
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 1

Co-ordinate Rotation based Low Complexity

N-D FastICA Algorithm and Architecture

Amit Acharyya, Koushik Maharatna, Member, IEEE, Bashir M. Al-Hashimi, Fellow, IEEE,

and Jeff Reeve, Senior Member, IEEE,

Abstract

This paper proposes a low complexity n-dimensional (nD) FastICA algorithm and architecture by

introducing the concept of co-ordinate rotation where n ≥ 2. The proposed algorithm can merge the two

key steps of Conventional FastICA - Preprocessing and Update and is therefore capable of reducing the

hardware complexity of the conventional FastICA significantly as demonstrated in this paper. Hardware

implementation can further be simplified due to the recursive nature of the proposed algorithm where the

same 2D hardware module can be used as the fundamental core to implement nD architecture. Together

with the algorithm formulation, its functionality is also validated and hardware complexity is analyzed

and compared with the conventional nD FastICA.

Index Terms

Independent Component Analysis, FastICA, Blind Source Separation, CORDIC, Low Complexity

Algorithm and Architecture.

EDICS Category: HDW-AAOP - Algorithm and architecture co-optimization

The Authors are with the Pervasive Systems Centre (PSC) research group in School of Electronics and Computer Science

(ECS), University of Southampton, SO17 1BJ, UK e-mail: (aa07r, km3, bmah, jsr)@ecs.soton.ac.uk

Preliminary version of this research (see Section III) has appeared in [13].

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 2

I. INTRODUCTION

Signal separation is an important requirement in the emerging fields such as wireless sensor networks

and mobile healthcare technologies [1]-[2]. Devices used for such emerging applications are mostly

battery-powered and need to be tiny and unobtrusive imposing constraints on the design in terms of power

and area. It necessitates the development of low-complexity light-weight signal processing techniques.

Although Independent Component Analysis (ICA) can have potential applications in these fields [3] and

FastICA (FICA) is popular among existing ICA algorithms because of its higher convergence speed and

accuracy [4]-[5], the computationally intensive nature makes the direct algorithm to architecture map-

ping of FICA unsuitable for such resource constrained applications. Therefore an algorithm-architecture

holistic optimization approach is necessary for maintaining its algorithmic efficiency and making it ‘low-

complexity’ from the architectural perspective at the same time which is the main focus of our research.

Conventional FICA algorithm consists of two steps - Preprocessing and Update [5]. Preprocessing step

mainly involves computationally intensive Eigen Value Decomposition (EVD) which is implemented

using Coordinate Rotation Digital Computer (CORDIC) in hardware [6]-[12]. The aim of this paper

is to investigate whether the same CORDIC can be used to propose FICA Update step so that costly

arithmetic operations involving division, square root evaluation and multiplications can be removed from

the algorithm. Recently we introduced the concept of co-ordinate rotation in the basic 2D FICA and

subsequently proposed its corresponding CORDIC based algorithm and architecture in [13]. We have also

shown that such concept is capable of reducing the hardware complexity significantly for 2D FICA and

pointed out that unlike other reported 2D architectures [14]-[15], this concept can possibly be generalized

for nD.

In this paper, we generalize this co-ordinate rotation concept of 2D into higher-dimensional nD space

(n ≥ 3) by formulating CORDIC based recursive nD FICA algorithm using 2D as the fundamental

core, present its corresponding architecture, explore the possibility of further architectural optimization

and analyze the hardware complexity of the proposed CORDIC based nD FICA in detail.

The rest of this paper is organized as follows: Section II does the necessary theoretical groundwork

on FICA and CORDIC, Section III discusses in brief our preliminary research on CORDIC based 2D

FICA as reported in [13], Section IV proposes the CORDIC based nD FICA algorithm, Section V

validates the proposed algorithm, Section VI presents the corresponding architecture and explores further

optimization possibility, Section VII analyzes the hardware complexity of this proposed algorithm over

the conventional one and Section VIII concludes the discussion.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 3

II. THEORETICAL BACKGROUND

A. Conventional FICA Algorithm

Denoting independent sources by S, mixed signal (X) can be defined as [5]: X = AS, where X = {xi},

S = {si}, i ∈ (1, n); A is a full-rank n×n mixing matrix where n is the number of independent sources;

si = {si,j}, xi = {xi,j} where j ∈ (1, m) and m is equal to the frame-length. FICA, as mentioned in

the last section, comprises of two steps - Preprocessing and Update. Since our focus here is on FICA

Update step, discussion of Preprocessing step is omitted for brevity.

FICA Update step computes the outputs (Ŝ) from the whitened mixed signals (Z) (as obtained after

preprocessing) by estimating the unmixing matrix B of dimension n× n which can be defined as [5]:

Ŝ = BT Z (1)

The kth column of B represents the estimated vector wk associated with kth Independent Components

(IC) to be computed where k ∈ (1, n). FICA stage frames an adaptive iterative equation by introducing

a contrast function (g) to maximize non-gaussianity (which is a measure of independence) for estimating

ICs as follows [5]:

wk ← E{Zġ(wk
T Z)} − E{g̈(wk

T Z)}wk (2)

where ġ and g̈ are the first and second derivative of g respectively. Considering Kurtosis-based contrast

function, (2) can be modified as [5]:

wk ← E{Z(wk−1
T Z)

3
} − 3wk−1 (3)

If k = 1, the next step to follow is the normalization of the estimated vector [5] as:

wk ← wk/‖wk‖ (4)

where “ ” indicates normalized value in rest of the paper. When k > 1, to prevent different wk from

converging to the same maxima the estimated vectors need to be orthogonalized before this normalization

step. If the estimated normalized vector wk has not converged, the whole Update step needs to be repeated

[5]. This FICA Update step continues until k = n is reached. Then using B in (1), output ICs Ŝ are

obtained.

B. Coordinate Rotation Digital Computer

CORDIC is an efficient implementation technique for vector rotation and arctangent computation and

since it can be realized using simple shift and add operations, it is very effective in terms of low hardware

complexity [16] - [18]. CORDIC, in general, can be operated in two modes - rotation and vectoring [18].

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 4

In rotation mode, given the angle of rotation and the initial vector, final vector is computed and in

the vectoring mode, the angle between the initial vector and the principal coordinate axis is computed.

Considering the rotation in clockwise sense, the basic CORDIC expressions can be expressed as [16] -

[18]: 


xf

yf



 =




cos θ sin θ

− sin θ cos θ








x0

y0



 (5)

where x0, y0 and xf , yf are the initial and final components of the vector and the angle of rotation is θ.

In Rotation mode, angle θ is approximated by a sequence of micro-angles and after a finite number of

iterations xf and yf are generated. In vectoring mode, where angle θ is unknown, yf is forced to zero

after finite number of iterations.

In this paper, now onwards, instead of using the complete expression shown in (5), following concise

notations are used for brevity: xf = Rotx(x0, y0, θ) and yf = Roty(x0, y0, θ), and θ = Vecθ(x0, y0)

where Rotx/y(·) denotes the x/y component of the rotation mode CORDIC outputs and Vecθ/x denotes

the θ/x output of the Vectoring mode CORDIC.

III. CORDIC BASED 2D FICA

In this section we briefly discuss our initial research on CORDIC based 2D FICA algorithm as reported

in [13].

A. 2D FICA Iteration Stage

For 2D FICA (i.e. n = 2), expanded form of (3) can be written as:


w1,1
(p+1)

w1,2
(p+1)



 =



E [z1,j{z1,jw1,1
(p) + z2,jw1,2

(p)}3]

E [z2,j{z1,jw1,1
(p) + z2,jw1,2

(p)}3]



− 3



w1,1
(p)

w1,2
(p)



 (6)

where p denotes the number of iteration stage, zi,j represents the ith whitened data containing j number

of samples where i = {1, 2} and j ∈ (1, m) where m denotes the frame-length, w1,q
(p+1) is the 1st

column of the unmixing matrix after pth iteration where q = {1, 2} and w1,q
(p) indicates the normalized

value of w1,q
(p) used in pth iteration as given by (4). Since w1,1

(p) and w1,2
(p) are the components of a

unit norm vector w1
(p), using Cartesian to Polar transformation, w1

(p) can be written as:

w1
(p) = [w1,1

(p) w1,2
(p)]T = [cos θp sin θp]

T (7)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 5

where polar angle θp = tan−1(w1,2
(p)/w1,1

(p)) at pth iteration stage. Using (7) and expressing (6) in

terms of Rot and Vec notations, we get:



w1,1

(p+1)

w1,2
(p+1)



 =




E [z1,j{Rotx(z1,j , z2,j , θp)}

3]

E [z2,j{Rotx(z1,j , z2,j , θp)}
3]



− 3




w1,1

(p)

w1,2
(p)



 (8)

and

θp = Vecθ(w1,1
(p), w1,2

(p)) (9)

Using (9) and (8), conventional 2D FICA Iteration stage architecture can be designed using rotation and

vectoring mode CORDIC as shown in Fig. 1(a).

B. 2D FICA Normalization Stage

Denoting the normalized components of the vector obtained after pth iteration using (6) by w1,1
(p+1)

and w1,2
(p+1) the following equation holds:

w1,i
(p+1) =

w1,i
(p+1)

√
|w1

(p+1)|2
(10)

where i = {1, 2}. Using Cartesian to Polar Co-ordinate transformation following (7), (10) can be

represented as:

w1
(p+1) = [w1,1

(p+1) w1,2
(p+1)]T = [cos θ(p+1) sin θ(p+1)]

T (11)

If input vector in (5) is [x0 y0] = [0 1] , output vector becomes [xf = sin θ yf = cos θ]. Therefore (11)

can be written as: 


w1,1

(p+1)

w1,2
(p+1)



 =




Roty(0, 1,Vecθ(w1,1

(p+1), w1,2
(p+1)))

Rotx(0, 1,Vecθ(w1,1
(p+1), w1,2

(p+1)))



 (12)

Fig. 1(b) shows the corresponding architecture of 2D FICA normalization stage.

C. 2D FICA Component Estimation Stage

Denoting the converged normalized vector by w1
c = [w1,1

c w1,2
c]T , the estimated component by

ŝ1 = {ŝ1,j} where j ∈ (1, m) and m being the frame-length and using the same set of arguments used

to derive (8), (1) can be written as:

ŝ1,j = z1,jw1,1
c + z2,jw1,2

c

= Rotx(z1,j , z2,j ,Vecθ(w
c
1,1, w

c
1,2))

(13)

Fig. 1(c) presents the corresponding architecture of the 2D FICA component estimation stage. It is

important to note that the vectoring mode CORDIC needs not to be used in this stage because the

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 6

Fig. 1. CORDIC based 2D FICA. (a) Iteration, (b) Normalization, (c) Estimation stage and (d) Multiplexed architecture.

accumulated angle information is already computed during the previous normalization step and can be

reused as the θ input of the Rotation mode CORDIC. Due to this reason relinquishing “c” from (13),

ŝ1,j can be rewritten as:

ŝ1,j = Rotx(z1,j , z2,j ,Vecθ(w1,1, w1,2)) (14)

where w1,1 and w1,2 are the components of the unnormalized vector obtained after FICA iteration prior

to convergence checking.

D. Multiplexed Architecture: CORDIC Reuse for 2D FICA

Since iteration, normalization and estimation - all stages are executed sequentially, same CORDIC unit

can be reused for implementing these stages only at the expense of multiplexers at the inputs of the

rotation and vectoring mode CORDIC. This multiplexed architecture, capable of executing the entire 2D

FICA algorithm is shown in 1(d).

IV. PROPOSED CORDIC BASED nD FICA

Following the same procedure used in the last section to formulate the stages of 2D FICA, we proceed

here to propose CORDIC based nD FICA algorithm in the following subsections.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 7

Fig. 2. 3D representation of w1
(p) in Spherical Co-ordinate system.

A. nD FICA Iteration Stage

Considering first the case of 3D FICA (i.e. n = 3) and defining a new term G3D by:

G3D = z1,jw1,1
(p) + z2,jw1,2

(p) + z3,jw1,3
(p) (15)

(3) can be expanded as follows:




w1,1
(p+1)

w1,2
(p+1)

w1,3
(p+1)




=





E [z1,j{G3D}
3]

E [z2,j{G3D}
3]

E [z3,j{G3D}
3]




− 3





w1,1
(p)

w1,2
(p)

w1,3
(p)




(16)

where the symbols have usual meanings as stated in Section II-A. Once again, like (7), applying Cartesian

to Polar transformation, (16) can be written as:

w1
(p) =





w1,1
(p)

w1,2
(p)

w1,3
(p)




=





sin θ2,p cos θ1,p

sin θ2,p sin θ1,p

cos θ2,p




(17)

where, the spherical angles θ1,p and θ2,p at pth iteration stage, as shown in Fig. 2, are defined as

tan−1(w1,2
(p)/w1,1

(p)) and tan−1(w1,3
(p)/

√
(w1,1

(p))2 + (w1,2
(p))2) respectively.

Now using (17), (15) can be re-written using Rot and Vec as:

G3D = Rotl2x (z3,j ,Rotl1x (z1,j , z2,j , θ1,p), θ2,p) (18)

and

θ1,p = Vecl1
θ (w

(p)
1,1, w

(p)
1,2)

θ2,p = Vecl2
θ (w

(p)
1,3,Vecl1

x (w
(p)
1,1, w

(p)
1,2))

(19)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 8

where l∗ denotes the levels of Rotation/Vectoring mode CORDIC required as also shown in Fig. 3. Using

(19) and (18), the conventional 3D FICA Iteration stage can be mapped into the rotation and vectoring

mode CORDIC as shown in Fig. 3(a).

Fig. 3. CORDIC based 3D FICA. (a) Iteration, (b) Normalization, (c) Estimation stage and (d) Multiplexed architecture.

Similarly for 4D FICA (i.e. n = 4) iteration, defining G4D by:

G4D = z1,jw1,1
(p) + z2,jw1,2

(p) + z3,jw1,3
(p) + z4,jw1,4

(p) (20)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 9

(3) can be expanded as:




w1,1
(p+1)

w1,2
(p+1)

w1,3
(p+1)

w1,4
(p+1)





=





E [z1,j{G4D}
3]

E [z2,j{G4D}
3]

E [z3,j{G4D}
3]

E [z4,j{G4D}
3]





− 3





w1,1
(p)

w1,2
(p)

w1,3
(p)

w1,4
(p)





(21)

Following the same approach used to get (7) and (17), w1
(p) can be represented as:

w1
(p) = [w1,1

(p) w1,2
(p) w1,3

(p) w1,4
(p)]T

=





sin θ3,p sin θ2,p cos θ1,p

sin θ3,p sin θ2,p sin θ1,p

sin θ3,p cos θ2,p

cos θ3,p





(22)

where, angles θ1,p, θ2,p and θ3,p at pth iteration stage, following the same convention used after (17),

can be defined as: tan−1(w1,2
(p)/w1,1

(p)), tan−1(w1,3
(p)/

√
(w1,1

(p))2 + (w1,2
(p))2) and

tan−1(w1,4
(p)/

√
(w1,1

(p))2 + (w1,2
(p))2 + (w1,3

(p))2)

respectively. Using (22), (20) can be expressed as:

G4D = Rotl3x (z4,j ,Rotl2x (z3,j ,Rotl1x (z1,j , z2,j , θ1,p), θ2,p), θ3,p) (23)

and θ1,p, θ2,p and θ3,p can be derived as follows:

θ1,p = Vecl1
θ (w

(p)
1,1, w

(p)
1,2)

θ2,p = Vecl2
θ (w

(p)
1,3,Vecl1

x (w
(p)
1,1, w

(p)
1,2))

θ3,p = Vecl3
θ (w

(p)
1,4,Vecl2

x (w
(p)
1,3,Vecl1

x (w
(p)
1,1, w

(p)
1,2)))

(24)

Combination of (24) and (23) represents the mapping of the conventional 4D FICA Iteration stage in

terms of the rotation and vectoring mode CORDIC as shown in Fig. 4(a). Observation - 1: From (18),

(19) and Fig. 3(a) for 3D and (23), (24) and Fig. 4(a) for 4D Iteration stage, it can be observed that all

levels of Rotation and Vectoring mode are connected in Cascaded Feed Forward fashion.

Now by comparing the 2D, 3D and 4D FICA Iteration stages, it can be noticed that there exists some

kind of similarity which may be extended to the nth-dimension. To understand this similarity, let us

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 10

Fig. 4. CORDIC based 4D FICA. (a) Iteration, (b) Normalization, (c) Estimation stage and (d) Multiplexed architecture.

define the following terms for 2D FICA:

R2D
x,j = Rotx(z1,j , z2,j ,Vecθ(w1,1

(p), w1,2
(p)))

V2D
θ = Vecθ(w1,1

(p), w1,2
(p))

V2D
x = Vecx(w1,1

(p), w1,2
(p))

(25)

where R2D
x,j may be read as “x-output corresponding to the jth input of the Rotation mode 2D CORDIC”

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 11

and so on. Re-writing (18) using (25) we get:

G3D = Rotx(z3,j ,R
2D
x,j ,Vecθ(w

(p)
1,3,V

2D
x )) = R3D

x,j (26)

Subsequently following the similar notations used in (25) for 2D, following notations are introduced for

3D:

V3D
x = Vecx(w

(p)
1,3,V

2D
x )

V3D
θ = Vecθ(w

(p)
1,3,V

2D
x )

(27)

Similarly for 4D FICA Iteration stage, (23) and (24), can be rewritten as:

G4D = Rotx(z4,j ,R
3D
x,j ,Vecθ(w

(p)
1,4,V

3D
x )) = R4D

x,j

V4D
x = Vecx(w

(p)
1,4,V

3D
x )

V4D
θ = Vecθ(w

(p)
1,4,V

3D
x )

(28)

Comparing (25), (26) and (28), it can be seen that (26) can be realised by recursive use of (25) and

(28) can be realised by recursively using (26) and hence by (25). Therefore, since (25) involves only

one CORDIC Rotation and one Vectoring in 2D plane, any higher dimensional (n > 2) FICA Iteration

stage can be realized using the 2D CORDIC Rotation and Vectoring. Thus it is possible to propose a

generalized theorem for realizing nD FICA Iteration stage by recursive use of (n− 1)D FICA Iteration

where n > 2 using 2D Rotation and Vectoring mode CORDIC.

Theorem 1. CORDIC based Recursive Formulation of the Iteration Stage of nD FICA Algorithm:




w1,1
(p+1)

w1,2
(p+1)

w1,3
(p+1)

·

·

·

w1,n
(p+1)





=





E [z1,j{R
nD
x,j }

3]

E [z2,j{R
nD
x,j }

3]

E [z3,j{R
nD
x,j }

3]

·

·

·

E [zn,j{R
nD
x,j }

3]





− 3





w1,1
(p)

w1,2
(p)

w1,3
(p)

·

·

·

w1,n
(p)





(29)

where, considering R2D
x,j = Rotx(z1,j , z2,j ,Vecθ(w1,1

(p), w1,2
(p))) as the basic Rotation mode and V2D

θ =

Vecθ(w1,1
(p), w1,2

(p));V2D
x = Vecx(w1,1

(p), w1,2
(p)) as the basic Vectoring mode (as obtained from (25))

of CORDIC operation, for n ≥ 3, Iteration stage of the nD FICA algorithm can be expressed in recursive

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 12

way as follows:

RnD
x,j = Rotx(zn,j ,R

(n−1)D
x,j ,Vecθ(w

(p)
1,n,V(n−1)D

x ))

VnD
x = Vecx(w

(p)
1,n,V(n−1)D

x )

VnD
θ = Vecθ(w

(p)
1,n,V(n−1)D

x )

(30)

Proof: This theorem can easily be proved by following the fore-mentioned logical arguments estab-

lishing the relationship between (25), (26), (27) and (28) for 2D, 3D and 4D cases and extending this

concept to the higher dimensions (n > 2) using method of induction. �

B. nD FICA Normalization Stage

Considering 3D FICA normalization stage first and denoting the normalized components of the vector

for 3D FICA obtained after pth iteration using (16) by w1,1
(p+1), w1,2

(p+1) and w1,3
(p+1), Cartesian to

Polar Co-ordinate transformation yields:

w1
(p+1) =





w1,1
(p+1)

w1,2
(p+1)

w1,3
(p+1)




=





sin θ2,(p+1) cos θ1,(p+1)

sin θ2,(p+1) sin θ1,(p+1)

cos θ2,(p+1)





=





Rotl1y (0,Rotl2x (0, 1, θ2,(p+1)), θ1,(p+1))

Rotl1x (0,Rotl2x (0, 1, θ2,(p+1)), θ1,(p+1))

Rotl2y (0, 1, θ2,(p+1))





(31)

and θ1,(p+1) and θ2,(p+1) can be derived as:

θ1,(p+1) = Vecl1
θ (w

(p+1)
1,1 , w

(p+1)
1,2 )

θ2,(p+1) = Vecl2
θ (w

(p+1)
1,3 ,Vecl1

x (w
(p+1)
1,1 , w

(p+1)
1,2 ))

(32)

Combination of (32) and (31) maps the conventional 3D FICA normalization stage into Rotation and

Vectoring mode CORDIC as shown in Fig. 3(b).

Following the same approach as above, normalized components of the computed vector for 4D FICA

can be represented as (33) as shown on page 13. θ1,(p+1), θ2,(p+1) and θ3,(p+1) can be derived as:

θ1,(p+1) = Vecl1
θ (w

(p+1)
1,1 , w

(p+1)
1,2 )

θ2,(p+1) = Vecl2
θ (w

(p+1)
1,3 ,Vecl1

x (w
(p+1)
1,1 , w

(p+1)
1,2 ))

θ3,(p+1) = Vecl3
θ (w

(p+1)
1,4 ,Vecl2

x (w
(p+1)
1,3 ,Vecl1

x (w
(p+1)
1,1 ,

w
(p+1)
1,2 )))

(34)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 13

w1
(p+1) = [w1,1

(p+1) w1,2
(p+1) w1,3

(p+1) w1,4
(p+1)]T =





sin θ3,(p+1) sin θ2,(p+1) cos θ1,(p+1)

sin θ3,(p+1) sin θ2,(p+1) sin θ1,(p+1)

sin θ3,(p+1) cos θ2,(p+1)

cos θ3,(p+1)





=





Rotl1y (0,Rotl2x (0,Rotl3x (0, 1, θ3,(p+1)), θ2,(p+1)), θ1,(p+1))

Rotl1x (0,Rotl2x (0,Rotl3x (0, 1, θ3,(p+1)), θ2,(p+1)), θ1,(p+1))

Rotl2y (0,Rotl3x (0, 1, θ3,(p+1)), θ2,(p+1))

Rotl3y (0, 1, θ3,(p+1))





(33)

Fig. 4(b) presents its corresponding architecture.

Observation - 2: From (31), (32) and Fig. 3(b) for 3D and (33), (34) and Fig. 4(b) for 4D normalization

stage, it can be observed that the levels of Vectoring mode are connected in feed forward fashion, where

as the levels of Rotation mode are connected in feed backward fashion.

To derive the generic formulation for nD FICA Normalization stage, following the same approach

used in the last section, here also we define the θ and x-output of the Vectoring mode of the CORDIC

for 2D FICA as follows:

V2D
θ = Vecθ(w

(p+1)
1,1 , w

(p+1)
1,2 ) = Vecθ(w1,1, w1,2)

V2D
x = Vecx(w

(p+1)
1,1 , w

(p+1)
1,2 ) = Vecx(w1,1, w1,2)

(35)

It is to be noted here that the superfix “p” is removed for the sake of simplicity. Following the same

notation convention, the θ and x-output of the Vectoring mode CORDIC for 3D FICA Normalization

stage can be written as:

V3D
θ = Vecl2

θ (w
(p+1)
1,3 ,Vecl1

x (w
(p+1)
1,1 , w

(p+1)
1,2 ))

= Vecθ(w1,3,Vecx(w1,1, w1,2))

= Vecθ(w1,3,V
2D
x )

V3D
x = Vecx(w1,3,V

2D
x )

(36)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 14

Similarly for 4D case following set of equations can be derived using (36):

V4D
θ = Vecl3

θ (w
(p+1)
1,4 ,Vecl2

x (w
(p+1)
1,3 ,Vecl1

x (w
(p+1)
1,1 , w

(p+1)
1,2 )))

= Vecθ(w1,4,Vecx(w1,3,Vecx(w1,1, w1,2)))

= Vecθ(w1,4,V
3D
x )

V4D
x = Vecx(w1,4,V

3D
x )

(37)

Lemma 1: The θ and x-output of the Vectoring mode CORDIC for nD can be represented in terms

of (n− 1)D as follows:

VnD
θ = Vec

l(n−1)

θ (w1,n,V(n−1)D
x ) = Vecθ(w1,n,V(n−1)D

x )

VnD
x = Vec

l(n−1)

x (w1,n,V(n−1)D
x ) = Vecx(w1,n,V(n−1)D

x )

(38)

Proof: As has been discussed above, comparing (35), (36) and (37), it can be found that (37) (4D) can

be expressed in terms of (36) (3D) and this can be also be expressed in terms of (35) (2D). Proceeding

the same way and using method of induction this lemma can be proved. �

Using these notations and removing (p + 1)-term for the sake of simplicity, (12) can be re-framed as

follows:

w1,1 = Roty(0, 1,Vecθ(w1,1, w1,2)) = Roty(0, 1,V2D
θ )

= R2D
y

w1,2 = Rotx(0, 1,Vecθ(w1,1, w1,2)) = R2D
x

(39)

Similarly for 3D FICA Normalization stage, (31) can be expressed as:

w1,3 = Roty(0, 1,Vecθ(w1,3,Vecx(w1,1, w1,2)))

= Roty(0, 1,V3D
θ ) = R3D

y

w1,1 = Roty(0,R3D
x ,V2D

θ ) = R2D
y

w1,2 = Rotx(0,R3D
x ,V2D

θ ) = R2D
x

(40)

Proceeding the same way, for 4D FICA Normalization stage, (33) can be re-framed as:

w1,4 = Roty(0, 1,Vecθ(w1,4,Vecx(w1,3,Vecx(w1,1, w1,2))))

= Roty(0, 1,V4D
θ ) = R4D

y

w1,3 = Roty(0,R4D
x ,V3D

θ ) = R3D
y

w1,1 = Roty(0,R3D
x ,V2D

θ ) = R2D
y

w1,2 = Rotx(0,R3D
x ,V2D

θ ) = R2D
x

(41)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 15

Comparing (39), (40) and (41), it can be observed that the y-inputs of the Rotation mode for w1,1, w1,2

and w1,3 are different for 2D, 3D and 4D cases. This is also clearly shown in Fig. 1(b), 3(b) and 4(b).

Based on the above discussion the following generalized recursive algorithm for CORDIC based nD

FICA normalization stage can be proposed:

Theorem 2: CORDIC based Recursive Formulation of the Normalization Stage of nD FICA

Algorithm:

(a) When n = 2; w1,1 and w1,2 can be represented as:

w1,1 = Roty(0, 1,V2D
θ )

w1,2 = Rotx(0, 1,V2D
θ )

(42)

(b) When n = 3; w1,1, w1,2 and w1,3 can be represented as:

w1,1 = Roty(0,R3D
x ,V2D

θ )

w1,2 = Rotx(0,R3D
x ,V2D

θ )

w1,3 = Roty(0, 1,V3D
θ )

(43)

(c) When n ≥ 4;

(i) for i = (n− 1), (n− 2), ..., 3; w1,i can be represented as:

w1,i = RiD
y = Roty(0,R(i+1)D

x ,V iD
θ )

and

w1,n = RnD
y = Roty(0, 1,VnD

θ )

(44)

(ii) w1,1 and w1,2 can be represented as:

w1,1 = Roty(0,R3D
x ,V2D

θ ) = R2D
y

w1,2 = Rotx(0,R3D
x ,V2D

θ ) = R2D
x

(45)

Proof. (a) Proof follows straightway from the same procedure used to derive (39) using Lemma-1.

(b) The procedure discussed above to derive (40) can be used along with Lemma-1 to prove (43).

(c) Considering n = 4, it was shown in (41) that the 4th component is the y-output of the Rotation

mode when 0 and 1 are fed to its x and y inputs respectively. The x-output of this Rotation mode is fed

back as the y-input of this mode to obtain the 3rd component as shown in (41). This same analytical

treatment can be extended in higher dimensions where n > 4 and part (i) can be proved.

It can be observed from (41) that the 1st and the 2nd components of 4D are always the y and x

outputs of the same Rotation mode whose x-input is 0 and y-input is the x-output of the rotation mode

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 16

CORDIC used for the 3rd component computation. Proceeding the same way it can be shown that it

holds for higher dimension n > 4 as well. This proves part (ii). �

C. nD FICA Component Estimation Stage

Considering again 3D case first and denoting the converged normalized vector by w1
c = [w1,1

c w1,2
c w1,3

c]T

and the estimated component by ŝ1 = {ŝ1,j}, like (18) and (19), for 3D FICA, (1) can explicitly be

written as:

ŝ1,j = z1,jw1,1
c + z2,jw1,2

c + z3,jw1,3
c

= Rotl2x (z3,j ,Rotl1x (z1,j , z2,j ,Vecl1
θ (wc

1,1, w
c
1,2)),Vecl2

θ

(wc
1,3,Vecl1

x (wc
1,1, w

c
1,2)))

(46)

Fig. 3(c) presents its corresponding architecture. As discussed in Section III-C, here also Vectoring needs

not to be used in estimation mode because the angle is already computed during the previous normalization

step and can be reused as the θ input of the Rotation mode CORDIC. Therefore relinquishing “c”, (46)

can be modified to:

ŝ1,j = Rotl2x (z3,j ,Rotl1x (z1,j , z2,j ,Vecl1
θ (w1,1, w1,2)),Vecl2

θ

(w1,3,Vecl1
x (w1,1, w1,2)))

(47)

Similarly for 4D FICA Component Estimation stage, estimated component ŝ1 can be expressed as:

ŝ1,j = z1,jw1,1
(p) + z2,jw1,2

(p) + z3,jw1,3
(p) + z4,jw1,4

(p)

= Rotl3x (z4,j ,Rotl2x (z3,j ,Rotl1x (z1,j , z2,j ,Vecl1
θ (w1,1,

w1,2)),Vecl2
θ (w1,3,Vecl1

x (w1,1, w1,2))),Vecl3
θ

(w1,4,Vecl2
x (w1,3,Vecl1

x (w1,1, w1,2))))

(48)

Fig. 4(c) presents its corresponding architecture.

Observation - 3: From (47) and Fig. 3(c) for 3D and (48) and Fig. 4(c) for 4D estimation stage, it can

be observed that all levels of the Rotation and Vectoring mode are connected in feed forward fashion.

Based on the above discussion, the following recursive formula can be framed for nD FICA Component

Estimation Stage.

Theorem 3. CORDIC based Recursive Formulation of the Estimation Stage of nD FICA Algo-

rithm:

ŝ1,j = RnD
x,j (49)

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 17

Fig. 5. Left side - estimated waveforms from conventional 2D FICA, right side - estimated waveforms from proposed CORDIC

based 2D FICA.

where, considering R2D
x,j = Rotx(z1,j , z2,j ,Vecθ(w1,1, w1,2)) as the basic Rotation mode and V2D

θ =

Vecθ(w1,1, w1,2);V
2D
x = Vecx(w1,1, w1,2) as the basic Vectoring mode of CORDIC operation, for n ≥ 3,

Estimation stage of the nD FICA algorithm can be expressed in recursive way as follows:

RnD
x,j = Rotx(zn,j ,R

(n−1)D
x,j ,Vecθ(w1,n,V(n−1)D

x ))

VnD
x = Vecx(w1,n,V(n−1)D

x )

VnD
θ = Vecθ(w1,n,V(n−1)D

x )

(50)

Proof: The notations adopted to prove Theorem-1 can also be used here to prove the above theorem.

Comparing (14) (2D) with (47) (3D) Estimation stage, it can be observed that 3D Estimation needs one

more Rotation over the 2D Estimation. In the similar way, comparing (47) with (48) for 4D Estimation

stage, it can be seen that the 4D stage needs one more Rotation mode over the 3D stage. Continuing this

way for higher dimensions where n > 4, it can also be shown that nD Estimation stage needs one more

Rotation mode over the (n−1)D Estimation stage. Thus the estimated component for the nD FICA stage

can be represented in recursive fashion as one extra rotation over the previous (n−1)D FICA estimation

stage considering 2D stage as the fundamental unit. This proves the above theorem. �

V. ALGORITHM VALIDATION

To validate the proposed algorithm, we generated C models for both the conventional [5] as well as the

proposed co-ordinate rotation based 2D and 3D FICA, compiled using GNU C Compiler in the Linux

Platform and compared the performance of the estimated outputs.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 18

Fig. 6. Left side - estimated waveforms from conventional 3D FICA, right side - estimated waveforms from proposed CORDIC

based 3D FICA.

Left hand side of Fig. 5 and 6 plot the outputs from the conventional FICA and right hand side shows the

outputs from the proposed CORDIC based 2D and 3D FICA respectively. It is evident from these figures

that the proposed co-ordinate rotation based 2D and 3D FICA algorithms maintain the same functionality

as that of the conventional FICA algorithm without sacrificing its algorithmic efficiency. Since there

is no gold standard present to measure the performance of ICA algorithms, like many other research

papers, visual inspection is considered here as a metric for performance comparison [19]. However,

Mean Squared Error (MSE) between the sources and the estimated outputs from the proposed algorithm

are also computed. MSEs for Fig. 5 (starting from the top) are 3.0863−4 and 4.63× 10−4 and for Fig.

6 (starting from the top), MSEs are 4.5722× 10−4, 5.7386× 10−4 and 5.1314× 10−4 respectively.

VI. PROPOSED CORDIC BASED nD FICA ARCHITECTURE

As mentioned in section III-D, one Rotation and Vectoring mode CORDIC can be reused for imple-

menting all stages of the proposed 2D FICA only at the expense of multiplexers at the inputs of these

two modes. Unlike 2D, each stage of nD FICA (n > 2) consists of (n− 1) levels. Since none of these

levels is concurrent, it is possible to fold all the levels together into a single level of CORDIC but at the

expense of additional multiplexers. For 3D and 4D cases, such multiplexed architectures are shown in

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 19

Fig. 7. Multiplexer array used at the front CORDIC for the proposed architectures of (a) 2D, (b) 3D and (c) 4D FICA.

Fig. 3(d) (by folding Fig. 3(a), (b) and (c)) and Fig. 4(d) (by folding Fig. 4(a), (b) and (c)) respectively.

A. Multiplexed Architecture: CORDIC Reuse for nD FICA

To generalize this for nD multiplexed architecture, only the multiplexers used in Fig. 1(d), 3(d) and

4(d) are reproduced in Fig. 7(a), (b) and (c) respectively. Comparing these figures, it can be noticed

that the multiplexer array used for 2D architecture (Fig. 7(a)) are also used in 3D and 4D (shown as

“array-1” in Fig. 7(b) and 7(c)). Moreover, due to the inclusion of the level information, 3D and 4D

architectures need another array of multiplexers, shown as “array-2” in Fig. 7(b) and (c). However the

notable difference between the “array-2” in Fig. 7(b) and (c) is the type of multiplexer used. For 3D

case (Fig. 7(b)), “array-2” comprises of three (2 : 1) multiplexers at both Rotation and Vectoring side.

Similarly, for 4D (Fig. 7(c)), “array-2” comprises of three (3 : 1) multiplexers at the Vectoring side and

two (3 : 1) and one (2 : 1) multiplexer at the Rotation side.Exploiting this similarity, the following can

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 20

Fig. 8. Generalized (a) multiplexer arrays and (b) architecture of the proposed CORDIC based nD FICA.

be inferred about the multiplexer arrays of the proposed nD architecture:

Multiplexer Array-1: This same as that used for 2D case shown in Fig. 7(a).

Multiplexer Array-2: It comprises of three ((n − 1) : 1) multiplexers at the Vectoring side and two

((n− 1) : 1) multiplexers and one (2 : 1) multiplexer at the Rotation Side.

These multiplexer arrays for nD case are shown in Fig. 8(a). Fig. 8(b) presents the architecture for

the proposed CORDIC based nD FICA algorithm.

B. Architectural Optimization of CORDIC Based nD FICA

All architectures discussed so far has one thing in common - the explicit angle information obtained

at the primary output of Vectoring mode CORDIC is connected to the θ input of the Rotation mode

CORDIC. However architectural optimization is possible by removing the necessity of explicit angle

computation in Vectoring mode CORDIC by using “Doubly Pipeline” method [30].

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 21

Fig. 9. Doubly Pipelining of the proposed CORDIC based (a) 2-D and (b) 3D FICA architectures.

Both Rotation and Vectoring mode CORDIC comprise of finite number of iteration steps and each step

modifies x and y values of the initial vector as well as the rotation direction known as “micro angle”.

Denoting it by θi where i = 0, 1, 2, 3, .., k and total number of iteration stages = (k + 1), depending

upon the rotation direction (clockwise or anticlockwise), θi is considered to be +1 or −1. After (k +1)-

number of such iterations, each θi is weighed by 2−i and these results are summed together to produce

the accumulated angle θ. When this θ value is fed to the Rotation mode, it is divided into the sequence

of same θi as obtained in the Vectoring thereby making computation of θ redundant. Thus θi generated

from the Vectoring mode can be used straightway in the Rotation mode.

Fig. 9(a) shows this doubly pipeline method for the proposed CORDIC based 2D FICA architecture.

However, since the concept level comes in for n ≥ 3, the micro-angle connection from the Vectoring to

the Rotation mode CORDIC may not be as straight forward as shown in Fig. 9(a).

Considering 3D architecture (Fig. 3) first, since each of its three stages has two levels with different

set of θi, it is essential to use one (1 : 2) de-multiplexer and one (2 : 1) multiplexer at the θi-outputs and

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 22

Fig. 10. Doubly Pipelining of the proposed CORDIC based (a) 4D and (b) nD FICA architecture.

inputs of the Vectoring and Rotation mode as shown in Fig. 9(b). Similarly, Fig. 10(a) presents CORDIC

based 4D FICA architecture employing doubly pipeline.

Proceeding the same way for the proposed nD FICA, as shown in Fig. 10(b), one ((n − 1) : 1) de-

multiplexer and one ((n− 1) : 1) multiplexer are necessary at the θi-outputs and inputs of the Vectoring

and Rotation mode respectively. Using Fig. 10(b) in Fig. 8(b), proposed nD FICA architecture can further

be modified as shown in Fig. 11.

Interested readers may look into [20]-[23] to get an insight of the implementation of CORDIC in

silicon/FPGA and also into [24]-[28] to get an idea of quantization error and numerical accuracy of

CORDIC.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 23

Fig. 11. CORDIC based optimized generic nD FICA architecture using Doubly pipeline.

VII. HARDWARE COMPLEXITY ANALYSIS

A. Important Assumptions

Throughout the hardware complexity analysis we keep a generalized view of frame-length m and

word-length b and follow the same procedure used in [13] and [15]. Since FICA is an iterative procedure,

we consider only one single iteration because the same hardware resources can be reused for the next

iterations.

To provide a comparison on a uniform platform we consider only Ripple Carry Adder (RCA), Conven-

tional Array Multiplier (CAM), Non-restoring Iterative Cellular Square Rooter (SQRT) and Non-restoring

Array Divider (NAD) as the means of implementing the arithmetic operations. Considering a b-bit RCA

requires b Full Adders (FA) (in a simplified view) [15], b × b CAM requires b(b − 2) FA plus b Half

Adders (HA) and b2 AND gates [15]. Similarly one b × b NAD consists of 0.5 × b(3b − 1) FA and

0.5 × b(3b − 1) XOR gates [15] and one b-bit SQRT needs 0.125 × (b + 6)b FA and XOR gates [31].

In addition, considering one FA cell requires 24 transistors, one HA cell and one two input XOR gates

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 24

TABLE I

SAVING IN TERMS OF ARITHMETIC COMPUTATIONS (MUL- MULTIPLICATION, ADD- ADDITION, SQRT- SQUARE ROOT AND

DIV- DIVISION) FOR THE CORDIC BASED PROPOSED 2D, 3D AND 4D FICA.

Dim Iteration Normalization Estimation

Mul Add Mul Add SqRt Div Mul Add

2D 2m m 2 1 1 2 2m m

3D 3m 2m 3 2 1 3 3m 2m

4D 4m 3m 4 3 1 4 4m 3m

consists of 12 transistors and a two input AND gates consists of 6 transistors [15], we can calculate

TCA = 24b, TCM = 6b(5b− 6), TCD = 18b(3b− 1) and TCSQ = 18(b/2 + 1)(b/2 + 3), where TC∗

are the transistor counts for RCA, CAM, NAD and SQRT respectively.

One basic single bit 2 : 1 Transmission Gate Multiplexer comprises of 4 transistors and thus b-bit 2 : 1

multiplexer array has got TC2:1
mux = 4b [33]. Any larger multiplexer can be realised using cascaded 2 : 1

multiplexer [33] and thus total transistor count of n : 1 multiplexer (TCn:1
mux) can be expressed in terms

of TC2:1
mux as: TCn:1

mux = (n− 1) ∗ TC2:1
mux. Furthermore, we assume the complexity of a de-multiplexer

is same as that of a multiplexer.

TABLE II

TRANSISTOR SAVING AND MULTIPLEXER PENALTY OF THE CORDIC BASED PROPOSED 2D, 3D AND 4D FICA. (DPL -

DOUBLY PIPELINING)

Dim Transistor Saving(TS) Penalty Mux-Array 1 Mux-Array 2 Mux-DPL

2D TS2D = (4m + 2)TCM + (2m + 1)TCA + TCSQ + 2TCD P2D 4TC2:1
mux - -

3D TS3D = (6m + 3)TCM + 2(2m + 1)TCA + TCSQ + 3TCD P3D 4TC2:1
mux 5TC2:1

mux + TC2:1
mux 2(k + 1)TC2:1

mux

4D TS4D = (8m + 4)TCM + 3(2m + 1)TCA + TCSQ + 4TCD P4D 4TC2:1
mux 5TC3:1

mux + TC2:1
mux 2(k + 1)TC3:1

mux

B. Hardware Saving for Proposed nD Architecture

Following the same procedure used in [13], savings in terms of arithmetic operations for 2D, 3D and

4D cases for each of the three stages are shown in Table I. Adopting the same approach used in [15]

and [13], total saving in terms of arithmetic operations is expressed in terms of Transistor Count (TC)

and all these values of TC∗ are translated in Transistor Saving (TS) as shown in Table II.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 25

Fig. 12. Variation of Transistor Saving Per Word-length of the proposed algorithm for (a) 2D, (b) 3D and (c) 4D with

Word-length and frame-length.

Proceeding the same way for the proposed nD FICA overall saving per iteration can be computed and

can be translated in terms of TC as follow:

TSnD = n(2m + 1)TCM + (n− 1)(2m + 1)TCA + TCSQ + nTCD (51)

C. Multiplexer Penalty for nD Architecture

CORDIC reuse introduces multiplexer penalty which are shown in Table II for 2D, 3D and 4D

cases. Following the trend shown in Table II, overall penalty for the proposed CORDIC based nD FICA

architecture (PnD) can be given as:

PnD = 4TC2:1
mux + 5TC(n−1):1

mux + TC2:1
mux + 2(k + 1)TC(n−1):1

mux

= 5TC2:1
mux + 5(n− 2)TC2:1

mux + 2(k + 1)(n− 2)TC2:1
mux

= (5(n− 1) + 2(k + 1)(n− 2))TC2:1
mux

(52)

D. Effective Hardware Saving for nD Architecture

Effective hardware saving for the proposed nD FICA architecture (ESnD), if there is any, can be

given by: ESnD = TSnD − PnD. Expressing ESnD in terms of total number of transistors saved and

normalizing with respect to b, a metric - Transistor Saving Per Word-length (TSPW ) can be computed

following the approach presented in [32].

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 26

Fig. 13. Comparative variation of Transistor Saving Per Word-length (TSPW ) of the proposed algorithm with Frame-length

and Word-length for 2D to 6D (denoted by dim = 2 to dim = 6).

Being the function of m and b, Fig. 12(a), (b) and (c) show the variation of TSPW for the Proposed

2D, 3D and 4D architectures over the conventional ones and Fig. 13 shows the comparative TSPW

variation analysis for the proposed nD FICA architecture for n = 2 to 6, with respect to different

frame-length (64 ≤ m ≤ 4096) and word-length (4 ≤ b ≤ 32). It can be observed from these figures

that TSPW for the proposed CORDIC based FICA is significantly higher than that of the conventional

FICA.

However it is well known that reuse of the same hardware unit may have adverse effect on the timing

performance of the design which is discussed next.

E. Effect of CORDIC Reuse on Computational Delay

Denoting the delay of b-bit two-operand RCA, b-by-b CAM, b-by-b NAD and b bit SQRT by 2b△

(= τa ), 8b△ (= τm), (3b+2)n△ (= τd) [29] and (b+1)(2b+3)△ (= τsqrt) [31] respectively where △

represents the delay of a two-input NAND gate, following the same procedure used in [15], computational

delay can be calculated for 2D, 3D and 4D cases as shown in Table III. Fig. 1, 3, 4 and 11 and Table

I are used to derive the delay expressions of Table III.

Exploiting the similarity of these expressions, computational delay for conventional as well as the

proposed nD FICA can be computed for Iteration (Γit conv and Γit prop), Normalization (Γnrm conv and

Γnrm prop) and Component Estimation (Γest conv and Γest prop) stages as: Γit conv = nτm + (n− 1)τa,

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 27

TABLE III

COMPUTATIONAL DELAY IN TERMS OF ARITHMETIC OPERATIONS FOR THE PROPOSED AND CONVENTIONAL 2D, 3D AND

4D FICA.

Dim Iteration (Γit) Normalization (Γnrm) Estimation (Γest)

Conventional Proposed Conventional Proposed Conventional Proposed

2D 2τm + τa [(k + 1) + 1]τa 2τm + τa + τsqrt + 2τd (k + 2)τa 2τm + τa (k + 1)τa

3D 3τm + 2τa [2(k + 1) + 1]τa 3τm + 2τa + τsqrt + 3τd [(k + 2) + 2(k + 1)]τa 3τm + 2τa 2(k + 1)τa

4D 4τm + 3τa [3(k + 1) + 1]τa 4τm + 3τa + τsqrt + 4τd [(k + 2) + 4(k + 1)]τa 4τm + 3τa 3(k + 1)τa

Γit prop = [(n− 1)(k + 1) + 1]τa, Γnrm conv = nτm + (n− 1)τa + τsqrt + nτd, Γnrm prop = [(k + 2) +

2(n− 2)(k + 1)]τa, Γest conv = nτm + (n− 1)τa, Γest prop = (n− 1)(k + 1)τa.

Approximating (k + 1) by b and normalizing with respect to △, the normalized delay is computed

for Iteration, Normalization and Component Estimation stages and is compared between the proposed

and the conventional FICA for 2D - 5D cases as shown in Fig. 14(a), (b) and (c) respectively. It can be

observed from Fig. 14(a) and (c) that for Iteration and Estimation stages, Γit prop and Γest prop are higher

than Γit conv and Γest conv respectively. On the other hand, Fig. 14(b) shows that for the Normalization

stage, Γnrm prop is less than Γnrm conv.

Fig. 15 shows the overall computational delay for 2D - 5D cases for word-length range of 4 to 32,

obtained by adding delay of each stage together. Fig. 15 shows that with the increase of word-length

the rate of increase of the computational delay for the proposed algorithm (Γprop) grows faster than that

of the conventional one (Γconv). However, for 2D, Γprop is significantly less than Γconv, for 3D cases

these two are same when word-length reaches 30. With the increase of n ≥ 4, Γprop starts exceeding

Γconv for word-length < 16. However, such negative effects will have minimal effect on the envisaged

resource constrained applications such as mobile healthcare and wireless sensor networks (see Section I)

where low power light-weight design is of prime concern, not the computational delay because most of

the vital signs monitored in such environment, are sampled at very low frequency (≤ 1 KHz) [34] and

thus a system with clock speed higher than this may ensure achieving an expected throughput.

VIII. CONCLUSION

In this paper we introduced co-ordinate rotation concept into FICA and based on this concept we

proposed a generalized recursive nD FICA algorithm and architecture using 2D as the fundamental

core. The proposed algorithm has been proved very effective over the conventional one in terms of

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 28

Fig. 14. Comparison of the normalized computational delay of (a) Iteration, (b) Normalization and (c) Component Estimation

stages between the proposed and conventional algorithm for different dimensions with respect to word-length.

hardware complexity achieved by reusing the CORDIC unit in both preprocessing as well as in the

FICA Update step. It has also been shown that further hardware simplification is obtained because of

the recursive nature of the proposed algorithm allowing implementation of the nD architecture using 2D.

Moreover, to obtain better architectural performance, we have identified and eliminated some redundant

computations and presented further optimized architectures for the proposed CORDIC based nD FICA

algorithm. To the best of our knowledge the proposed algorithms and architectures are the first of its kind

in the field of low-complexity design of nD FICA and have the potential to open up new application

domain of CORDIC. Part of our future research includes the investigation of the relationship among the

word-length, FICA dimension and numerical accuracy of the proposed algorithm.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister and G. Sukhatme,“Connecting the Physical World with Pervasive Networks”, IEEE Pervasive

Computing, vol. 1, no. 1, pp. 59-69, 2002.

[2] B. Lo, F. Deligianni and G. Z. Yang, “Source Recovery for Body Sensor Network”, IEEE International Workshop on

Wearable and Implantable Body Sensor Networks, April, 2006.

[3] S. Choi, A. Cichocki, H. M. Park and S. Y. Lee, “Blind Source Separation and Independent Component Analysis”, Neural

Information Processing- Letters and Reviews, vol. 6, no. 1, January 2005.

[4] E. Oja and Z. Yuan, “The FastICA Algorithm Revisited: Convergence Analysis”, IEEE Trans. Neural Networks, vol. 17,

no. 6, November, 2006.

[5] A. Hyvärinen, “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis”, IEEE Trans. Neural

Networks, vol. 10, no. 3, May, 1999.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 29

Fig. 15. Comparison of the overall normalized computational delay between the proposed and conventional algorithm combining

all three stages together.

[6] R. P. Brent, F. T. Luk and C. V. Loan, “Computation of the Singular Value Decomposition Using Mesh Connected

Processors”, Journal of VLSI and Computer Systems, vol. 1, no. 3, pp. 242-270, 1985.

[7] J. Götze and G. J. Hekstra, “An Algorithm and Architecture based on Orthonormal µ-rotations for Computing the Symmetric

EVD”, Integration, The VLSI Journal, vol. 20, pp. 21-39, 1995.

[8] J. R. Cavallaro and F. T. Luk, “CORDIC Arithmetic for an SVD Processor”, Journal of Parallel and Distributed Computing,

vol. 5, pp. 271-290, 1988.

[9] J. Götze, S. Paul and M. Sauer, “An Efficient Jacobi-like Algorithm for Parallel Eigenvalue Computation”, IEEE Trans.

Computers, vol. 42, no. 9, September, 1993.

[10] S. F. Hsiao and J. M. Delosme, “Parallel Singular Value Decomposition of Complex Matrices Using Multidimensional

CORDIC Algorithms”, IEEE Trans. Signal Processing, vol. 44, no. 3, March, 1996.

[11] I. Bravo, P. Jiménez, M. Mazo, J. L. Lázaro and A. Gardel, “Implementation in FPGAs of Jacobi method to Solve the

Eigenvalue and Eigenvector Problem”, International Conf. Field Prog. Logic and Applications, 2006.

[12] I. Bravo et. al., “Novel HW Architecture Based on FPGAs Oriented to Solve the Eigen Problem”, IEEE Trans. VLSI

Systems, vol. 16, no. 12, December, 2008.

[13] A. Acharyya, K. Maharatna and B. M. Al-Hashimi, “Co-ordinate Rotation Based Low Complexity 2D FastICA Algorithm

and Architecture”, IEEE International Conference on Green Circuits and Systems, pp. 60-64, Shanghai, China, June 21-23,

2010.

[14] K. K. Shyu, M. H. Lee, Y. T. Wu and P. L. Lee, “Implementation of Pipelined FastICA on FPGA for Real-Time Blind

Source Separation”, IEEE Trans. Neural Networks, vol. 19, no. 6, pp. 958-970, June, 2008.

March 22, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010 30

[15] A. Acharyya, K. Maharatna and B. M. Al-Hashimi, “Hardware Reduction Methodology for 2-Dimensional Kurtotic FastICA

Based on Algorithmic Analysis and Architectural Symmetry”, IEEE Workshop on Signal Processing Systems, pp. 69-74,

October, 2009.

[16] J. E. Volder, “The CORDIC Trigonometric Computing Technique”, IRE Trans. Electron. Comput., EC-8, pp. 330-334,

1959.

[17] J. S. Walther, “A Unified Algorithm for Elementary Functions”, Spring Joint Computer Conference, pp. 379-385, 1971.

[18] Y. H. Hu, “CORDIC Based VLSI Architecture for Digital Signal Processing”, IEEE Signal Processing Mag., pp. 16-35,

July, 1992.

[19] A. Mansour, M. Kawamoto and N. Ohnishi, “A Survey of The Performance Indexes of ICA Algorithms”, Proc. IASTED

Int. Conf. Modeling, Identification and Control, pp. 660-666, Austria, February, 2002.

[20] R. Andraka, “A Survey of CORDIC algorithms for FPGA based computers”, Proc. of the ACM/SIGDA 6th Int. Symp. on

Field Programmable Gate Arrays, pp. 191-200, USA, 1998.

[21] T. Vladimirova and H. Tiggeler, “FPGA Implementation of Sine and Cosine Generators Using CORDIC Algorithm”,

Military and Aerospace Applications of Programmable Devices and technologies Conference, USA, September, 1999.

[22] O. Mencer, L. Séméria, M. Morf and J. M. Delosme, “Application of Reconfigurable CORDIC Architectures”, Journal of

VLSI Signal Processing Systems, vol. 24, pp. 211-221, 2000.

[23] S. Kadam, M. Soderstrand and L. Johnson, “CORDIC Implementation of Digital Heterodyne Filter in VLSI”, 35th Asilomar

Conference on Signals, Systems and Computers, pp. 529-532, November, 2001.

[24] Y. H. Hu, “The Quantization Effects of the CORDIC Algorithm”, IEEE Trans. Signal Processing, pp. 834-844, vol. 40,

no. 4, April, 1992.

[25] K. Kota and J. Cavallaro, “Numerical Accuracy and Hardware Tradeoffs for CORDIC Arithmetic for Special-Purpose

Processors”, IEEE Trans. Computers, pp. 769-779, vol. 42, no. 7, July, 1993.

[26] X. Hu and S. C. Bass, “A Neglected Error Source in the CORDIC Algorithm”, Int. Symposium on Circuits and Systems,

pp. 766-769, 1993.

[27] E. Antelo, J. D. Bruguera, T. Lang and E. L. Zapata, “Error Analysis and Reduction for Angle Calculation Using the

CORDIC Algorithm”, IEEE Trans. Computers, pp. 1264-1271, vol. 46, no. 11, November, 1997.

[28] S. Y. Park and N. I. Cho, “Fixed-Point Error Analysis of CORDIC Processor Based on the Variance Propagation Formula”,

IEEE Trans. Circuits and Systems-I: Regular Papers, pp. 573-584, vol. 51, no. 3, March, 2004.

[29] K. Hwang, “Computer Arithmetic: Principles, Architecture and Design”, Wiley Publishing, chapter 11, 1979.

[30] T. Y. Sung, Y. H. Hu and H. J. Yu, “Doubly Pipelined CORDIC Array for Digital Signal Processing Algorithms”, ICASSP,

pp. 1169-1172, 1986.

[31] J. C. Majithia, “Pipeline Array for Square-Root Extraction”, Electronics Letters, vol. 9, no. 1, pp. 4-5, 1973.

[32] A. Acharyya, K. Maharatna, B. M. Al-Hashimi and S. R. Gunn, “Memory Reduction Methodology for Distributed

Arithmetic Based DWT/IDWT Exploiting Data Symmetry”, IEEE Trans. Circuits and Systems-II: Express Briefs, vol.

56, no. 4, pp. 285-289, April 2009.

[33] N. H. E. Weste and D. Harris,“CMOS VLSI Design: A Circuits and Systems Perspective”, Pearson-Addison Wesley, chap-1,

Third International Edition, 2005.

[34] U. Varshney, “Pervasive Healthcare and Wireless Health Monitoring”, Mobile Networks and Applications, Springer, pp.

113-127, vol. 12, no. 2, 2007.

March 22, 2011 DRAFT


