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Abstract: We exploit the versatility provided by metal–dielectric

composites to demonstrate controllable coherent perfect absorption (CPA)

or anti-lasing in a slab of heterogeneous medium. The slab is illuminated

by coherent light from both sides, at the same angle of incidence and

the conditions required for CPA are investigated as a function of the

different system parameters. Our calculations clearly elucidate the role of

absorption as a necessary prerequisite for CPA. We further demonstrate the

controllability of the CPA frequency to the extent of having the same at two

distinct frequencies even in presence of dispersion, rendering the realization

of anti-lasers more flexible.
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1. Introduction

There has been recently a great deal of interest in critical coupling (CC) in micro and nano

structures [1–5]. Critical coupling of incident electromagnetic radiation to a given micro– nano–

structure refers to the case where the entire incident energy is absorbed in the structure, leading

to null scattering (see for example Refs. [3, 4]). Initial research on critical coupling involved

the coupled resonator optical waveguides (CROWs) proposed by Yariv [6]. A realization of

such system was the coupled fiber–microsphere or the fiber–disc system [1]. The purpose here

was to slow down light in order to stop and store it eventually. Later studies were directed to

planar structures with a very thin layer of absorbing material on a distributed Bragg reflector

(DBR) substrate [3–5]. A spacer layer between the absorbing layer and the DBR controlled the

amplitude and phase of the waves reflected from the different interfaces. For light at normal

incidence from the top (on absorbing layer side), the DBR ensured null transmission for waves

with frequency in the rejection band of the structure. The spacer layer thickness was controlled

such that all the reflected waves coming from different interfaces interfered destructively in

the medium of incidence, leading to null reflection. Thus, the structure neither transmitted nor

reflected, implying the critical coupling of the incident light to the structure. The entire incident

light was “perfectly” absorbed by the only few–nanometer thick lossy layer. Physically this

amounts to having a purely imaginary component of the Poynting vector normal to the surface.

The use of composites [7] and metamaterials [8–10] as the absorbing layer in CC structures

opens new possibilities for tailoring their optical response [4,5,11,12]. Composites, in particu-

lar metal–dielectric nano–composites, have found interesting applications in optics, especially

since the eighties, when researchers appreciated that the effective medium properties of the

composite can exceed those of its individual constituents [13–15]. The resulting enhancement

in the local fields and local density of states can lead to interesting linear, nonlinear and cavity

QED applications [15–18]. The possibilities offered by such composites are even more striking

for metal inclusions in a dielectric host, since localized plasmon resonances can be excited in

the metallic nano–inclusions. Critical coupling at two distinct frequencies for both normal and
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oblique incidences was reported using such nano–composites [4,5]. The splitting of the normal

mode of the total absorption dip using intracavity resonant atoms for a cavity with metamaterial

mirrors was also shown [18].

Usually a single coherent source illumination from one side is used in critical coupling. A

generalization to two incident coherent beams from opposite sides leads to the so–called coher-

ent perfect absorption (CPA), with the added flexibility that the two beams can be controlled

separately [19–22]. Due to complete destructive interference at both sides there can be per-

fect absorption of the incident beams, which is also referred to as time reversed lasing (near

threshold) or anti-lasing [19, 20]. Recently, there have been several reports on CPA and related

phenomena in different systems [21, 22]. Let us emphasize that the absence of scattering both

in forward and backward directions originates from the same physical phenomenon for CC and

CPA: destructive interference of two beams. The difference between CC and CPA resides in

the implementation detail: two incident beams are used in CPA, while only one is used in CC

where the second beam is generated by the structure itself.

In this paper we show that the concept of CPA can be extended to versatile geometries us-

ing a heterogeneous metal–dielectric composite layer as absorber. This approach provides great

flexibility with respect to the material sample, illumination configuration, and frequency range

where CPA can be realized. In a heterogeneous composite medium it is possible to tune the

localized plasmon resonance and the resulting absorption and dispersion, by simply varying

the inclusions volume fraction. Here we present a detailed study of CPA in a slab of composite

medium with illumination by coherent waves at identical angle of incidence from both sides.

Identical angle of incidence ensures the interference of the transmitted light, say, incident from

the left of the medium, with the reflected one incident from right. Perfect destructive interfer-

ence corresponds to the case when the amplitude of both waves are the same and their phase

difference is π . If both incident waves are identical, this leads to perfect cancellation on both

sides and CPA. We present results which are indicative of a critical minimum of absorption be-

low which CPA is not possible. This clearly demonstrates the necessity of absorption for CPA.

We further demonstrate the controllability of the frequency over a broad range (from visible

to near-IR) at which null-scattering can take place. We also show that anti-lasing can be real-

ized at two distinct frequencies even in presence of dispersion. Note that in the experimental

demonstration of anti-laser dispersion was ignored assuming the material (Si wafer) to be with

uniform complex refractive index over a small range of frequencies in the near-IR domain [19].

Such a flexibility in the design and prospects, as offered by our scheme, may lead to an easier

realization of anti-lasers over a broader frequency domain.

2. Formulation of the problem
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Fig. 1. Schematics of the CPA setup.

Consider the geometry shown in Fig. 1, where a metal–dielectric composite layer of thickness

d is excited by two coherent monochromatic waves with unit amplitude from both sides. All

the media in Fig. 1 are assumed nonmagnetic and the angle of incidence θ is the same for both

waves. For future reference we label the forward (backward) propagating wave incident from
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left (right) and resulting reflected and transmitted waves with subscript f (b). The structure is

symmetric, since the medium of incidence and emergence are the same. Symmetry ensures that

the total scattered amplitudes in the medium of incidence and emergence are the same since

the reflected and transmitted amplitudes individually are the same (r f = rb, t f = tb). The nature

of scattering in both directions is governed by the interference between, say, r f and tb. It will

be destructive and leading to CPA if the magnitudes of these waves are the same with a phase

difference of π , i.e., |r f | = |tb| and |Δφ | = |φr − φt | = π , where φr and φt refer to the phases

of r f and tb, respectively. We have dropped the subscript in the phases and retained them in

the amplitudes to stress that both waves are present in the same medium to interfere. Again the

inherent symmetry implies that r f + tb = rb + t f , leading to the same scattered amplitudes on

both sides. Thus destructive cancellation in the incidence medium would imply the same in the

emergence medium, leading to CPA.

The complex reflection and transmission amplitudes for any given polarization for the struc-

ture shown in Fig. 1 can be easily calculated using the standard characteristic matrix ap-

proach [23]. Linearity of the system can be exploited to calculate the contributions for left and

right incidences separately and superpose them to obtain the scattered amplitudes on both the

sides. As mentioned earlier, localized plasmon resonances of the composite play a key role in

determining the nature of scattering. The optical properties of this metal–dielectric medium are

obtained from the Bruggeman formula, where both constituents in the two–component medium

are treated on the same footing [10]. The permittivity of the composite is thus given by

ε2 =
1

4

{

(3 fm −1)εm +(3 fd −1)εd ±

√

[(3 fm −1)εm +(3 fd −1)εd ]
2 +8εmεd

}

, (1)

where fm and εm ( fd and εd) are the volume fraction and the permittivity of the metal (dielec-

tric), respectively. Since the composite has two components, we have fd = 1− fm. The square

root is taken such that the imaginary part of the permittivity is positive to ensure causality [24].
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Fig. 2. (a), (b) Real and (c), (d) imaginary parts of the dielectric constant for a gold–silica

composite at two different volume fractions: (a), (c) fm = 0.004 and (b), (d) fm = 0.08.

Here εd = 2.25 and εm is taken from the work of Johnson and Christy [25].

The flexibility offered by the structure in Fig. 1 in the context of CPA can easily be assessed,

even before any calculations. There are now several parameters controlling the nature of the

scattered light, namely, the width d, the angle of incidence θ ; both controlling the optical path

and hence the single–pass or roundtrip phase and attenuation for a given frequency. Most im-

portantly, the volume fraction of both constituents of the metal–dielectric composite provide a

very efficient control of its absorption and dispersion. In the next section we demonstrate this
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Fig. 3. (a) Absolute values of reflected (dashed line) and transmitted (solid line) amplitudes

|r f | and |tb| (arrow shows the point where conditions for CPA are satisfied), (b) phase

difference Δφ between the forward reflected and backward transmitted plane waves and (c)

log10|r f + tb|
2 as a function of fm for d=5 µm and λ = 562nm.

freedom of choice of optical parameters for a gold–silica composite. We consider very low vol-

ume fraction for the metal, leading to a localized plasmon resonance around λ = 540nm and

producing CPA dips near λ = 560nm. Figure 2 shows the dependence of the real and imaginary

parts of the permittivity for a gold–silica composite as functions of the wavelength λ for two

different values of the metal volume fraction: fm = 0.004 and fm = 0.08. The dramatic changes

of the absorption and localized plasmon resonance wavelength are clearly visible. An increased

value of fm, say fm = 0.08, red–shifts the localized plasmon modes to about λ = 630nm, bring-

ing the CPA effect within the reach of laser diodes in the λ = 750–790nm spectral range.

3. Results and discussion

All the calculations were performed for a gold–silica composite layer illuminated by a trans-

verse electric (TE) polarized plane waves incident at an angle θ = 45◦. The case for TM–

polarization is also straightforward, yielding analogous results but with the CPA condition be-

ing satisfied for different parameters (not shown here). The dielectric function of gold εm was

obtained by interpolating the experimental data of Johnson and Christy [25]. Other parameters

were taken as follows: ε1 = 1.0, εd = 2.25. In order to study the influence of the geometrical

and material parameters, we have computed the modulus of the reflected and transmitted am-

plitudes, |r f |, |tb|, their phase difference Δφ and the intensity of the scattered light |r f + tb|
2 as

functions of d, fm or λ .

As previously mentioned, the CPA results from an extremely delicate balance where the

interfering waves have the same modulus and differ by a phase of π . This is investigated in

Fig. 3, where the amplitude of the reflected and transmitted waves are shown as a function of

fm for λ = 562nm and d = 5 µm. A logarithmic scale is used in Fig. 3(c) to highlight the depth

of the dip where CPA occurs at fm = 0.004, where the required conditions are fulfilled, i.e.,

|r f |= |tb| and |Δφ |= π .

The dependence of |r f |, |tb|, |Δφ | and log10|r f + tb|
2 as functions of λ for a composite layer

with fm = 0.004 and d = 5 µm is shown in Fig. 4. These data confirm the necessary conditions

for CPA, i.e., destructive interference between r f and tb. They also indicate new possibilities,

such as having CPA at two distinct frequencies for the same structure under illumination at

the same angle of incidence. Note in Fig. 4(a) the multiple crossing of the |r f | and |tb| curves,
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Fig. 4. Same as in Fig. 3 for fm = 0.004 and d = 5 µm.

implying amplitude matching at more than one wavelength. While the phase difference van-

ishes at one of these crossing (at λ = 562nm), it is slightly off for the other wavelengths. It is

thus expected that in the parameter space a nearby point can be found, where the matching is

complete atleast at two distinct frequencies. This is indeed possible and the results are shown in

Fig. 5 for fm = 0.004 and d = 5.45 µm. It is not ruled out that a judicious choice of parameters,

possibly with periodic variations of the refractive index, could lead to CPA at more than two

frequencies.
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Fig. 5. Same as in Fig. 3 for fm = 0.004 and d = 5.45 µm.

In order to further explore the influence of the different parameters on the CPA condition,

we study in Fig. 6 the scattered intensity log10|r f + tb|
2 as a functions of two of the parameters

(keeping the third one constant) in a three–parameter space (comprising of fm, λ and d). The

results for the log of the scattered intensity on one side are shown as color plots as a function of

fm and λ for d = 10 µm in Fig. 6(a), as a function of d and λ for fm = 0.004 in Fig. 6(b), and

as a function of d and fm for λ = 562nm in Fig. 6(c), respectively. The islands and stripes in

Fig. 6 indicate that it is nontrivial to meet the CPA condition, which results from a very delicate

balance ensuring destructive interference. As can be seen from Fig. 6(b) and (c), the stripes

contain the islands and the CPA condition is met at a point near the middle of the island. The

occurrence of several islands with sharp dips suggests that CPA is possible for several pairs of
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Fig. 6. Color map of log10|r f + tb|
2 as functions of (a) fm and λ for d = 10 µm, (b) d and

λ for fm = 0.004, and (c) d and fm for λ = 562nm.

parameter values, when the third parameter is kept fixed. The dependence shown in Figs. 6(a)

and (b) is also indicative of another important fact, namely, absorption is essential for CPA.

Fig. 6(a) clearly points to a limiting volume fraction of metal, below which CPA is ruled out.

Note that in our model the metallic inclusions are the only source of losses and hence existence

of a minimum critical value of metal volume fraction implies a similar minimum absorption for

the realization of CPA. Both Figs. 6(a) and (b) suggest that a possible adjustment of d and fm,

respectively, can lead to two ‘point dips’ on the same horizontal line, thereby leading to CPA at

two frequencies for the same structure. Finally, Fig. 6(c) implies that an increase of d, resulting

in an overall absorption increase, can lead to CPA at a lower volume fraction fm.

4. Conclusion

We have studied CPA in a two–component metal–dielectric heterogeneous medium illuminated

from both sides under plane wave oblique incidence. The composite medium permittivity was

approximated by the effective medium theory of Bruggeman. It is shown that the flexibility

of the dielectric response of the composite medium due to the localized plasmon resonance

(controlled by the volume fraction of metal) enables one to have controllable CPA, possible

over large ranges of frequencies. This flexibility was further exploited to obtain CPA at two

different frequencies for the same structure with material dispersion. A detailed analysis of the

CPA scattering dips as a function of the different parameters of the system was carried out.

Our data clearly demonstrate that absorption is a necessary prerequisite for CPA. The novel

features of our study, namely, the controllability of the frequency and the possibility of CPA at

more than one frequency in a dispersive sample, make it easier to realize anti-lasers over the

visible-IR domain. Besides, these results have far reaching implications for sensing and other

optical devices.
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