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Abstract—In this paper, we propose a low-complexity ar-
chitectural implementation of the K-Means based clustering
algorithm used widely in mobile health monitoring applications
for unsupervised and supervised learning. The iterative nature
of the algorithm, computing the distance of each data point
from a respective centroid for a successful cluster formation until
convergence presents a significant challenge to map it onto a low-
power architecture. This has been addressed by the use of a 2-D
Coordinate Rotation Digital Computer (CORDIC) based low-
complexity engine for computing the n-dimensional Euclidean
distance involved during clustering. The proposed clustering
engine was synthesized using the TSMC 130 nm technology
library and a place and route was performed following which the
core area and power were estimated as 0.36mm2 and 9.21mW @
100 Mhz respectively making the design applicable for low-power
real-time operations within a sensor node.

Index Terms—K-Means, CORDIC, signal processing, hard-
ware design, low complex architecture.

I. INTRODUCTION

THE fundamental concept of cluster analysis is to form

groups of similar objects as a means of distinguish-

ing them from each other [1]. Clustering techniques have

been successfully used in diverse fields such as medicine

(EEG, Functional MRI, activity recognition), geography or

marketing, involving multivariate data and can be conveniently

deployed with limited resources (memory and CPU) [1]. The

K-Means clustering algorithm owing to its computational

simplicity, efficiency has been an attractive choice for a wide

variety of signal processing applications [1]. It is a well-

perceived fact in the research community that cluster analysis

is primarily used for unsupervised learning where the class

labels for the training data are not available. However, the

K-Means algorithm can also be used for supervised learning

where the class labels of the training data are known a

priori [3]-[9]. Apart from using it as a learning algorithm, K-

Means has also been utilized for signal pre-processing, feature

reduction and time-domain signal analysis [2] . Hence, using

K-Means for real- time cluster analysis requiring computation

in resource constrained sensor nodes for remote health care

monitoring systems where online multi-modal data acquisition

and analysis is the key (e.g. cardiovascular disease prognosis),

requires an effective implementation strategy. The fundamental
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requirement for such applications is to cut-down on continuous

transmission and have a low-power operation to prolong their

battery life. Hence, in view of this an effective algorithm-to-

architecture holistic mapping is required to fulfill the notion

of low-power operation aimed for long durations.

The K-Means algorithm exhibits an iterative nature, where it

computes the distance of each data sample from the centroids

until convergence. This is generally achieved by the use of

power hungry multipliers, square rooters (for Euclidean dis-

tance computation) and multiplexers [3]-[9], thereby rendering

direct mapping of this algorithm to architecture infeasible for

implementation on resource-constrained platforms. An attempt

was made to replace the Euclidean distance by a combination

of Manhattan and Max distance but by trading-off accuracy

for power consumption in [10]. Therefore, an algorithm-to-

architecture holistic optimization approach is necessary for

maintaining its algorithmic efficiency and making it low-

complexity from the architectural perspective. Coordinate Ro-

tation Digital Computer (CORDIC) based architectures explor-

ing its different transcendental functions to compute complex

arithmetic operations [11]-[12] have been used widely for

computationally intensive signal processing algorithms [11]-

[14]. K-Means clustering algorithm has been pre-dominantly

used with fore-mentioned algorithms [11]-[14]. Hence, in

this study, we investigate the use of a CORDIC-based low-

complexity engine to implement K-Means clustering algo-

rithm.

The rest of the paper is organized as follows. Section II

provides with the necessary theoretical background, section

III discusses about the proposed methodology, Section IV

presents the hardware complexity analysis, and section V

concludes the discussion.

II. THEORETICAL BACKGROUND

With a given dataset X = xi, i = 1,...,n to be clustered into a

set of k clusters, the K-Means algorithm iterates to minimize

the squared error between the empirical mean of a cluster and

the individual data points, defined as the cost function,

J(θ, u) =

n
∑

i=1

k
∑

j=1

uij(xi − θj)
2

(1)

where, θj is the cluster center and uij = 1 if xi lies close to

θj , or 0 if otherwise. Initially k centroids are defined and data

vectors are assigned to a cluster label depending on how close

they are to each centroid. The k centroids are recalculated from

the newly defined clusters and the process of reassignment

of each data vector to each new centroid is repeated. The

algorithm iterates over this loop until the data vectors from

dataset X form clusters and cost function J is minimized [2].
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CORDIC is an efficient implementation technique for vector

rotation and arctangent computation. Since it can be realized

using simple shift and add operations, it is very effective in

terms of low hardware complexity [11]. Considering the rota-

tion in the clockwise direction, the basic CORDIC expressions

can be expressed as

[

xf

yf

]

=

[

cosθ sinθ

−sinθ cosθ

] [

x0

y0

]

(2)

where x0, y0 and xf , yf are the initial and final components

of the vector and the angle of rotation is θ. In this paper, we

use CORDIC in vectoring mode for our implementation.

III. PROPOSED METHODOLOGY

The architecture of the proposed CORDIC based K-Means

clustering engine is shown in Fig.1. The input data is stored

in the memory unit for further usage and are transmitted to

different blocks via control unit (CU). Memory unit also serves

the purpose of storing intermediate values. The Euclidean dis-

tance is calculated in distance unit (DU) using low complexity

CORDIC vectoring module. The distances from each point to

each of the centroids are sent to a comparator block to identify

the cluster to which it belongs. Once the clustering is done,

centroid calculation block will be activated to compute the

new centroids. If these new centroids differ significantly from

the previous iteration values, then clustering will be repeated,

else clustered data will be sent to the output. The CU governs

the data flow among all the modules. The proposed engine

utilizes CORDIC to compute Euclidean distance between two

points, which is a metric to compute the clusters and has been

explained through an illustrative example.

In this study, our focus is to propose a methodology for

utilizing CORDIC to compute Euclidean distance between

two points, which is a metric to compute the clusters. In two

dimensional signal space, if (x1, x2) , (y1, y2) are two points,

the Eucliean distance between these two points will be

dist2D =
√

(x1 − y1)2 + (x2 − y2)2

One square rooter, two square, one adder and two subtrac-

tion operations are involved in this computation. If we give a

and b as the x- and y-inputs to the vectoring mode CORDIC,

the x output will be the magnitude of Vector(a, b), which is√
a2 + b2 . So, with (x1−y1) and (x2−y2) as the x- and y- in-

puts repectively, the vectoring mode will give distance between

the two points. Architecture of the 2D distance measurement

unit using vectoring mode CORDIC is shown in the Fig.

2(a). We can extend this methodology to n-dimensional(nD)

signal space to formulate distance between two nD vectors.

Considering the case of 3-D signal space (n=3), distance

between these two points (x1, x2, x3), (y1, y2, y3) will be

distance3D =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

With inputs as (x1 − y1) and (x2 − y2) to vectoring mode

as in 2-dimensional case, the x-output of vectoring mode

CORDIC(vecl1x ) is represented as :

distance2D = vecl1x ((x1 − y1), (x2 − y2)).

Fig. 1. Complete architecture of the proposed system.

If we pass this x-output to next CORDIC level as one input,

with (x3 − y3) as second input, x-output will be the desired

3-dimesional distance

distance3D = (vecl2x (vec
l1
x ((x1 − y1), (x2 − y2)), (x3 − y3)).

Fig. 2(b) shows the 3D distance measurement unit. Since these

two stages are executed sequentially, same CORDIC unit can

be reused only at the expense of two multiplexers as shown in

Fig.2(c). For two n-dimensional vectors (x1, x2, x3, . . . , xn)
and (y1, y2, y3, . . . , yn), the distancenD between them,

distancenD =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

can be calculated using (n-1) CORDIC stages as shown in

Fig. 2(d). For calculating distance between two n-dimensional

vectors, the inputs to the vectoring mode CORDIC block

will be as follows. Thus, recursively using the fundamental

2D-CORDIC unit we can generalize it for computing the n-

dimensional distance. As the calculations are done sequen-

tially, the same CORDIC unit can be reused for calculations

in two levels, only at the expense of one 2-input multiplexer

and one (n-1) input muliplexer at inputs of CORDIC unit (as

shown in fig. 2(d)). Multiplexers at input and Demultiplexers

at output of the CORDIC block have been used accordingly.

For 1st level of CORDIC x-input: (x1 − y1)
(vecl1x ) y-input: (x2 − y2)

For pth level of CORDIC x-input: previous level x-output

(veclpx ) y-input:(xp−yp),where p = 2 to n

IV. RESULTS, ANALYSIS AND DISCUSSION

A. Methodology Validation

The proposed architecture was coded in Verilog as HDL

and functionally verified by evaluating on a set of 24 datasets

each having 60 samples of kinematic data, collected from

a wrist-worn tri-axial accelerometer measuring human arm

movements. This dataset was chosen in view of the popularity

of K-means for analyzing human movement in daily living

scenarios using inertial sensors [15]. The proposed method-

ology can be implemented with different specifications. Here,

we have verified the design for cluster values ranging from

1 to 16 (K) and dimension of the input data as 3 (n). It is
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Fig. 2. CORDIC based distance measurement (a)2-D vectoing;(b)3-D
vectoring;(c)3-D multiplexed architecture;(d)n-D multiplexed architecture.

important to note here that although the input data is 16-

bits wide, the width of the datapath in the CORDIC unit

is 22-bits. In order to achieve the desired 16-bit accuracy

a 22-bit word-length should be selected, according to the

formulation (N + Log2N + 2) and having atleast 16 iterations.

Therefore, to obtain a high accuracy a 22-bit CORDIC was

used for this implementation. The output was validated against

Matlab model of the K-Means algorithm with same initial seed

values for both the cases. The results indicate the similarity

in predicting the number of clusters and the iterations taken

by both the approaches. Moreover, we achieve precision up to

8 decimal places using a 16-stage vectoring mode CORDIC

with input magnitudes ranging from 1 to 1015. Fig. 3(a)

shows the resulting clustered data from Matlab inbuilt k-means

function and Fig. 3(b) shows the clustered data output using

the proposed methodology. The comparison of Fig. 3(a) and

Fig 3(b) shows that the proposed methodology produces 100%
accuracy, exhibiting a robust system. A detailed error analysis

has been provided in Section C.

B. Hardware Complexity Analysis

Throughout the hardware complexity analysis, we keep a

generalized view of word-length b and followed the same

procedure used in [11]. Since the distance computation in K-

Means Clustering using CORDIC is an iterative procedure, we

consider only one single iteration because the same hardware

can be reused for the next iterations as well as for successive

stages of CORDIC in Vectoring Mode for dimensions higher

than 2.

Computation of distance between 2 n-dimensional points

(x1, x2, x3, . . . , xn) and (y1, y2, y3, . . . , yn) using the conven-

tional method, i.e.
√

(x1 − y1)2 + · · ·+ (xn − yn)2 requires

n squaring operations,(n−1) addition operations and 1 square-

Fig. 3. 3D plot of the data points clustered using (a) inbuilt kmeans function;
(b) CORDIC based kmeans function.

root operation. Since this distance is only used for comparison,

the absolute value of the distance is not required and hence,

square rooting operation can be omitted without compromising

on accuracy. To provide a comparison on a uniform platform,

we consider only Ripple Carry Adder (RCA) and Conventional

Array Multiplier (CAM) as the means of implementing the

arithmetic operations. One b−bit RCA requires b full adders

(FA) (in a simplified view) [11], and b X b CAM requires

b∗ (b−2) FA plus b half adders (HA) and b2 AND gates [11].

Similarly, one b-bit SQRT needs 0.125 ∗ (b + 6)b FA and

XOR gates [11]. In addition, considering one FA cell requires

24 transistors, one HA cell, and one two input XOR gate

consist of 12 transistors and a two input AND gate consists

of six transistors [11], we can calculate TCA = 24b, TCM

= 6b(5b − 6), where TC* are the transistor counts for RCA

and CAM respectively. Following the same procedure used

in [11], savings in terms of arithmetic operations for distance

computation in different dimensions without using CORDIC

are computed. For n-dimensional distance computation, (n−1)
RCAs and n CAMs are required. The transistors used here will

not be required when the proposed CORDIC based engine

is used for K-Means clustering, since we are reusing the

CORDIC unit. Therefore, the total Transistor Count (TC)

computed here will be the Transistor Saving (TS), given by:

TSnD = nTCM + (n− 1)TCA

Expressing TSnD in terms of total number of transistors saved

and normalizing with respect to b, a metric Transistor Saving

per Word-length (TSPW) can be computed following the

approach presented in [16]. Being the function of b and n,

the Figs. 4 and 5 show that the increase in TSPW for the

proposed CORDIC based K-Means Clustering methodology

is significantly higher than the conventional design for two
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Fig. 4. Variation of Transistor saving per word-length of the proposed
algorithm with word-length and dimension.

Fig. 5. Comparative variation of Transistor Saving Per Word-length (TSPW)
of the proposed algorithm word-length for 2D to 6D.

dimensional to six dimensional ((184.5 ∗ b − 69)TSPW )
points, for different word lengths (4 <= b <= 32).

C. Error Analysis

Accuracy is determined by comparing outputs from pro-

posed methodology with Matlab inbuilt ’kmeans’ function.

In the proposed technique CORDIC is used for calculating

the Euclidean distance. The accuracy depends on the input

dimension (D) and the number of micro-rotations, which is

equal to number of stages(n) of CORDIC. A set of 1000

randomly generated signals are taken as input and Mean Ab-

solute Percentage Error(MAPE) was calculated with various

stages of CORDIC for different input dimensions. Fig.6 shows

the variation of MAPE for the proposed architecture with

dimensions ranging from 2D to 6D, with different CORDIC

stages n = 8, 12, 16 and 20, and with word length b = 4, 8,

16 and 32. MAPE is of the order of 10−2 with number of

CORDIC stages(n) as 8 for a given dimension while with

n=16, MAPE decreases to the order of 10−4. From Fig.6

it is evident that as number of CORDIC stages increases,

MAPE decreases due to the increase in resolution of CORDIC.

Furthermore, for a fixed number of stages of CORDIC, MAPE

increases with the dimensionality of the input because subse-

quent dimensions are passed on to CORDIC in a cascaded

fashion.In addition, from Fig.6 it is observed that for a given

dimension and number of CORDIC stages, MAPE does not

change significantly with the word length b. It is important to

Fig. 6. Variation of Average Percentage error of the proposed algorithm with
number of CORDIC stages, dimension and wordlength .

note that although Fig.6 has been demonstrated for processing

data upto 6D, the architecture can support upto 16D input data.

For a 16 stage CORDIC, all the stages are sequential and at

any instant of time only one of these 16 stages work on the

particular data point. Hence, 16 different data points can be

processed using 16 stages of CORDIC at any clock cycle.

Moreover, this (MAPE) is the error in Euclidean distance

which is used to cluster data points. The final output is the co-

ordinates of the cluster centroid and not the Euclidean distance

itself, which ensures a robust output.

D. Analysis of computational time

In the proposed architecture, an n stage (=16) CORDIC

takes n number of clock cycles to compute a single two

dimensional Euclidean distance and therefore , achieves 100%
throughput with 16 dimensions/cycle(cf. Table 1), having a

latency of n clock cycles (=16), equivalent to the number of

stages of CORDIC operation.

For each cluster (K), distances from every cluster centroid

to every data point have to be measured. To calculate n

dimensional distance, (n− 1) stages of CORDIC are needed.

Hence, each iteration takes k∗num∗(D−1)+16 clock cycles,

where num is number of data points, D is dimensionality of

data and k is number of clusters. The variation of required

number of clock cycles with varying dimensions and number

of clusters for a dataset having 64 points is shown in Fig.7. For

clustering 64 datapoints into 3 clusters, a 16 stage CORDIC

distance measuring unit takes 400 clock cycles. The proposed

architecture at 100MHz operating frequency will take 4us
to complete a single iteration step. Here, the number of

iterations depend on the initial seeds and the distribution of

data. Considering a worst case scenario of 1000 iterations,

the total K-Means operation using the proposed architecture

takes less than 1ms to complete, thereby achieving real-

time standards. In Fig.8, we present a relationship for a

range of functionally verified input frequencies (1 MHz to

360 MHz) against the surface power density (SPD - power

per unit area) obtained as a result of DC synthesis using

TSMC 130 nm technology library. A third order polynomial

fit is used to describe this relationship, over the selected

frequency range wherein we achieve a 100% throughput using
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TABLE I
COMPARISONS OF THE PROPOSED ARCHITECTURE WITH OTHER REPORTED ARCHITECTURE

ISCAS 08[4] TVLSI 10[5] TVLSI 11[6] TMC 11[7] ETCAS 11[8] TCAS 13[9] Proposed

Technology TSMC 180nm TSMC 90nm TSMC 90nm TSMC 90nm TSMC 90nm TSMC 90nm TSMC 130nm

Clock Frequency 200MHz 400MHz 333MHz 500MHz 625MHz 400MHz 100MHz

Area 0.58mm2 1.23mm2 1.16mm2 0.67mm2 0.14mm2 - 0.36mm2

Normalized Area* 0.15mm2 1.23mm2 1.16mm2 0.67mm2 0.14mm2 - 0.1725mm2

Number of K 1− 16 1− 16 1024 1− 64 1− 4 1− 16 1− 16
Vector Dimension 1− 5 1− 162 8 1− 5 1− 4 1− 16 1− 16
Max. Throughput 2.5 D/cycle 16 D/cycle 8 D/cycle 5 D/cycle 4 D/cycle 1 D/cycle 16 D/cycle

Power - - - 209mW 12.1mW 6.02mW 9.21mW

Normalized Power* - - - 209mW 12.1mW 6.02mW 4.6mW

Maximum Data 217 220 224 220 220 216 222

* Normalized to 90nm from 130nm, 180nm, and the normalization factor is (90/180)2, (90/130)2 for 90nm and 130nm respectively, D - dimension.

the shared CORDIC resource. The reported cost function

(SPD = 8.9e−13F 3 − 5.2e−10F 2 + 1.8e−7F + 1.2e−5) and

the associated goodness-of-fit parameters namely, low values

of sum of squares due to error (SSE), root mean square error

(rmse) and high value of the adjusted R-square as mentioned

in Fig.8, indicate a best fit in comparison to other tested

models.

E. Comparison with other Architectures

The proposed architecture is synthesized by Synopsys De-

sign Compiler (DC) and the place and route was performed

using Synopsys IC Compiler (ICC) using 0.13µm standard

cell CMOS technology. The core area and power consumption

of the proposed engine are 0.36mm2 and 9.21mW at 100-

MHz frequency for VDD = 1.2 V. The engine consumes 62%
less power with a comparable area consumption w.r.t. state-of-

the art architecture for ASIC implementation in [8] (the power

reported is from back-end simulation using SoC Encounter).

A comparison of the area requirement and power consumption

of the proposed engine with state-of-the-art architectures have

been highlighted in Table I. Since different architectures use

different technologies, it is unfair to compare them on a one-

to-one basis. So, area and power values are normalized to same

technology node [17]. These results are provided to give an

insight about the performance of the proposed-methodology-

based architecture. The proposed CORDIC based clustering

engine compares favorably in terms of area w.r.t. the other

reported architectures as illustrated in Table I. It is to be noted

that due to the unavailability of an appropriate memory module

in our standard cell library, the architecture is implemented

using registers. We believe that the use of appropriate memory

will significantly reduce the area and power consumption.

V. CONCLUSION

In this paper, we proposed a novel clustering engine using

CORDIC to implement the k-means algorithm. It has been

generalized to compute n-D distance using a 2-D fundamental

core exploiting the recursive nature of the algorithm. The

hardware analysis shows a minimal amount of transistor

overhead and the low power and area achieved at a relatively

high clock speed (i.e. 100 MHz) makes it suitable for on-

board sensor processing in pervasive healthcare applications.

This engine can be suitably integrated onto a sensor platform

in the form of a dedicated ASIC as first step towards point-

of-care diagnostic for applications involving activities of daily

Fig. 7. Variation of required Number of clock cycles for each iteration with
number of clusters and dimension of input.

Fig. 8. Variation of Surface Power Density(SPD - synthesized power per unit
area) with frequency.

living using inertial sensors where clustering techniques are an

integral part of unsupervised learning approaches on datasets

with no corresponding class information.
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