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 Introduction 

Aggregation of time series traffic information is one of the primary steps in the empirical macroscopic traffic flow 

modeling. It is evident from the literature that the performance of traffic flow models is highly sensitive to the 

aggregation period (Vlahogianni and Karlaftis, 2011). For a heterogeneous traffic stream, impact of the aggregation 

interval may get further aggravated with varying proportions of the vehicle mixes within the aggregation period. A 

detailed study in this direction is widely ignored in the transportation literature representing the heterogeneous 
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Abstract 

Temporal aggregation of the traffic stream characteristics has a significant influence on the performance of any mathematical 

model derived thereafter. For a heterogeneous traffic stream, the selection of the data aggregation interval is further complicated 

due to the possibility of different vehicle mixes in a series of composition data collected over a fixed aggregation period. The 

present study critically investigates and models the variation of the vehicle composition in the time series data collected over 

different aggregation periods. Traffic composition for a particular aggregation interval was represented using the coefficient of 

variation of the traffic composition corresponding to that aggregation interval. Findings from this study reveal that the traffic 

composition variation with the data aggregation interval could be modeled as a rational function. From the modeled variation, the 

minimum aggregation interval corresponding to the consistent traffic composition could be estimated. The present study suggests 

that the minimum aggregation interval could be approximated corresponding to the aggregation interval at which the rate of 

change of the coefficient of variation approaches zero from the direction of the lower aggregation period. The variation of the 

traffic composition within this aggregation interval would be minimal, hence safeguard the data from a wide scattering caused by 

the vehicle mix.  
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traffic stream. Generally in the macroscopic traffic studies, the aggregation of the time series data was performed 

across larger regular time intervals such as 15 minutes, hours, days, months, and so on (Vlahogianni and Karlaftis, 

2011). In fact, the Highway Capacity Manual (1998) recommends practicing a minimum of 15-min measurement 

intervals for a ‘‘stable’’ traffic flow rates. Nonetheless, most of the time-series traffic data aggregation attempts 

reveal that with the increase in the aggregation period the traffic flow tends to become more stable (Guo et al., 2008; 

Smith and Ulmer, 2003; Vlahogianni et al., 2004). On the other hand, researchers pointed out that the longer 

aggregation period may lead to oversimplification of the traffic dynamics by averaging between different traffic 

states. It is evident from Figure 1 that the higher aggregation intervals produce a smooth variation of the traffic state 

and creating a time series structure that has reduced sensitivity to the short term changes in the traffic stream. 

Whereas a shorter aggregation period may cause intense fluctuations and noise that may lead to modeling 

difficulties (Banks, 1999; Qiao et al., 2004, 2003; Smith and Ulmer, 2003). The increased fluctuations and noise for 

the shorter aggregation period could be attributed to the considerable variability in the vehicle mixes within the 

aggregation period, resulting incomparable average behavior. To trade-off between the ‘oversimplification of the 

traffic dynamics’ caused by the ‘longer aggregation period’ and the ‘intense fluctuation and noise’ from the ‘shorter 

aggregation period,’ it is essential to identify an optimum aggregation period for the time-series traffic data. For a 

heterogeneous traffic stream, the mix of vehicle classes with varying physical and dynamical characteristics act as a 

major cause of traffic fluctuation. In such circumstances, it is vital to implicitly consider the vehicle mix variation 

across the aggregation period as a criterion for the estimation of the minimum aggregation period. 

 Data aggregation is an interdisciplinary concept generally considered as the process of presenting the 

information from data in a summary form that encapsulates all the relevant information in the original data. In case 

of macroscopic traffic studies, the standard practice for selecting the aggregation period for averaging the traffic 

stream characteristics was based on the stationary conditions of the traffic stream (Cassidy, 1998). Though the 

requirements for stationarity proposed by Cassidy (1998) considers the vehicles’ (dynamic) heterogeneity through 

the speed analysis, presence of homogeneous vehicle types, as well as the lane-disciplined driving is mandatory for 

such investigations due to the use of cumulative arrival curves. Unfortunately, for a heterogeneous and no lane-

disciplined traffic stream attaining the conditions of the stationarity is a challenging task. Moreover, for a 

heterogeneous traffic stream, ensuring a consistent composition between the aggregation periods is essential since 

the vehicles’ dimension is directly proportional to the crowdedness in the traffic stream. The condition of constant 

composition between the aggregated data will safeguard the data from a wide scattering caused by the vehicle mix. 

The main objective of the present study is to review the importance of traffic composition in the macroscopic 

analysis of heterogeneous traffic stream dynamics, henceforth propose a methodology to identify the optimum 

aggregation interval for the macroscopic studies based on the traffic composition. The present study critically 

analyses the traffic composition variation with the aggregation intervals and proposes a methodology to identify the 

optimal aggregation interval at which traffic composition begins to stabilize. In this study, authors distinguishably 

use the terms ‘proportion’ and ‘composition’ with the following definitions.  The term ‘proportion’ associated with a 

particular vehicle type and is the percentage of that specific class within the traffic composition. Whereas, the term 

‘composition’ relates the entire traffic stream which includes the proportion of all the vehicle classes and the total 

will be hundred. 

 

 
Figure 1: Temporal Variation Traffic Flow for Different Aggregation Periods 
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The rest of the paper is organized as follows. Section 2 briefly reviews the past researches on the traffic 

composition. In Section 3, the details of the data collection and the primary calculations are described. Section 3 

briefs the methodology proposed to determine the minimum possible aggregation period for a heterogeneous traffic 

stream. Section 4 presents a detailed analysis of the results. Section 5 summarizes the study and presents the major 

conclusions.  

 Background 

Traffic composition is an important factor considered in the studies related to the multiclass traffic flow modeling 

(Fan and Work, 2015; Gupta and Katiyar, 2007; Hoogendoorn and Bovy, 2000; Logghe and Immers, 2003; 

Tuerprasert and Aswakul, 2010), traffic noise related studies (Filho et al., 2004; Gündoǧdu et al., 2005; Hatzopoulou 
et al., 2013), development of Passenger Car Units (PCU) (Al-Kaisy et al., 2002; Ballari et al., 2018; Gautam et al., 

2018; Kumar et al., 2018; Raj et al., 2018), capacity and the Level of Service (LOS) analysis (Chandra et al., 2016), 

and so on. However, most of the previous studies have not explicitly considered the impact of the data aggregation 

period on the research outputs (Guo et al., 2008). Generally, the traffic composition is determined as the proportion 

of the vehicle classes observed during a longer observation period. Although the composition obtained from the 

longer observation periods would be accurate, no studies have been investigated the minimum possible aggregation 

interval at which the composition remains similar to the longer one. Similarly, most of the previous investigations 

on the impact of traffic composition were limited to the analysis of the effect of the truck traffic on the traffic stream 

(HCM, 2000; Wu, 2002). As the traffic composition is time-dependent and heterogeneously distributed in an urban 

network, relating the fundamental relationship to traffic composition is quite complicated (Kimber et al., 1985; Rao 

and Rengaraju, 1998). Very few studies have been performed to understand the effect of traffic composition on the 

macroscopic behavior of urban traffic (Vlahogianni, 2007). 

Literature suggests that, for most of the numerical studies of the multiclass traffic flow models, an equal 

distribution of the vehicle mix is a necessary criterion (Gupta and Katiyar, 2007). Attaining such an ambitious 

condition for the traffic flow is difficult in real settings. However, the traffic stream could be approximated with an 

equal mix only once the aggregation interval is chosen appropriately. Several researchers have investigated the 

impact of the data aggregation period on the performance of various traffic flow modeling approaches (Smith and 

Ulmer, 2003). Guo et al., (2008) have found that, in the context of short-term traffic flow forecasting, the selection 

of appropriate forecasting approach would be contingent on the choice of the data aggregation time interval. Proper 

determination of aggregation level of traffic data will ensure the retention of necessary information and the 

elimination of as much unnecessary information as possible (Qiao et al., 2004). For a heterogeneous traffic stream, 

the change in the traffic composition has a direct impact on the flow represented in PCU and hence the speed and 

V/C ratio (Nahdalina et al., 2017). Vlahogianni (2007) has found that the effect of traffic composition on the flow 

and speed decreases with the onset of congestion. However, in the stop-and-go traffic conditions, the characteristics 

of platoon dispersion process are significantly influenced by the traffic composition and the distribution of the 

desired speed of the vehicle classes (Gupta and Katiyar, 2007; Wong and Wong, 2002). 

The literature survey clearly shows that the traffic composition as an essential criterion to be considered 

while dealing with the heterogeneous traffic stream. Though several studies have been conducted to understand the 

impact of traffic composition on various aspects of transportation engineering, there was no detailed study on the 

effects of composition variation across the data aggregation intervals. It is evident from the literature that the 

appropriate selection of the aggregation interval ensures the retention and elimination of information from the raw 

data. Evidently, there is a need for research on the data aggregation interval, considering the variation of traffic 

composition.  

 Data Collection 

To understand the traffic composition variation within the aggregation levels, a classified count of the vehicles from 

different regions of the country has been collected. The study locations and the details of the data are given in Table 

1. From each of these locations, the classified count of the vehicles for different aggregation periods was taken. The 

present study supposes that the traffic stream is mainly composed of four vehicle types, namely, Auto, Bike, Light 
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Motorized Vehicles (LMV), and Heavy Motorized Vehicles (HMV). The aggregation interval considered for traffic 

data aggregation were 15, 30, 60, 120, 180, 240, 300, …., 900-sec. Figure 2 shows the distribution of the count of 

different vehicle classes for an aggregation interval of 60-Sec observed at VIP road, Kolkata. From the classified 

count data, the proportions of each vehicle class for different aggregation intervals were estimated. Corresponding to 

an aggregation interval, the mean proportion of the particular vehicle class and its standard deviation were also 

estimated. Table 2 shows the mean proportion and its standard deviation for each vehicle type obtained from VIP 

Road, Kolkata. 

Table 1: Information of Data collection Location and Observation Period 

Study Area 
Lane Width 

(Meter) 

Observation 

Period 

(Hours) 

Dispur, Assam 8.5 2 

VIP Road, Kolkata 10.8 7 

Dabri Road, Delhi 10.5 3 

Maharani Bagh, Delhi 12.5 4 

Kodhalli, Bangalore 8.5 2 

Indira Nagar, Bangalore 12 2 

 

Figure 2: Distribution of the vehicle count for an aggregation period of 60-Sec, observed at VIP road, Kolkata 

Table 2: Traffic composition details for different aggregation periods 

Agg. 

Period 

Composition 
Mean 

CV Auto Bike LMV HMV 

Mean SD CV Mean SD CV Mean SD CV Mean SD CV 

15 9.67 9.44 0.98 22.81 14.28 0.63 59.27 17.50 0.30 8.24 9.67 1.17 0.77 

30 9.71 6.82 0.70 22.39 10.54 0.47 59.89 13.12 0.22 8.00 6.68 0.84 0.56 

60 9.62 4.77 0.50 22.21 7.59 0.34 60.54 9.25 0.15 7.63 4.58 0.60 0.40 

120 9.60 3.34 0.35 22.15 5.87 0.27 60.76 6.10 0.10 7.48 3.12 0.42 0.28 

180 9.67 2.79 0.29 22.24 5.02 0.23 60.72 4.60 0.08 7.38 2.68 0.36 0.24 

240 9.64 2.48 0.26 22.18 4.89 0.22 60.82 4.10 0.07 7.37 2.33 0.32 0.22 

300 9.64 2.31 0.24 22.19 4.64 0.21 60.81 3.89 0.06 7.35 2.32 0.32 0.21 

360 9.66 2.07 0.21 22.17 4.14 0.19 60.82 3.35 0.06 7.35 2.09 0.28 0.19 

420 9.66 2.08 0.22 21.99 4.24 0.19 60.98 3.05 0.05 7.36 2.12 0.29 0.19 

480 9.65 2.07 0.21 22.00 4.44 0.20 61.00 3.22 0.05 7.35 2.06 0.28 0.19 

540 9.68 1.89 0.20 22.05 4.17 0.19 60.93 2.88 0.05 7.33 2.06 0.28 0.18 
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600 9.64 1.89 0.20 22.19 4.20 0.19 60.81 2.79 0.05 7.35 1.97 0.27 0.17 

660 9.66 1.90 0.20 22.06 4.20 0.19 60.88 2.88 0.05 7.39 2.02 0.27 0.18 

720 9.67 1.89 0.20 22.18 4.12 0.19 60.80 2.18 0.04 7.34 1.96 0.27 0.17 

780 9.55 1.68 0.18 22.05 4.00 0.18 61.04 2.68 0.04 7.34 1.90 0.26 0.17 

840 9.65 1.90 0.20 21.97 4.10 0.19 61.02 2.58 0.04 7.34 1.97 0.27 0.17 

900 9.67 1.81 0.19 22.18 4.19 0.19 60.82 2.71 0.04 7.34 1.89 0.26 0.17 

 

1. Methodology 

According to Edie’s generalized definitions (Edie, 1963), the traffic stream characteristics, such as flow, density, 

and speed are defined in a spatiotemporal region. It is evident from Equation 1 & 2 that the size of spatiotemporal 

region is a deciding factor of the nature of these characteristics. As discussed earlier, achieving a reproducible 

bivariate relationship between the traffic flow characteristics in a heterogeneous traffic stream demands a consistent 

traffic composition between each time-space region. Developing such a criterion requires a comprehensive 

understanding of the traffic composition variation across the time-space regions.  
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Where,  

ix = Distance traveled by the ith vehicle in the spatiotemporal region of dimensions L and T 

it = Time spent by the ith vehicle in the spatiotemporal region of dimensions L and T 

As mentioned earlier, one of the crucial properties of the data aggregation period that should be fulfilled, 

particularly in the case of a heterogeneous traffic stream, is the minimal variation of the traffic composition within 

the aggregation period. The methodology proposed in this study could handle the stated problem through a simple 

statistical analysis. Figure 3 and Figure 4 show the variation of the mean proportion of each vehicle type and its 

standard deviation with the aggregation period, respectively. It is evident from these figures that the mean 

proportion and its variations (standard deviation from the mean proportion) stabilizes as the aggregation period 

increases.  

n 

n   n   n   n   
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Figure 3: Variation of the Standard Deviation from the Mean proportion with the Aggregation Period 

 

Figure 4: Mean proportion Variation with Aggregation Period 

While the mean composition, as well as the standard deviation from the mean composition, are consistently 

varying with the aggregation interval, a single relative factor needs to be considered for describing this variability. 

To capture the relative variability of the composition of each vehicle type, the coefficient of variation (CV) is 

considered and shown in Figure 5. It is evident from the figure that the coefficient of variation systematically varies 

for all vehicle types and stabilizes as the aggregation period increases.  
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Figure 5: Variation of the Coefficient of Variation with the Aggregation Period 

The optimal aggregation interval could possibly be defined as the time interval at which the traffic 

composition begins to stabilize. Since the traffic composition is a relative measure, which is independent of the 

actual numbers of each vehicle class, the composition-stabilization process could be ascertained as a collective 

process between all the entering vehicle types into the measurement section. Hence, the coefficient of variation of 

all the vehicle types corresponding to an aggregation interval could be averaged to a single variable, which is 

nothing but the coefficient of variation of the composition of the traffic stream. Figure 6(a) shows the change of the 

coefficient of variation of traffic composition (
mean

CV ) with the aggregation interval. It is evident from the figure that 

the consideration of a longer aggregation interval inherently ensures the consistent traffic composition between the 

aggregation intervals. However, as evident from the literature, a longer aggregation period may oversimplify the 

traffic dynamics and results in the loss of valuable information corresponding to the short-term traffic dynamics. 

The present study suggests considering the minimum possible aggregation interval at which the traffic composition 

starts to stabilize. Obtaining such a measure requires a single model that captures composition variation with the 

aggregation period. It was found that the mean coefficient of variation follows a trend that corresponds to the 

Rational Function (RF) as shown in Equation 3. Figure 6(a) shows the fitted model to the data.  
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Where,  

meanCV   = Coefficient of variation of the mean traffic composition (which is the mean of the coefficient of 

variation of composition of each vehicle type) 

Tagg
 = Aggregation period 

, , ,α β γ η  = Model parameters  

The Rational Function Models (RFM) has been widely used as an alternative to the rigorous mathematical models 

due to its better interpolation properties and very high fitting accuracy, and so on (Tao and Hu, 2001). Such models 

are widely considered to model the time dependency of real-life problems that have asymptotic behavior. These 

models are generic, i.e., the model parameters do not carry any physical meaning (Hu et al., 2004). As we are also 

investigating the time dependency of traffic composition and is expected to show an asymptotic behavior after 

certain aggregation interval, the RFM could be a better choice. 

Apparently, the optimal aggregation interval happens at the point at which the rate of change of the 

coefficient of variation approaches to zero from the direction of the minimum aggregation interval. For simplicity, 

the optimal aggregation period was assumed corresponding to the aggregation period where the rate of change of 

coefficient of variation is 0.0005. For obtaining the optimal aggregation period, the first derivative of Equation (1) 

has been taken which is nothing but the rate of change of coefficient of variation (Figure 6(b)). The variation of the 

rate of change CVMean with the aggregation interval for other locations is shown in Appendix A. 
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Figure 6: a) Variation of the Mean Coefficient of Variation with Aggregation Period b) Rate of Change of Mean Coefficient of 

Variation with Aggregation Period 

 Results and Discussion 

The appropriateness of the proposed model is validated with the time-series traffic data collected from various 

locations. Table 3 shows the model calibration results considering the data from different locations. It is clear from 

table that the proposed model is well representing the empirical data. 

Table 3: Model Calibration Result Corresponding to Different Study Sites 

Location Statistics 
Parameters 

adj. R2 

Reduced 

Chi-

Square α β γ η 

Dispur 

Value 0.813 0.005 0.019 -4.29E-06 

0.9531 5.21E-04 
Std. Error 0.081 0.003 0.009 1.82E-06 

t-Value 10.080 1.536 2.101 -2.361 

Prob>|t| 1.64E-07 0.148 0.056 0.035 

VIP Road, 

Kolkata 

Value 1.365 8.72E-03 0.063 -4.41E-06 

0.9994 1.61E-05 
Std. Error 0.040 8.71E-04 0.004 2.54E-06 

t-Value 34.524 10.009 15.477 -1.737 

Prob>|t| 3.57E-14 1.78E-07 9.38E-10 0.106 

Dabri Road, 

Delhi 

Value 2.039 0.078 0.192 3.51E-05 

0.9806 3.05E-04 
Std. Error 1.022 0.071 0.165 4.42E-05 

t-Value 1.996 1.111 1.169 0.795 

Prob>|t| 0.069 0.289 0.265 0.442 

Maharani 

Bagh, Delhi 

Value 0.765 0.011 0.083 3.70E-05 

0.9975 2.63E-05 
Std. Error 0.084 0.004 0.021 2.01E-05 

t-Value 9.071 3.108 3.951 1.841 

Prob>|t| 2.72E-04 0.027 0.011 0.125 
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Kodhalli, 

Bangalore 

Value 9.010 0.204 0.024 -2.13E-07 

0.9733 5.46E-04 
Std. Error 0.086 0.096 0.011 1.28E-07 

t-Value 105.221 2.129 2.155 -1.67E+00 

Prob>|t| 1.47E-09 0.086 0.084 1.57E-01 

Indira Nagar, 

Bangalore 

Value 10.057 0.297 0.033 -2.39E-07 

0.9970 1.79E-04 
Std. Error 0.066 0.050 5.50E-03 9.90E-08 

t-Value 151.687 5.980 6.074 -2.42E+00 

Prob>|t| 2.36E-10 1.87E-03 1.75E-03 6.03E-02 

 

From the calibrated models, the optimal aggregation intervals were estimated by solving Equation 5 

corresponding to a MeanCV
•

value of 0.0005. At optimal aggregation interval, the proportion of a particular vehicle 

class would be corresponding to the mean proportion of that specific vehicle class (Figure 4), and the maximum 

deviation from the mean would be within the minimum possible standard deviation (Figure 3) for that vehicle class. 

The optimal aggregation intervals for the study sites are shown in Table 4. It is evident from the table that the 

optimum aggregation interval at which the traffic composition stabilizes is different for different cities. Hence, 

consideration of a constant aggregation interval may not be appropriate for all the cases. The temporal measure of 

traffic flow from Dispur, Assam, was aggregated considering the optimum aggregation interval of 180-Sec and 

shown in Figure 7. The figure clearly shows that the optimum aggregation interval could capture the short term 

fluctuations in the traffic stream. 

Table 4: Optimum Aggregation Interval for Different Study Sites 

Study Location 

Optimum 

Aggregation 

Interval (Sec) 

Nearest multiple 

of 5 on the Higher 

Side (Sec) 

Dispur, Assam 177.68 180 

VIP Road, Kolkata 177.25 180 

Dabri Road, Delhi 134.75 135 

Maharani Bagh, Delhi 119.53 120 

Kodhalli, Bangalore 174.46 175 

Indira Nagar, Bangalore 219.64 220 

   

 

 
Figure 7: Variation of the Traffic Flow Aggregated by Considering the Optimum Aggregation Interval 

 Summary and Conclusions 

The present study empirically investigates the relationship between the aggregation interval and the traffic 

composition. For a heterogeneous traffic stream, variation of the traffic composition between the aggregated data 

may cause intense fluctuation and noise in the data and thereby difficulties in modeling. An appropriate choice of 

the aggregation interval could solve this issue by ensuring minimum variation of the traffic composition within that 

aggregation interval. Hence, the optimal aggregation interval was defined as the time interval at which the traffic 
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composition begins to stabilize. In this study, the traffic composition was represented with the mean coefficient of 

variation (CVMean) and the variation of the traffic composition with the aggregation period was modeled with a 

Rational Function (RF). The present study suggests that the minimum aggregation interval could be approximated 

corresponding to the aggregation interval at which the rate of change of the coefficient of variation approaches zero 

from the direction of the lower aggregation period. Hence the optimal aggregation interval was estimated 

corresponding to a MeanCV
•

value of 0.0005. At optimal aggregation interval, the proportion of a particular vehicle 

class would be corresponding to the mean proportion of that specific vehicle class, and the maximum deviation from 

the mean would be within the minimum possible standard deviation for that vehicle class. 

Appendix A: Optimal Aggregation Interval Estimation 

 

 

a) b) 

c) d) 

e) f) 
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