of yc considered.

Furthermore, the shear force on the drop can also be tuned by

manipulating the drop size and the capillary number as well as

the viscosity ratio, which can result in significant modification

of the shape deformation as well as the shear force, thereby

affecting the dynamics of the migration process. The influence

of drop size, capillary number, and viscosity ratio is discussed

in the following sections.

2. Effect of drop size

The size of the drop plays a vital role in its migration

phenomenon. To understand the effect of drop size, simulations

are performed for drops of varying sizes in the range a∗ = 0.3

to 0.65. All the drops are released from an initial position that

FIG. 6. Migration of different sized droplets starting from an

initial off-center position (yc = −0.15) towards the channel center

line. (a) Drop velocity versus time. (b) Lateral position versus time.

The other parameters are Ca = 0.7 and λ = 1.

is below the center line (y∗ = −0.15) of the channel. The other

parameters considered are Ca = 0.7 and λ = 1. The effect of

size on the drop migration is shown in Fig. 6. For the range of

drop sizes considered, and under the given set of conditions,

it is observed that all the drops move away from the wall. The

temporal variations of drop velocity are plotted in Fig. 6(a)

for five different drop sizes ranging from a∗ = 0.3 to 0.65.

Figure 6(b) shows the variations of the corresponding lateral

position of the drop with time. It is seen that the large drops

have a higher tendency to migrate towards the channel center

line. For a∗ = 0.65, the drop reaches the channel center line

and attains a steady shape and velocity. However, smaller drops

do not seem to attain a steady lateral position within the length

of the channel under consideration. A possible explanation

of this is as follows: big drops are associated with enhanced

shape deformation, which makes the drops aerodynamically

favorable to move towards the center line of the channel. In

contrast, this aerodynamic deformation is absent in the case of

small drops as they remain spherical due to the effect of larger

surface tension force as compared to bigger drops.

The smallest drop a∗ = 0.3 exhibits very less lateral migra-

tion and seems to settle down at a lateral position very close to

the initial off-center position. The intermediate drops a∗ = 0.4

and 0.5 settle at a lateral position that is somewhere between

the channel center line and the initial off-center position.

The varied dynamics exhibited by different sized drops can

be explained as follows. As the droplet size increases, the

equilibrium position of the drop moves closer to the center

line of the channel. The variation of shear stress acting across
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FIG. 7. The effect of varying Ca (Ca= 0.3 to 1.3) on the migration

of a drop initially placed at yc = −0.15. (a) Drop velocity versus time.

(b) Lateral position of the drop versus time. The other parameters are

a∗ = 0.4 and λ = 1.

the drop increases with increasing size of the drop, which leads

to faster migration of a large drop towards the center line in

comparison to a smaller drop as depicted by Fig. 6. Thus,

large drops deform more and advect away from the wall at

a faster rate than smaller drops for a given pressure drop. It is

also observed in Fig. 6(a) that the smaller drops move with a

higher velocity in the channel as compared to the larger drops.

For the length of the channel under consideration, drops with

a∗ = 0.5,0.6, and 0.65 reach a steady velocity, but the smaller

drops of sizes a∗ = 0.3 and 0.4 do not attain a steady velocity.

Figure 6(b) reveals that for the given length of the channel

(L∗ = 40) the smaller drops (a∗ = 0.3,0.4) do not reach the

center line of the channel, while the larger drops reach the

channel center line quite early.

3. Effect of capillary number

The drop migration is influenced immensely by the capillary

number. A higher value of capillary number is led by a lower

surface tension force and dominating viscous force. Thus, with

the increase in the capillary number, the ability of the drop to

deform increases, which in turn leads to an enhanced rate of

cross-stream migration of the drop.

This phenomenon is evident in Fig. 7, where the effect of Ca

on drop migration is investigated for a drop of size a∗ = 0.4.

Ca is varied from 0.3 to 1.3 and the viscosity ratio is taken as

1. Figure 7(a) shows the drop shape and position at t∗ = 30 for

different values of Ca. It is seen that at the same time instant

(t∗ = 30) the drop occupies different positions and assumes

different shape under the influence of varied Ca. It is evident

from Fig. 7(a) that with the increase in Ca, the drop evolves

from a nearly spherical shape to a more deformed shape with a

lift in their lateral position. Even though we have used a channel

length of 40H in all the investigations, Fig. 7 was especially

FIG. 8. The effect of varying viscosity ratio (λ = 0.01 to 2.0)

on the migration of a drop initially placed at yc = −0.15. (a) Drop

velocity versus time. (b) Lateral position of the drop versus time. The

other parameters are a∗ = 0.4 and Ca = 0.7.

investigated for a channel length of 80H over a longer duration

(t∗ = 80). Longer time simulations depict that the drops do not

reach the center line.

4. Effect of viscosity ratio

The viscosity ratio of the drop fluid to the suspending fluid

also plays a vital role in drop migration. In this section, we

examine the effect of viscosity ratio on the lateral migration of

a drop of size a∗ = 0.4. The value of Ca is taken as 0.7, and

λ is varied from 0.01 to 2.0. Figure 8(a) depicts the influence

of viscosity ratio on the velocity of the drop while traversing

in the channel. It is observed that when Ca is fixed, with the

increase in viscosity ratio, the velocity of the drop decreases

owing to the increased hydrodynamic resistance. In Fig. 8(b),

the temporal variations of the center position of the drop is

plotted. It is observed that all the drops tend to migrate towards

the channel center line. Once a drop reaches the channel center

line, it moves with a steady velocity maintaining a bulletlike

shape. The deformation of the drop is dictated by the capillary

number as well as the viscosity ratio, and their dominance over

each other decides the rate at which the drops migrate towards

the channel center line. As the viscosity ratio is increased,

the lubricating effects between the wall and the drop are

reduced. The drop fails to drift towards the channel center

line easily and tends to settle down in a lateral position that

lies somewhere between the channel center line and the initial

off-center position of the drop.
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As shown in Fig. 5(b), it is also clear that the migration

towards the center line from different off-center positions are

associated with asymmetrical shape deformation of the droplet.

For very low values of Ca, the drop does not deform much

(tends to retain its spherical shape) due to the effect of high

surface tension (Fig. 7). Thus the lateral migration of the

droplet can be suppressed for small values of Ca (in the surface

tension-dominated regime). It is also observed that the drops

of small size undergo less deformation (Fig. 6). For fixed

values of other parameters, increasing the viscosity ratio, λ,

would again have a similar effect as that of increasing surface

tension (Fig. 8). Therefore, intuitively we can conclude that the

lateral migration of a moderate-sized droplet decreases with

decreasing Ca and increasing λ.

B. Drop dynamics under the influence of Poiseuille

flow with an electric field

As mentioned in Sec. II, the presence of an electric field

introduces an additional stress at the interface, termed the

Maxwell stress. The interfacial force may aid or oppose the

surface tension force depending upon the sign of radius of

curvature of the interface. The shape of the drop is influenced

by the resultant effect of surface tension, Maxwell stress,

and viscous stresses. In this subsection, we consider perfect

dielectrics, where free charge carriers do not exist and electric

stresses act normal to the interface. Also, we consider leaky

dielectrics (poor conductors) that support accumulation of

interfacial charges implying the presence of tangential stresses.

The deformation and migration of the droplet in the presence

of an electric field are significantly affected by the electric

properties of the fluid, namely, permittivity, resistivity, and

conductivity.

1. Dielectric fluids: Effect of permittivity ratio

The effect of the permittivity ratio on the lateral migration

of a drop (a∗ = 0.4) is studied by varying the permittivity ratio

(S) of the dispersed fluid to continuous fluid between 0.2 and

5.0. The other parameters are fixed at Ca = 0.7, λ = 1, and

the electric field strength, E = 5. Figure 9(a) shows the shapes

attained by the drop for different permittivity ratio at t∗ = 30. It

is clearly seen that as the permittivity ratio increases, the shape

of the drop changes significantly. At high permittivity ratio, the

drop takes a convex shape at the front and a concave shape at

the back. This is because the higher dielectric permittivity of

the drop fluid as compared to the suspending medium leads to

the accumulation of a large number of induced bound charges

across the interface, which generates the electrohydrodynamic

stress to elongate the droplet towards the electrodes and form

the plug inside the channel. Figure 9(b) shows that with the

increase in permittivity ratio the lateral migration of the drop

increases quite monotonically. However, it is also observed

that as the permittivity ratio is increased, beyond S = 3,

the drop overshoots the equilibrium position and oscillates

several times around the mean position. These oscillations are

more pronounced for S = 5 where the oscillations gradually

dampen. However, the oscillations do not die down completely

within the channel length of interest. In Fig. 9(a) it can be seen

that highly deformed droplet shapes are formed for S = 4.0

FIG. 9. Effect of varying permittivity ratio (S = 0.2 to 5) on the

deformation and migration of a drop initially placed at yc = −0.15.

(a) The shape of a drop at t∗ = 30 subjected to different permittivity

ratio S. (b) The lateral position of the drop versus time. Other

parameters are a∗ = 0.4, Ca = 0.7, λ = 1, and E = 5.

and 5.0, and these critical shapes lead to oscillations of the

drops around its equilibrium position.

The normalized pressure drop over the channel is shown

in Fig. 10(a) for S = 0.2 to 5.0 at t∗ = 30. The dashed line

in Fig. 10(a) represents the normalized pressure drop in the

FIG. 10. Effect of elongation of the drop. (a) The normalized

pressure drop in the channel for different permittivity ratio compared

to the pressure drop in the channel in the absence of any drop

(dashed line). (b) The streamlines around a drop subjected to varying

permittivity ratio (S = 0.2 and 5) at t∗ = 30. The flow field is

presented in the frame of reference of the drop. Other parameters

are a∗ = 0.4, Ca = 0.7, λ = 1, and E = 5.
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FIG. 11. Variations of shape a drop (a∗ = 0.4) initially placed at

yc = −0.15 inside the channel and subjected to electric field from

t∗ = 0 to 5.2. The other parameters are Ca = 0.7, λ = 1, E = 5, and

S = 5.

channel in the absence of any drop. It is observed that as

the drop undergoes elongation and gradually occupies the

entire cross section of the channel, the pressure drop inside

the channel increases. The streamlines in and around the drop

are plotted for the two extreme cases, for S = 0.2 and 5.0, as

shown in Fig. 10(b). For higher value of S, the deformation of

the drop leads to a lobelike shape yielding a higher blockage

ratio. The streamlines described by the channel fluid reveal a

typical situation corresponding to flow past a bluff body inside

a channel. The near wake region broadens with the increase in

blockage ratio.

The reason behind the drop oscillations about the mean

position observed in Fig. 9(b) for S = 4 and 5 can be better

explained by analyzing Fig. 11, which illustrates the evolution

of a liquid lobe. In Fig. 11 the motion of a drop of a∗ = 0.4 is

shown for t∗ = 0 to 5.2 when subjected to E = 5 and S = 5.

It is observed that the drop stretches and takes a bow shape

rapidly as it starts moving in the channel. But the drop during

its motion inside the channel hits the top and bottom wall

surfaces, alternatively (as shown by the red arrow). Thus the

phenomenon of oscillations of the drop mean position [as

witnessed in Fig. 9(b) for S = 5] is exhibited because when

the drop hits a wall, an opposite and equal force is exerted

by the wall on the drop which makes it move away from that

surface laterally while it is still in axial motion. As the drop

continues to rebound after hitting the wall, it gradually travels

across the channel and hits the opposite wall, and this event

continues. The oscillations of drop mean position are higher at

the beginning [as observed in Fig. 9(b) for S = 5] due to the

instability caused by the onset of drop deformation; however, as

the drop gradually takes a steady shape, the oscillation is found

to be varying about a mean position yc = 0 (center line).

2. Dielectric fluids: Effect of electric field strength

To understand the effect of electric field strength E on the

migration of a given drop (a∗ = 0.4), E is varied from 5 to

20. Figure 12(a) depicts the influence of E on the shape of the

drop. The images show the deformed shape of the drop at a

particular time instant t∗ = 30. The steady shapes obtained by

the drop subjected to different E clearly reveal that with the

increase in E, the drops get highly stretched and elongated in

the direction of the electric field. Figure 12(b) shows the lateral

position of the drop while moving inside the channel subjected

to varied E.

It is observed that, for all other parameters remaining fixed,

a drop under the influence of a high value of E (E = 15

and 20) drifts faster towards the channel center line and

FIG. 12. Effect of varying electric field strength (E = 5 to 20)

on the deformation and migration of a drop initially placed at yc =
−0.15. (a) The shape of a drop at t∗ = 30 subjected to different E.

(b) The lateral position of the drop versus time. Other parameters are

a∗ = 0.4, Ca = 0.7, λ = 1, and S = 0.2.

attains a steady velocity and hence a steady lateral position.

Whereas for intermediate values of E (E = 10 and 12) the

drop attains a steady lateral position somewhere between the

initial off-center position and the channel center line. This

trend is seemingly followed by the drop subjected to E = 7

somewhere downstream. On the other hand, a drop subjected

to a lower value of E (E = 5) does not reach a steady lateral

position for the channel length of interest, and it is evident that

it exhibits quite less cross-stream migration. For E > 10, due

to large elongation in the direction of electric field (the drop

tends to completely occupy the channel), the drop becomes

symmetrical about the y∗ = 0 axis. Thus the center of gravity

of the drop moves to the center line of the channel. On the

other hand, there is a combined influence of asymmetrical

shape deformation and the electric field for E < 10, which

results in an unsteady state till later times and prevents the

drop from moving to the center line. For this set of parameters,

this transition is occurring for E = 10, thereby resulting in a

nonmonotonic trend around E = 10.

The normalized pressure drop over the channel is shown

in Fig. 13(a) for E = 5 to 20 at t∗ = 30. The dashed line

in Fig. 13(a) represents the normalized pressure drop in the

channel in the absence of any drop. It is seen that as the

drop gets more and more stretched in the presence of a high

electric field strength, the pressure drop inside the channel

increases. The streamlines in and around the drop are plotted
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FIG. 13. Effect of elongation of the drop. (a) The normalized

pressure drop in the channel for different electric field strength

compared to the pressure drop in the channel in the absence of any

drop (dashed line). (b) The streamlines around a drop subjected to

varying electric field strength (E = 5, 10 and 20) at t∗ = 30. The

flow field is presented in the frame of reference of the drop. Other

parameters are a∗ = 0.4, Ca = 0.7, λ = 1, and S = 0.2.

for E = 5, 10, and 20,as shown in Fig. 13(b). In the case

of E = 20, the stretched drop assumes almost the shape of

a vertical elongated body occupying more than 98% of the

flow area. Immediately downstream is fully occupied by the

separated symmetrical eddies. The approach flow streamlines

resemble the streamlines of stagnation flow.

3. Leaky dielectric fluids

To study the effect of conductivity ratio R together with

permittivity ratio S and electric field strength E and to

understand the result of their dominance over each other on the

droplet migration, we consider the fluids to be leaky dielectric.

Two different systems are considered, namely, system A in

which the drop fluid is more conducting than medium fluid,

while permittivity of the medium fluid is higher than the drop

fluid (S = 0.5 and R = 2), and system B, which has the exactly

opposite combination (S = 2 and R = 0.5). E is varied from

1 to 5. Figures 14(a) and 14(b) show the shapes of the more

conducting and less conducting drops, respectively, at t∗ = 30

for varying E.

In Fig. 15 it is seen that in system A (S = 0.5 and R = 2),

the drop migrates nearly monotonically towards the channel

center line (shown by the dotted lines). As E increases from 1

to 5, the drop attains a steady lateral position faster. However,

for system B (S = 2 and R = 0.5), Fig. 15 (solid lines) reveals

that the drop does not reach the channel center line but settles at

a lateral position close to its initial position. It is also observed

in the case of system B that with the increase in E from 1

to 3, the drop moves along a steady yc. However, with further

increase in electric field strengthE = 4 and 5), it is seen that the

lateral position of the drop oscillates around a mean value for

some time. These oscillations are depicted because the drop

along with translational motion now also exhibits rotational

motion. This phenomenon is more pronounced for E = 5 as

compared to E = 4. The oscillations gradually dampens with

time, in both cases.

FIG. 14. Shapes of the drop at t∗ = 30 while migrating from an

initial off-center position of yc = −0.15 and subjected to different

permittivity ratio S, conductivity ratio R, and electric field strength E.

(a) Drops suspended in a system of S = 0.5 and R = 2 and subjected

to varying E. (b) Drops suspended in a system of S = 2 and R = 0.5

and subjected to varying E. E is varied in the range of 1 to 5. Other

parameters are a∗ = 0.4, Ca = 0.7, and λ = 1.

FIG. 15. The migration of a drop initially placed at yc = −0.15

towards the center line of the channel influenced by different electric

field strength E, permittivity ratio S, and conductivity ratio R. Dotted

and solid lines represent the position of the drop suspended in systems

A and B, respectively. Other parameters are a∗ = 0.4, Ca = 0.7, and

λ = 1.
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FIG. 16. The transient evolution of a drop (a∗ = 0.4) initially

placed at yc = −0.15 inside the channel. For system A (a) and B

(b). The other parameters are Ca = 0.7, λ = 1, and E = 5.

Taylor provided the analytical solution for drop deformation

under an electric field as given in Eq. (16), and it is observed

that for R < S, the deformation is negative, i.e., the drop attains

an oblate shape. However, for R > S, D > 0 and the drop

becomes prolate. Thus, the relative magnitudes of R and S play

the dominant role in deciding the drop deformation, behavior,

and subsequently the migration dynamics.

The influence of R and S on the migration characteristic

of the drop is amply demonstrated in Figs. 16(a) and 16(b)

for a drop (a∗ = 4) migrating under the influence of E = 5

suspended in systems A and B, respectively. The transient

evolution of the drop suspended in both systems is shown from

t∗ = 0.6 to 20. A snapshot at t∗ = 0.6 for system A (R > S)

as shown in Fig. 16(a) clearly depicts the prolate deformation,

whereas for the same time instant the deformation is oblate

for system B (R < S) as observed in Fig. 16(b). The electric

force acting on the two sides of the drop is different in case

of a nonrotating and a rotating droplet. Figure 17 shows the

charge density at the interface of a migrating drop suspended in

systems A and B, respectively, at different time instants under

the influence of E = 5. The upper electrode of the channel is

at a positive potential of +V, whereas the lower electrode is at

a negative potential of V. The plots in Fig. 17(a) demonstrate

that the charge accumulation in system A is opposite to the

direction of the applied electric field. The charge accumulated

at the top of the drop for system A is negative, whereas at the

lower portion of the drop, positive charge accumulates. The

FIG. 17. The charge density at the interface of a drop (a∗ = 0.4)

initially placed at yc = −0.15 inside the channel subjected to electric

field. (a) Charge distribution at the interface of a nonrotating drop

suspended in system A. (b) Charge distribution at the interface of

a rotating drop suspended in system B. The other parameters are

Ca = 0.7, λ = 1, and E = 5.

opposite nature of charge between the electrodes and the drop

interface results in a pulling force on the drop which leads to

an equilibrium position at the center line. However, the charge

accumulation for system B, shown in Fig. 17(b), is different

from system A with positive charge at the top and negative

charge at the bottom of the drop interface (as can be seen for

t∗ = 1.2). This results in a compressive force on the drop and

leads to an off-center equilibrium position. It is to be noted

that the drop placed off-center migrates towards an equilibrium

position as discussed in Sec. III A, and the prolate deformation

(system A) assists the migration of the drop towards the center

of the channel. The deformation is further enhanced at higher

field strength thereby further accelerating the migration rate as

is clearly evident in Fig. 15 for the dotted lines. In contrast,

for system B, the drop deforms in the oblate direction, and the

oblate shape being hydrodynamically unfavorable undergoes

a series of rotations to attain a favorable shape at steady state.

As observed from the solid lines in Fig. 15, this phenomenon

of rotation is more pronounced under the influence of high E.

Another reason for the rotational motion is that the drops

having higher permittivity ratio and lower conductivity ratio

(system B) when subjected to a high electric field (E = 4 or

5) deform initially in the direction of the field. This results in a

slight decrease in the magnitude of yc during the early stages

of migration as can be seen for t∗ � 3 in Fig. 15. However,
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FIG. 18. The rotation of a drop (a∗ = 0.4) initially placed at yc =
−0.15 inside the channel subjected to electric field. (a) Profile of the

rotating drop for t∗ = 0 to 5.6. (b) The vector field in and around

the drop for t∗ = 1.2,2.3,3.3, 4.3, 15, and 20. (c) The trajectory of

a marker point (marked as red dot) near the interface (x∗ = 1, y∗ =
0.025). The other parameters are Ca = 0.7, λ = 1, E = 5, S = 2, and

R = 0.5. The flow field is presented in the frame of reference of the

drop.

the higher shear stress tends to drift the droplet towards the

channel center line. The combined effect of these results in

the rotation of the droplet, which is further aided by the oblate

shape of the drop. As the drop rotates, the influence of Magnus

lift also comes into picture. It is to be noted that the present

study is carried out for low Reynolds number flows inside a

microchannel, wherein the influence of inertia is negligible.

The lift force associated with the Magnus effect is dependent

on the magnitude of both the translational as well as rotational

velocity of the droplet. Due to the low migration velocity

of the drop, the lift force generated is not significant in the

face of a strong opposing effect of the applied electric force.

The drops thus settle at a certain equilibrium position that is

between the channel center line and initial off-center position.

However, for the drops with lower permittivity ratio and

higher conductivity ratio (S < 1 and R > 1), the elongation

monotonically increases perpendicular to the flow direction,

and the deformation is more pronounced at higher magnitude

of the applied electric field.

Figure 18(a) shows the rotation of a drop inside the channel

along with translation for E = 5 over a duration of time

between t∗ = 0 and t∗ = 5.6. However, this phenomenon is

prominently exhibited until t∗ = 15 and gradually dampens

out with time. The vector fields are illustrated in Fig. 18(b)

for t∗ = 1.2,2.3,3.3, 4.3, 15.0, and 30.0. Figure 18(c) depicts

the trajectory of a marker point near the interface of the drop

and the channel liquid (x = 1,y = 0.025). The position of

the marker point (in red dot) inside the drop is shown for

different time instants as the drop migrates inside the channel.

The x coordinate depicts the translational displacement of

the drop together with the comoving marker point, whereas

the displacement in the y direction illustrates the effect of

rotational (clockwise) motion of the marker point while the

drop is in translational motion.

IV. CONCLUSIONS

In the present work, numerical simulations of a neutrally

buoyant droplet migrating in a 2D channel in the creeping

flow regime are performed using GERRIS. The Navier-Stokes

equations coupled with electric force terms and continuity

equations are solved to study droplet dynamics in a channel

with fully developed flow at the inlet, with and without the

influence of an electric field. Validations for the numerical

solution are presented before proceeding with a detailed

parametric study. The results obtained from the investigation

are summarized in this section.

For a drop traversing in a Poiseuille flow at a very low

Reynolds number, the effects of the initial position of the

drop, drop size, capillary number, and viscosity ratio on its

motion and deformation are thoroughly studied. It is observed

that when a drop of size a∗ = 0.6 is placed at different initial

positions in the flow field for Ca = 0.7 and λ = 1.0, the drop

gradually migrates towards the center line of the channel and

eventually takes a steady lateral position. The initial yc position

was varied between −0.15 and 0.15. To understand the effect

of drop size on cross-stream migration, we considered drops of

sizes varying from a∗ = 0.3 to 0.65 for the same flow condition

(Ca = 0.7 and λ = 1.0). For the drops that are released from

an initial off-center position, yc = −0.15, it is observed that

larger drops move more slowly in the channel as compared to

smaller drops, but the lateral migration phenomenon is better

exhibited by the larger drops. Drops of size a∗ = 0.3 and 0.4

exhibit very little cross-migration phenomenon. From these

studies (effect of initial position and size of the droplet), it is

evident that the migration phenomenon of moderate size drops

is quite interesting. Therefore, for the rest of the investigations

the drop size is fixed at a∗ = 0.4, and the initial off-center

position is fixed at yc = −0.15. An attempt has been made

to understand the factors that enhance cross-stream migration.

The effect of the capillary number on drop migration is studied

by considering a drop of size of a∗ = 0.4 placed at yc = −0.15

for λ = 1. The capillary number is varied between Ca = 0.3

and 1.3, and it is observed that with the increase in Ca the drop

migration increases. The effect of viscosity ratio on the drop

migration is studied by varying λ between 0.01 and 2.5. This

study concluded that with the increase in viscosity ratio the

drop migration decreases.

In order to understand drop migration in a Poiseuille flow

under the influence of an external electric field, we considered

a drop of size, a∗ = 0.4 placed at yc = −0.15 for Ca = 0.7

and λ = 1. Both dielectric and leaky dielectric fluids are taken

into consideration in this study. In the case of dielectric fluids,

the effects of permittivity ratio (S) and the strength of electric

field (E) on drop migration are studied. It is observed that for a

drop fluid having high permittivity compared to the suspending
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fluid, the drop deforms highly and oscillates around its mean

position. When the electric field strength is increased from

E = 5 to 20 for a fixed permittivity ratio, it is observed that

the cross-stream migration increases and the drops become

stretched and elongated in the direction of the electric field. In

the case of leaky dielectric fluids, the electric field strength is

varied from E = 1 to 5 and two sets of fluid combinations are

considered. In one case the permittivity of the drop fluid is less

than that of the suspending medium while the drop fluid is more

conducting than the suspending fluid (S = 0.5 and R = 2),

and in the other case, the conditions are reversed (S = 2 and

R = 0.5). It is observed that a more conducting drop tends to

migrate towards the channel center line and the cross migration

increases with the increase in E, while a less conducting drop

tends to settle down at a lateral position somewhere near

the initial off-center position. An interesting phenomenon is

revealed in the case of less conducting drops under a stronger

electric field wherein the drops exhibit rotation together with

translation.
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