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Abstract We investigate the constraints on the leptoquark

Yukawa couplings and the Higgs-leptoquark quartic cou-

plings for scalar doublet leptoquark R̃2, scalar triplet lep-

toquark S3 and their combination with both three genera-

tions and one generation with respect to perturbative uni-

tarity and vacuum stability. The perturbative unitarity of all

the dimensionless couplings is studied via one- and two-loop

beta functions. New SU (2)L multiplets in terms of these lep-

toquarks are introduced to fabricate Landau poles at the two-

loop level in the gauge coupling g2 at 1019.7 GeV and 1014.4

GeV, respectively, for the S3 and R̃2 + S3 models with three

generations. However, such Landau poles cease to exist for

R̃2 and any of these extensions with both one and two gen-

erations up to Planck scale. The Higgs-leptoquark quartic

couplings acquire severe constraints to protect Planck scale

perturbativity, whereas leptoquark Yukawa couplings acquire

some upper bound in order to respect Planck scale stability

of Higgs vacuum. The Higgs quartic coupling at the two-

loop level constrains the leptoquark Yukawa couplings for

R̃2, S3, R̃2 + S3 with values <∼ 1.30, 3.90, 1.00 with three

generations. In the effective potential approach, the presence

of any of these leptoquarks with any number of generations

pushes the metastable vacuum of the Standard Model to the

stable region.
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1 Introduction

Over the past few decades, the Standard Model (SM) has been

extremely successful in establishing itself as a well-accepted

model providing beautiful theoretical descriptions of elemen-
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tary particles. After the discovery of the Higgs boson [1,2],

the last undetected particle of the SM, followed by precise

measurement of its properties at the Large Hadron Collider

(LHC), the particle spectrum of the SM was complete. How-

ever, because of the inability to explain various experimental

facts such as matter–antimatter asymmetry, dark matter relic

density, neutrino masses, Higgs mass hierarchy and several

flavour anomalies, SM is considered an incomplete theory.

This motivates one to extend the SM with some beyond-

Standard Model (BSM) particles or new gauge groups or

additional discrete symmetries. Various new physics (NP)

models augmented with heavy fermions and bosons have

been very well studied in the literature. Leptoquarks [3] lie

under the category of bosonic extension of the SM, but with

lepton and baryon number.

Though the notion of leptoquark [4,5] has existed in the

literature for nearly 50 years, it has received much greater

attention in recent years due to its prospects for address-

ing various flavour anomalies [6–31], unexplained with SM.

Simply speaking, leptoquarks are hypothetical particles hav-

ing both lepton number and baryon number. They are elec-

tromagnetically charged and colour triplet (fundamental or

anti-fundamental) under the SU (3)C gauge group. Under the

SU (2)L gauge group, they can be singlet, doublet and triplet

as well. According to Lorentz representation, they might be

scalar as well as vector. These leptoquarks emerge naturally

in several higher gauge theories unifying matter [4,5,32–

42]. In the literature, numerous efforts have been devoted

to studying the phenomenology of these leptoquarks at col-

liders [43–73], in particular at the LHC. Mainly focusing

on the angular distributions, distinguishing features of scalar

and vector leptoquarks carrying different SM gauge quan-

tum numbers have also been explored at electron–proton

[74], electron–photon [75] and proton–proton [76,77] col-

liders. On the other hand, many experimental searches for

these leptoquarks have been performed at electron–positron

[78–81], electron–proton [82,83], proton-antiproton [84–86]

and proton–proton [87–91] colliders, but no sign of them has

yet been confirmed. Kaon and lepton physics have imple-

mented strong constraints on the coupling of leptoquarks to

the first generation of quarks and leptons [3,92,93]. ATLAS

and CMS (Compact Muon Solenoid) have performed thor-

ough generation-wise analyses on the allowed mass range of

scalar and vector leptoquarks. These studies [87,90,91] sug-

gest that if any leptoquark exists, it must have mass above

1.5 TeV with the coupling to quarks and leptons below the

electromagnetic coupling constant.1

1 However, bounds on third-generation scalar leptoquarks are a bit

relaxed [88,89], and by manipulating the branching fractions of the lep-

toquark to different generations of quarks and leptons, one can lower

the bound of 1.5 TeV mass.

Now, the 125.5 GeV mass of the observed Higgs boson

indicates that its vacuum cannot be completely stable all the

way up to Planck scale or even Grand Unified Theory (GUT)

scale [94]. In order for the Higgs potential to be bounded

from below, the self-quartic-coupling (λh) of the Higgs boson

must be positive. However, it is found that the negative quan-

tum correction from the top quark pushes λh to negative val-

ues above the energy scale of 1010 GeV, thus hampering

the stability of the SM. Technically speaking, it is generally

considered that the SM is in a metastable state. In these cir-

cumstances, the presence of some BSM scalar extensions,

i.e. simplest extension via singlet [95–104], SU (2)L doublet

[105–112] or triplet representation of SU (2)L [113,114], is

required to restore the stability of vacuum by neutralizing the

destabilizing effect of the top quark. On the other hand, the

inclusion of additional fermionic particles worsens the case

by further lowering the energy scale within which λh remains

positive. To avoid the stability issue, these models are also

often extended with additional scalar particles [115–119].

However, it is important to note that fermions with SU (2)L

gauge charge push for non-perturbativity, thus constraining

the number of generations for the Planck scale perturbativ-

ity. [120]. This motivates us to investigate the stability of the

vacuum in the presence of scalar leptoquarks, which has not

been well explored so far.

Furthermore, it is expected that every dimensionless

parameter of a fundamental model should be bounded from

above in order to ensure the perturbative expansion of the

correlation functions. Now, the presence of the leptoquark

will hamper the perturbativity of the theory by imposing extra

contributions on the renormalization group (RG) evolution of

different SM couplings. Therefore, it is of paramount impor-

tance to examine the perturbativity of a model when studying

the stability of its vacuum.

Along with perturbativity, the effects of the scalar singlet

leptoquark S1 in addressing the issue of vacuum stability

has already been discussed in Ref. [121]. In this paper, we

study the stability and perturbativity of the models with scalar

triplet leptoquark S3 and scalar doublet leptoquark R̃2. Since

leptoquarks possess colour charge as well as hypercharge,

their presence affects the RG evolution of all the couplings

quite differently from that of conventional scalars. More-

over, doublet and triplet leptoquarks originate more positive

effects, required for stability, than the singlet type, as they

contain two and three different components, respectively. On

similar grounds, such models are often more constrained by

perturbativity. In addition, we study the BSM scenario having

both leptoquarks R̃2 and S3 simultaneously. This model has

attracted increasing interest given its prospects for generating

the Majorana mass term for neutrinos at one- and two-loop

levels, along with other beautiful features [3,122–128].

The paper is organized as follows. In the next section (Sect.

2), a brief illustration of all the leptoquark models considered
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for this paper is presented. Section 3 deals with perturbativity

of these models in terms of different gauge couplings, top and

leptoquark Yukawa couplings and Higgs-leptoquark quartic

couplings. In the following section (Sect. 4), we scrutinize

the stability of the Higgs vacuum for all of these leptoquark

models by studying the evolution of λh with the energy scale.

Furthermore, we investigate the stability issue following the

Coleman–Weinberg effective potential approach. In Sect. 5

we describe the phenomenology of leptoquarks in light of

direct and indirect bounds on their parameter space. Finally,

we conclude in Sect. 6.

2 Leptoquark models

This section provides a theoretical description of the lep-

toquarks R̃2 and S3. First, we consider the model with

scalar doublet leptoquark R̃2 (3, 2,1/6), where the numbers

in brackets denote its SU (3)c

⊗
SU (2)L

⊗
U (1)Y nature.

Since this leptoquark is a doublet under SU (2)L , it has two

components with the electromagnetic charges 2/3 and −1/3,

and we designate them as R̃
2/3
2 and R̃

−1/3
2 . The correspond-

ing Lagrangian is given by:

L2 ⊃ (Dμ R̃2)
†(Dμ R̃2) − (m2

2 + λ2 H† H)(R̃
†
2 R̃2)

− λ̃2 H† R̃2 R̃
†
2 H − [Y2 d R (R̃T

2 iσ2) LL + h.c.],
(1)

where Dμ signifies the covariant derivative related to the

kinetic term of fields, m2 is the mass of the leptoquark R̃2

before electroweak symmetry breaking (EWSB), λ2 and λ̃2

are the couplings for quartic interaction terms of R̃2 with

scalar doublet field H , and the 3 × 3 matrix Y2 indicates the

coupling of R̃2 with quarks and leptons where L L represents

the SU (2) lepton doublet. For simplicity, we hide the genera-

tion index. After EWSB, the scalar field H gives rise to Higgs

boson h, and the two components of R̃2 obtain additional con-

tributions in their masses from the quartic coupling terms. It

is important to mention that the generation indices have been

suppressed here. However, to realize the full mathematical

description of this model, one has to add the SM Lagrangian

as well. In our notation, we denote the SM Yukawa couplings

for the charged leptons, up-type quarks and down-type quarks

as Yl , Yu and Yd , respectively. The SM Higgs potential is

given by:

V0 = −μh |H |2 + λh |H |4 with H =
1

√
2

(
0

v + h

)
, (2)

under unitary gauge, where the tree-level mass of the Higgs

boson becomes Mh =
√

2 μh , and the vacuum expectation

value (VEV) of the scalar field can be expressed as v =√
μh/λh . After EWSB, the squared masses for the leptoquarks

R̃
2/3
2 and R̃

1/3
2 respectively become:

m2
2,2/3 = m2

2 +
1

2
λ2v

2,

m2
2,1/3 = m2

2 +
1

2
(λ2 + λ̃2)v

2, (3)

and thus the two components of the doublet no longer remain

degenerate and acquire a mass gap of 1
2
λ̃2v

2.

In principle, there could be some other gauge-invariant

dimension-four terms for R̃2, for example, ǫαβγ (H T iσ2 R̃2,α)

(R̃T
2,β iσ2 R̃2,γ ) or (R̃

†
2 R̃2)(R̃

†
2 R̃2). The first term does not

conserve the baryon and lepton number separately; addition-

ally, it initiates proton decay via the mode p → π+π+e−νν

[3,129,130], which in turn forces the leptoquark mass to be

very high to reach the experimental value of proton lifetime.

Thus, one should either neglect the term or assume that it

is forbidden by some other symmetry. For example, if we

impose a Z l
2 discrete symmetry under which all the SM lep-

tons and the leptoquarks are both odd, but other particles

like quarks and the scalar doublet H are even, this particular

term will be prohibited. The same effect can be achieved by

imposing Z
q
2 discrete symmetry for which the quarks and

leptoquarks are odd and all the other particles are even. On

the other hand, the second term does not affect any other

SM couplings up to the two-loop level. So, for simplicity, we

ignore it as well.

In the second scenario, we study the extension of SM with

the scalar triplet leptoquark S3 ( 3 , 3, 1/3). The three exci-

tations of this multiplet possess the electromagnetic charges

4/3, 1/3 and −2/3, and therefore we designate them as S
4/3
3 ,

S
1/3
3 and S

−2/3
3 , respectively. The Lagrangian for this lepto-

quark is given by:

L3 ⊃ Tr[(DμSad
3 )†(DμSad

3 )] − λ̃3 H†Sad
3 (Sad

3 )† H

− (m2
3 + λ3 H† H) Tr[(Sad

3 )† Sad
3 ]

+ [Y3 Q
c

L (iσ2 Sad
3 ) LL + h.c.], (4)

where Sad
3 signifies S3 in adjoint representation, m3 is the

mass of S3 before EWSB, λ3 and λ̃3 are the couplings

for quartic interaction terms of this leptoquark with Higgs

boson, and Y3 indicates its coupling with different quarks

and leptons where QL represents the SU (2) quark dou-

blet. It is interesting to note that the term H†(Sad
3 )†Sad

3 H

is absent in the Lagrangian, given by Eq. (4), since it is

not an independent term. It can be easily checked that

H† [Sad
3 (Sad

3 )† + (Sad
3 )†Sad

3 ] H = (H† H) Tr[(Sad
3 )†Sad

3 ]
under unitary gauge. After EWSB, the squared masses for

leptoquarks S
4/3
3 , S

1/3
3 and S

2/3
3 become:

m2
3,4/3 = m2

3 +
1

2
λ3v

2,
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m2
3,2/3 = m2

3 +
1

2
(λ3 + λ̃3)v

2,

m2
3,1/3 = m2

3 +
1

2

(
λ3 +

1

2
λ̃3

)
v2, (5)

which lifts the degeneracy among these three states like

the previous scenario. In this case, apart from the lepto-

quark self-quartic interactions, i.e. Tr
[
(Sad

3 )†Sad
3 (Sad

3 )†Sad
3

]

and Tr
[
(Sad

3 )†Sad
3

]2
, which we neglect for simplicity as in

the doublet leptoquark scenario, there could exist a diquark

term like Q
c

L (iσ2) (Sad
3 )† QL allowed by gauge symme-

try. However, this term neither respects baryon and lepton

number separately nor protects protons from decay through

p → e+π0 or p → π+ν̄e [3,131–133]. In the same fashion

as in the R̃2 case, here also one can impose Z l
2 or Z

q
2 sym-

metry to forbid this term. For our analysis, we neglect it as

well.

Lastly, we consider the scenario having both the lepto-

quarks R̃2 and S3. The relevant part of the Lagrangian for

this model is given by:

L23 = L2 + L3 − [κh H†Sad
3 R̃2 + h.c.]. (6)

The interesting feature of this model is that, besides the indi-

vidual interaction terms for doublet and triplet leptoquarks, it

contains one additional dimension-three term which couples

the doublet leptoquark to the triplet one through the Higgs

boson. As in earlier cases, we have not considered the lepto-

quark self-quartic couplings.

In this scenario, it is important to note that although S
4/3
3

remains as mass eigenstate, the other components of R̃2 and

S3 do not. For instance, the squared mass matrix for R̃
1/3
2

and S
1/3
3 becomes:

M2
1/3 =

(
m2

2,1/3
1
2
κhv

1
2
κ∗

h v m2
3,1/3

)
, (7)

where κ∗
h indicates the complex conjugate of κh . Therefore,

these two flavour states mix together to produce the energy

eigenstates as:

(
Ω1

Ω2

)
=

(
cos θ1 sin θ1 eiφ1

− sin θ1 e−iφ1 cos θ1

) (
R̃

1/3
2

S
1/3
3

)
, (8)

where the mixing angle θ1 and the CP-violating phase φ1 are

given by:

tan 2θ1 = −
(

v |κh |
m2

3,1/3 − m2
2,1/3

)
and eiφ1 =

κ∗
h

|κh |
. (9)

The squared masses for the energy eigenstates Ω1,2 are given

by:

m2(Ω1,2) =
1

2

[(
m2

3,1/3 + m2
2,1/3

)

∓
√(

m2
3,1/3 − m2

2,1/3

)2 + v2 |κh |2
]
. (10)

Similarly, the squared mass matrix for R̃
2/3
2 and S

2/3
3

becomes:

M2
2/3 =

(
m2

2,1/3 − 1√
2
κhv

− 1√
2
κ∗

h v m2
3,1/3

)
, (11)

and these two flavour states also mix together to produce the

energy eigenstates as:

(
χ1

χ2

)
=

(
cos θ2 sin θ2 eiφ2

− sin θ2 e−iφ2 cos θ2

) ⎛
⎝R̃

2/3
2

S
2/3
3

⎞
⎠ , (12)

where the mixing angle θ2 and the CP-violating phase φ2 are

given by:

tan 2θ2 =
( √

2 v |κh |
m2

3,2/3 − m2
2,2/3

)
and eiφ2 =

κ∗
h

|κh |
. (13)

The squared masses for the energy eigenstates Ω1,2 are given

by:

m2(χ1,2) =
1

2

[(
m2

3,2/3 + m2
2,2/3

)

∓
√(

m2
3,2/3 − m2

2,2/3

)2 + 2 v2 |κh |2
]
. (14)

As a special case, if κh becomes zero, i.e. no mixing between

doublet and triplet, then the mass and flavour states remain the

same, i.e. the mixing angle becomes zero. On the other hand,

if the masses of the doublet and triplet flavour eigenstates

become the same, the mixing angles turn to π/4 and mass

differences of v|κh | and
√

2v|κh | are generated between the

mass-eigenstates with charge 1/3 and 2/3, respectively.

Now, regarding the generation of leptoquarks, we follow

two different conventions: (a) there is one generation of lep-

toquark that couples to one generation of quark and lepton

only; (b) there exist three generations of leptoquarks, each

of which couples to one generation of quark and lepton only.

Both conventions have different pros and cons when consid-

ering several low-energy and collider bounds on leptoquarks.

However, for our analysis we study both of them. For the first

scenario, we consider only diagonal coupling of the lepto-

quarks given by Y rs
γ = Yφ diag(1, 0, 0), with r, s being the

generation indices for quarks and leptons and γ ∈ {2, 3}.
Obviously, one can choose diag(0, 1, 0) or diag(0, 0, 1) as

well. In the second case, we assume Y rs
γ,i = Yφ δirδis , with i

being the generation of the leptoquark. In this scenario, the

terms λγ and λ̃γ also become 3 × 3 matrices, but we also

consider them diagonal, restricting the generation mixing of

the leptoquarks.
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3 Perturbativity

In this section we study the perturbativity of the theory with

respect to different dimensionless couplings. It is well known

that expansion of amplitude or cross section in perturbative

series is plausible only when the expansion parameter is less

than unity. Therefore, the constraints that must be satisfied

by different couplings in order to respect the perturbativity

of the theory are as follows: [118,120,121]:

|λα| ≤ 4π, |̃λγ | ≤ 4π, |gk | ≤ 4π |Y rs
l | ≤

√
4π, (15)

where λα and λ̃γ , with α ∈ {h, 2, 3} and γ ∈ {2, 3}, indicate

the quartic couplings of the Higgs boson with leptoquarks as

well as the self-quartic coupling of the Higgs boson, gk with

k ∈ {1, 2, 3} signifies the gauge couplings corresponding to

U (1)Y , SU (2)L and SU (3)C gauge symmetry, respectively,

and Y rs
l with l ∈ {2, 3, l , u, d } represents the (r, s) element

of the Yukawa (or Yukawa-like) coupling matrices for quarks

and leptons. We generate two-loop beta functions for differ-

ent couplings through SARAH [134,135] in the MS scheme

and analyse them. We use the usual definition of beta function

β(x) =
∂x

∂(log μ)
, (16)

when considering the running of any coupling parameter x

with the energy scale μ. The running of different parameters

in generalized field theory with dimensional regularization

[136] in the MS scheme has already been addressed in Refs.

[137–140]. The RG evolution of various parameters under

the SM has been discussed in [141–144].

3.1 Gauge couplings

We first discuss the renormalization group (RG) evolution of

the gauge couplings. Since the doublet and triplet leptoquarks

posses all three gauge charges, namely weak hypercharge,

isospin and colour, the running of all gauge couplings will

differ from the SM. However, in some scenarios the weak

coupling constant g2 gradually increases to hit the Landau

pole at some energy scale, which eventually leads to sudden

divergences in the other two gauge couplings. Therefore, we

present the running of g2 at the beginning.

3.1.1 Beta function of g2: a brief review

It is well established that for any non-Abelian gauge group

G = SU (N ), the one-loop beta function of the gauge cou-

pling g is given by:

β(g)1−loop =
g3

16π2

[
4

3
n f T (R f ) +

1

3
ns T (Rs) −

11

3
C2(G)

]

(17)

where n f is the number of Dirac fermionic multiplets in

representation R f , ns is the number of complex scalar mul-

tiplets in representation Rs , C2(G) is the quadratic Casimir

of the gauge group G and is equal to N since the gauge fields

lie in the adjoint representation of G, and finally, T (R f/s)

are other Casimir invariants defined by Tr (T a
R f/s

T b
R f/s

) =
T (R f/s)δ

ab, with T a,b
R f/s

being the generator of the Lie alge-

bra in the representation R f/s . At this point, it is worth men-

tioning that one should replace the factor 4/3 with 2/3 in

Eq. (17) when dealing with Weyl or Majorana fermions, and

similarly, the factor 1/3 must be replaced with 1/6 for real

scalar multiplets.

If we consider the one-loop beta function of weak coupling

constant g2 in the SM, the corresponding gauge group will be

SU (2)L . Hence, the fermionic contribution would come from

12 Weyl fermionic doublets: (a) three generations of leptonic

doublets and (b) nine quark doublets (three generations and

three colours). However, since they are all Weyl fermions

due to the left chiral nature of the weak interaction, one must

take the 2/3 factor instead of 4/3 as the coefficient of the

term n f T (R f ) in Eq. (17). On the other hand, there is only

one charged scalar doublet interacting weakly in the SM.

Moreover, T (R f/s) = 1/2 for all the fermions and scalar

under SU (2)L gauge group, as they are all in fundamental

representation. Thus one-loop beta function of g2 in the SM

becomes:

β(g2)
1−loop
SM =

g3
2

16π2

[(
2

3
× 12 ×

1

2

)
+

(
1

3
× 1 ×

1

2

)

−
(

11

3
× 2

)]
= −

19

6

(
g3

2

16π2

)
. (18)

Now, if we add one generation of scalar doublet leptoquark

R̃2 to the SM, we can express the one-loop beta function of

g2 as:

β(g2)
1−loop

R̃2,1−gen
= β(g2)

1−loop
SM + Δβ(g2)

1−loop

R̃2
, (19)

where the term Δβ(g2)
1−loop

R̃2
signifies the sole contribution

from the single generation of the leptoquark R̃2. Since R̃2 is

a complex scalar in fundamental representation of SU (2)L

having three colour choices, we find:

Δβ(g2)
1−loop

R̃2
=

g3
2

16π2

(
1

3
× 3 ×

1

2

)
=

1

2

(
g3

2

16π2

)
,


⇒ β(g2)
1−loop

R̃2,1−gen
= −

8

3

(
g3

2

16π2

)
. (20)

Consequently, for the extension of SM with three generations

of R̃2, the one-loop beta function of g2 becomes:

β(g2)
1−loop

R̃2,3−gen
= β(g2)

1−loop
SM + 3 Δβ(g2)

1−loop

R̃2
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= −
5

3

(
g3

2

16π2

)
. (21)

Similarly, the one-loop beta function for g2 in the SM

plus one generation of scalar triplet leptoquark S3 can also

be expressed as:

β(g2)
1−loop

S3,1−gen = β(g2)
1−loop
SM + Δβ(g2)

1−loop

S3
, (22)

where Δβ(g2)
1−loop

S3
contains the sole contribution of S3 with

one generation. However, since S3 is a complex scalar triplet

under SU (2)L , it will be in adjoint representation; hence,

T (RS3) = 2.2

Furthermore, there will be three copies of S3 depending

on the colour charges. Thus, one finds the contribution of S3

in the one-loop beta function of g2 as:

Δβ(g2)
1−loop

S3
=

g3
2

16π2

(
1

3
× 3 × 2

)
= 2

(
g3

2

16π2

)
,


⇒ β(g2)
1−loop

S3,1−gen = −
7

6

(
g3

2

16π2

)
, (23)

and the one-loop beta function of g2 with SM plus three

generations of S3 necessarily becomes:

β(g2)
1−loop

S3,3−gen = β(g2)
1−loop
SM + 3 Δβ(g2)

1−loop

S3

=
17

6

(
g3

2

16π2

)
. (24)

If the SM is extended with both R̃2 and S3, the one-loop

beta function of g2 can be calculated as:

β(g2)
1−loop

R̃2+S3,1−gen
= β(g2)

1−loop
SM + Δβ(g2)

1−loop

R̃2

+ Δβ(g2)
1−loop

S3
= −

2

3

(
g3

2

16π2

)
, (25)

β(g2)
1−loop

R̃2+S3,3−gen
= β(g2)

1−loop
SM + 3 Δβ(g2)

1−loop

R̃2

+ 3 Δβ(g2)
1−loop

S3
=

13

3

(
g3

2

16π2

)
. (26)

Now, we use SARAH to generate the two-loop contribu-

tions. For convenience, we define:

Xa = YaY †
a and X̃a = Y †

a Ya, (27)

where a ∈ {2, 3, l , u, d }. Thus the beta function of g2 up to

two-loop order for the different models we are working with

becomes:

β(g2)
2−loop
SM = −

19

6

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
9

10
g2

1 +
35

6
g2

2

2 If the generators T a,b
R of SU (N ) Lie algebra are in adjoint represen-

tation, then T (R) = N .

Table 1 Initial values for different SM parameters required for RG

evolution at electroweak (EW) scale

g1 g2 g3 Y 33
u λh

0.46256a 0.64779 1.1666 0.93690 0.12604

aIn this paper, we have used SU (5) normalization for g1, since SARAH

inherently uses this convention. However, to achieve results involving

the usual g1 coupling, one has to replace g1 with

√
5
3

g1 throughout the

paper. In that case, the initial value for g1 would become 0.358297

+ 12 g2
3 −

3

2
Tr

(
1

3
Xl + Xu + Xd

)]
, (28)

β(g2)
2−loop

R̃2,1−gen
= −

8

3

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
g2

1 +
37

3
g2

2

+ 20 g2
3 −

3

2
Tr

(
1

3
Xl + Xu + Xd + X2

)]
, (29)

β(g2)
2−loop

R̃2,3−gen
= −

5

3

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
6

5
g2

1 +
76

3
g2

2

+ 36 g2
3 −

3

2
Tr

(
1

3
Xl + Xu + Xd +

3∑

i=1

X2,i

)]
, (30)

β(g2)
2−loop

S3,1−gen = −
7

6

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
5

2
g2

1 +
371

6
g2

2

+ 44 g2
3 −

3

2
Tr

(
1

3
Xl + Xu + Xd + 3 X3

)]
, (31)

β(g2)
2−loop

S3,3−gen =
17

6

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
57

10
g2

1 +
1043

6
g2

2

+ 108 g2
3 −

3

2
Tr

(
1

3
Xl + Xu + Xd + 3

3∑

i=1

X3,i

)]
,

(32)

β(g2)
2−loop

R̃2+S3,1−gen
= −

2

3

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
13

5
g2

1

+
205

3
g2

2 + 52 g2
3

−
3

2
Tr

(
1

3
Xl + Xu + Xd + X2 + 3 X3

)]
, (33)

β(g2)
2−loop

R̃2+S3,3−gen
=

13

3

(
g3

2

16π2

)
+

g3
2

(16π2)2

[
6 g2

1 +
580

3
g2

2

+ 132 g2
3

−
3

2
Tr

(
1

3
Xl + Xu + Xd +

3∑

i=1

X2,i + 3

3∑

i=1

X3,i

)]
.

(34)

In Eqs. (30), (32) and (34), the index i represents the gen-

eration of the leptoquark. Now, as we have defined Δβ(g2)

for one loop in Eqs. (19) and (22), one can define it for two
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loops in similar fashion. Then one can easily verify that the

above-described two-loop beta functions obey the following

relations:

β(g2)
2−loop

R̃2,3−gen
= β(g2)

2−loop
SM +

3∑

i=1

[
Δβ(g2)

2−loop

R̃2

]

i
,

(35)

β(g2)
2−loop

S3,3−gen = β(g2)
2−loop
SM +

3∑

i=1

[
Δβ(g2)

2−loop

S3

]

i
,

(36)

β(g2)
2−loop

R̃2+S3,1−gen
= β(g2)

2−loop
SM + Δβ(g2)

2−loop

R̃2

+ Δβ(g2)
2−loop

S3
, (37)

β(g2)
2−loop

R̃2+S3,3−gen
= β(g2)

2−loop
SM +

3∑

i=1

[
Δβ(g2)

2−loop

R̃2

]

i

+
3∑

i=1

[
Δβ(g2)

2−loop

S3

]

i
. (38)

where
[
β
]
i for any parameter indicates the beta function of

that parameter with the replacement of f (Yγ , Xγ , X̃γ , λγ ,

λ̃γ ) to f (Yγ,i , Xγ,i , X̃γ,i , λi i
γ , λ̃i i

γ ) with γ ∈ {2, 3} and

i representing the generation. Similar notation is applicable

for Δβ.

3.1.2 Scale variation of g2

Using the above Eqs.3 (28)–(34), we plot the dependence of

coupling g2 for different models on the energy scale μ in Fig.

1. While Fig. 1a depicts the behaviour of g2 at one loop, Fig.

1b illustrates the same for the two-loop level. The SM is rep-

resented by the green curve; the red and yellow lines depict

the extension of the SM with one and three generations of

R̃2, respectively; the blue and cyan lines indicate the addi-

tion of one and three generations of S3, respectively, to SM;

finally, the brown and dashed black curves illustrate the SM

extension with one and three generations of both doublet and

triplet leptoquarks, respectively. The initial two-loop values

at the electroweak (EW) scale for gauge couplings g1, g2, g3,

Higgs quartic coupling λh and top-quark Yukawa coupling

Y 33
u are given in Table 1, with the contributions from other

Yukawa couplings neglected [143,144]. Although the plots

are made assuming Yφ to be 0.1, they do not change signifi-

cantly with the alteration of Yφ , since the dominant contribu-

tion in the two-loop beta function of g2 comes from different

3 Actually, one needs to consider running all the couplings in a model

simultaneously, since the above expressions for two-loop beta functions

are coupled equations.

gauge couplings, as can be realized from Eqs. (28)–(34). This

statement holds for other gauge couplings as well.

In Fig. 1a, b, we present the variation in g2 with respect

to the scale μ at the one- and two-loop levels for the above-

mentioned leptoquark scenarios. The ordering of different

curves in Fig. 1 is mainly controlled by the one-loop beta

functions for different models which are presented in Eqs.

(18)–(26). The one-loop beta function of g2 under SM is

− 19
6

(
g3

2

16π2 ), which is enhanced to − 8
3
(

g3
2

16π2 ) and − 5
3
(

g3
2

16π2 )

for one and three generations of R̃2, respectively. However,

due to the greater number of components of leptoquarks

in S3, the positive contributions will be greater. The one-

loop beta functions of g2 for S3 with one and three genera-

tions become − 7
6
(

g3
2

16π2 ) and 17
6

(
g3

2

16π2 ). For the combined sce-

nario of these two leptoquarks, the positive effects are even

stronger. For one and three generations of the combined case,

the beta functions become − 2
3
(

g3
2

16π2 ) and 13
3

(
g3

2

16π2 ), respec-

tively. It is interesting to note that except for three generations

of S3 (cyan line) and R̃2 + S3 (black dotted curve), coupling,

g2 decreases monotonically for all scenarios due to the neg-

ative sign in the one-loop beta function, ensuring asymptotic

freedom of weak interaction. However, when considering

one-loop effects only, Planck scale perturbativity is achieved

in all the scenarios, since the Landau pole in the two above-

mentioned cases appears beyond the Plank scale, as can be

seen from Fig. 1a. On the other hand, due to the positive

value of the one-loop beta function, the gauge coupling g2

in the three generations of the S3 (cyan) and R̃2 + S3 (black

dashed) models increases monotonically. Now, for the two-

loop case, all the models acquire additional positive effects

that push the RG evolution curves upwards. Therefore, the

two-loop beta functions of the S3 and R̃2 + S3 models hit

the Landau pole at lower scales, i.e. 1019.7 GeV (just above

the Planck scale) and 1014.4 GeV (below the GUT scale),

respectively, as can be observed from Fig. 1(c).

3.1.3 Beta function of g3: a brief review

In the case of the SM, as the scalar and leptons are colour

neutral, the one-loop beta function of strong coupling g3

receives contributions only from six quarks which are essen-

tially Dirac fermionic colour triplets under the SU (3) gauge

group, Thus, substituting T (R f ) = 1/2 and C2(G) = 3 in

Eq. (17), we get:

β(g3)
1−loop
SM =

g3
3

16π2

[(
4

3
× 6 ×

1

2

)
−

(
11

3
× 3

)]

= − 7

(
g3

3

16π2

)
. (39)

Now, all the leptoquarks are colour triplet complex scalars,

i.e. they are in fundamental representation of SU (3) enforc-
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(a) (b)

(c)

Fig. 1 Running of gauge coupling g2 with the energy scale μ for SM

and different leptoquark scenarios with one loop and two loops. The

green curve represents the SM; the red and yellow curves signify the

extension of the SM with one and three generations of R̃2, respectively;

the addition of one and three generations of S3 to SM are indicated by

the blue and cyan lines, respectively; the brown and dashed black curves

illustrate the SM extension with one and three generations of both R̃2

and S3, respectively. The initial values for the SM parameters are listed

in Table 1 along with Yφ = 0.1

ing T (Rs) = 1/2. However, for the doublet leptoquark we

have two such copies of triplets, namely R̃
2/3
2 and R̃

1/3
2 ,

whereas there are three scalar triplets for S3, namely S
4/3
3 ,

S
2/3
3 and S

1/3
3 . Thus the sole contribution of one generation

R̃
2/3
2 and S3 in the beta function of g3, as described in the

previous subsection for g2, can be written as:

Δβ(g3)
1−loop

R̃2
=

g3
3

16π2

(
1

3
× 2 ×

1

2

)
=

1

3

(
g3

3

16π2

)
, (40)

Δβ(g3)
1−loop

S3
=

g3
3

16π2

(
1

3
× 3 ×

1

2

)
=

1

2

(
g3

3

16π2

)
. (41)

Therefore, the one-loop beta functions of strong coupling g3

for different SM extensions with R̃2 and S3 are as follows:

β(g3)
1−loop

R̃2,1−gen
= β(g3)

1−loop
SM + Δβ(g3)

1−loop

R̃2

= −
20

3

(
g3

3

16π2

)
, (42)

β(g3)
1−loop

R̃2,3−gen
= β(g3)

1−loop
SM + 3 Δβ(g3)

1−loop

R̃2

= − 6

(
g3

3

16π2

)
, (43)

β(g3)
1−loop

S3,1−gen = β(g3)
1−loop
SM + Δβ(g3)

1−loop

S3

= −
13

2

(
g3

3

16π2

)
, (44)

β(g3)
1−loop

S3,3−gen = β(g3)
1−loop
SM + 3 Δβ(g3)

1−loop

S3

= −
11

2

(
g3

3

16π2

)
, (45)

β(g3)
1−loop

R̃2+S3,1−gen
= β(g3)

1−loop
SM + Δβ(g3)

1−loop

R̃2

+ Δβ(g3)
1−loop

S3
= −

37

6

(
g3

3

16π2

)
, (46)
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(a) (b)

Fig. 2 Running of gauge coupling g3 with the energy scale μ for dif-

ferent leptoquark models at one-loop and two-loop order. The green

curve represents SM; the red and yellow ones signify the extension of

SM with one and three generations of R̃2, respectively; the addition

of one and three generations of S3 to SM is indicated by the blue and

cyan lines, respectively; the brown and dashed black curves illustrate

the SM extension with one and three generations of both R̃2 and S3,

respectively. The initial values for SM parameters are listed in Table 1

along with Yφ = 0.1

β(g3)
1−loop

R̃2+S3,3−gen
= β(g3)

1−loop
SM + 3 Δβ(g3)

1−loop

R̃2

+ 3 Δβ(g3)
1−loop

S3
= −

9

2

(
g3

3

16π2

)
. (47)

The two-loop beta functions of g3 for all these models are

listed in Appendix A.

3.1.4 Scale variation of g3

The variations in strong gauge coupling g3 at the one-loop

and two-loop levels with energy scale μ for different mod-

els are depicted in Fig. 2. The left panel shows the one-

loop results, while the right panel indicates the full two-loop

contributions. The same colour code as mentioned in previ-

ous section is also followed here. The relative positions of

the different curves in this plot are mainly determined by

coefficients of (
g3

3

16π2 ) in the one-loop beta functions, given

by Eqs. (39)–(47). This coefficient for SM (green) is −7,

which is enhanced to −20/3, −13/2 and −37/6 for the R̃2

(red), S3 (blue) and the combined scenario (brown) for one

generation, respectively. For the case of three generations,

this factor receives even more contributions to become −6,

−11/2 and −9/2, respectively, for the R̃2 (yellow) , S3 (cyan)

and the combined scenario (black dashed). As the one-loop

beta function of g3 for all the models remains negative, g3

decreases gradually with the increase in energy, showing

asymptotic freedom. As can be seen from Fig. 2a, all the

models show Planck scale perturbativity at one-loop order.

At two-loop order, all of these curves shift upwards due to

the additional positive contributions as shown in Appendix

A. All but two of the models exhibit no unusual behaviour.

However, as g2 hits the Landau pole at 1019.7 GeV and 1014.4

GeV for three generations of the S3 (cyan) and R̃2+S3 (black

dashed) models, respectively, g3 shows sudden divergence

for these two models at the above-mentioned energy scales

(see Fig. 2b).

3.1.5 Beta function of g1: a brief review

The one-loop beta function for U (1)Y gauge coupling g1 is

given by:

β(g1)
1−loop =

3

5

(
g3

1

16π2

) [
2

3

∑

f

Y 2
f +

1

3

∑

s

Y 2
s

]
, (48)

where Y f,s signify the hypercharge of the Weyl fermions and

the scalars, respectively.4,5 The 3/5 factor arises because of

SU (5) normalization of the coupling g1. On the other hand,

since the U (1)Y gauge boson interacts with left- and right-

handed fermions with different hypercharges, one has to sum

over the contributions from all the Weyl fermions, and hence

the 2/3 factor appears for the fermionic effects instead of 4/3.

In the SM, there are 18 left-handed quarks (six flavours, three

colours) with hypercharge 1/6, nine right-handed up-type

quarks (three generations, three colours) with hypercharge

4 To relate electromagnetic charge Q with hypercharge Y , we have

followed the convention: Q = T3 + Y .

5 One can easily compare the above formula with the one-loop beta

function for the electromagnetic coupling e given by: β(e)1−loop =
e3

16π2

[
4

3

∑

f

Q
2
f +

1

3

∑

s

Q
2
s

]
where Q f,s are the electromagnetic

charges of Dirac fermions and scalars.
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2/3, nine right-handed down-type quarks (three generations,

three colours) with hypercharge −1/3, six left-handed lep-

tons with Y f = 1/2 and three right-handed charged lep-

tons with Y f = −1. Additionally, there are two scalars (H+

and H0, the components of scalar doublet H ), each with

Ys = 1/2. Thus the one-loop beta function for g1 in the SM

becomes:

β(g1)
1−loop
SM =

3

5

(
g3

1

16π2

) [
2

3
×

(
1

2
+ 4 + 1 +

3

2
+ 3

)

+
1

3
×

1

2

]
=

41

10

(
g3

1

16π2

)
. (49)

Now, for SM plus one generation of R̃2, contribution from

six scalars (two flavours, three colours) with hypercharge

1/6 needs to be added to the SM contribution. Similarly, the

effects of nine scalars (three flavours, three colours) with

Ys = 1/3 must be considered when dealing with SM exten-

sion by one generation of S3. Thus the sole contribution from

one generation of R̃2 and S3 to the one-loop beta function of

g1 can be calculated as:

Δβ(g1)
1−loop

R̃2
=

3

5

(
g3

1

16π2

)[
1

3
× 6 ×

1

36

]
=

1

30

(
g3

1

16π2

)
,

(50)

Δβ(g1)
1−loop

S3
=

3

5

(
g3

1

16π2

)[
1

3
× 9 ×

1

9

]
=

1

5

(
g3

1

16π2

)
,

(51)

and hence, the one-loop beta function of g1 for different mod-

els we considered becomes:

β(g1)
1−loop

R̃2,1−gen
= β(g1)

1−loop
SM + Δβ(g1)

1−loop

R̃2

=
62

15

(
g3

1

16π2

)
, (52)

β(g1)
1−loop

R̃2,3−gen
= β(g1)

1−loop
SM + 3 Δβ(g1)

1−loop

R̃2

=
21

5

(
g3

1

16π2

)
, (53)

β(g1)
1−loop

S3,1−gen = β(g1)
1−loop
SM + Δβ(g1)

1−loop

S3

=
43

10

(
g3

1

16π2

)
, (54)

β(g1)
1−loop

S3,3−gen = β(g1)
1−loop
SM + 3 Δβ(g1)

1−loop

S3

=
47

10

(
g3

1

16π2

)
, (55)

β(g1)
1−loop

R̃2+S3,1−gen
= β(g1)

1−loop
SM + Δβ(g1)

1−loop

R̃2

+ Δβ(g1)
1−loop

S3
=

13

3

(
g3

1

16π2

)
, (56)

β(g1)
1−loop

R̃2+S3,3−gen
= β(g1)

1−loop
SM + 3 Δβ(g1)

1−loop

R̃2

+ 3 Δβ(g1)
1−loop

S3
=

24

5

(
g3

1

16π2

)
. (57)

The two-loop beta functions of g1 for all these models are

listed in Appendix B.

3.1.6 Scale variation of g1

The variations in g1 with the energy scale μ are displayed

in the Fig. 3. The left panel illustrates the one-loop effects

and the right panel demonstrates the two-loop effects. The

colour codes are same as mentioned before. Likewise, the

positions of different curves are mainly controlled by the

one-loop beta functions, given by Eqs. (49)–(57). The coef-

ficient of (g3
1/16π2) in the SM scenario is 41/10, which is

enhanced to 62/15 and 21/5 for one (red) and three (yel-

low) generations of R̃2, respectively. For S3 with one (blue)

and three (cyan) generations, this factor increases to 43/10

and 47/10, respectively. For the combined scenario with one

(brown) and three generations (black dashed), this prefactor

of (g3
1/16π2) in the one-loop beta function of g1 becomes

13/3 and 24/5, respectively. Since the one-loop beta func-

tions for all the models are positive, g1 increases moderately

with energy. There is also no divergence for one-loop run-

ning of g1 in any of the models up to the Planck scale, which

can be verified from Fig. 3a. Furthermore, the two-loop beta

function of g1 receives additional positive contributions, pre-

sented in Appendix B, which moves all the curves of Fig. 3a

in a slightly upward direction, resulting in Fig. 3b. Although

all the other scenarios behave smoothly when taking into

account the two-loop corrections, g1 for three generations of

S3 (cyan) and R̃2 + S3 (black dashed) models goes to infinity

abruptly at 1019.7 GeV and 1014.4 GeV, respectively, due to

the divergence of g2.

Thus, we find that the running of gauge couplings at

two-loop order for different leptoquark models is predom-

inantly regulated by the corresponding one-loop beta func-

tions, which are entirely reliant on the properties of the gauge

group and the number of different types of particles existing

in the model. The two-loop corrections insert additional pos-

itive contributions to the running of the gauge couplings. The

Yukawa couplings of the SM as well as of leptoquarks affect

the RG evolution of gauge couplings only at two-loop order,

and therefore with the changes in Yukawa couplings of lepto-

quarks, we do not observe any significant changes. However,

it is interesting to note that Higgs-leptoquark quartic cou-

plings do not appear explicitly in the two-loop beta functions

of the gauge couplings at all. It is worth mentioning again that

the demand of Planck scale perturbativity rules out the three

generations of the R̃2 + S3 scenario due to the appearance

of divergences at much lower scale in the two-loop running
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(a) (b)

Fig. 3 Running of gauge coupling g1 with the energy scale μ for dif-

ferent leptoquark models at one-loop and two-loop order. The green

curve represents SM; the red and yellow ones signify extension of SM

with one and three generations of R̃2, respectively; addition of one

and three generations of S3 to SM are indicated by the blue and cyan

lines, respectively; the brown and dashed black curves illustrate the SM

extension with one and three generations of both R̃2 and S3, respec-

tively. The initial values for SM parameters are listed in Table 1 along

with Yφ = 0.1

of the gauge coupling g2. On the other hand, the model with

three generations of S3 is marginally allowed from Planck

scale stability since the gauge coupling g2 hits the Landau

pole at slightly higher energy scale. These divergences force

the other gauge couplings as well as the Yukawa couplings of

the top quark and leptoquarks (see Appendix C and Appendix

D) for these models to diverge at the two-loop level.

3.2 Higgs-leptoquark quartic couplings

Now, we step forward to investigate the perturbative bounds

on Higgs-leptoquark quartic couplings.

3.2.1 Perturbativity of R̃2

In this section, we study the RG evolution of Higgs-lepton

quark quartic couplings of leptoquark R̃2, i.e. λ2 and λ̃2. As

already mentioned, these terms should always remain below

4π to maintain the perturbativity of the theory. The one-loop

beta functions for these two parameters are given below:

β(λ2)
1−loop

R̃2,1−gen
=

1

16π2

[
4λ2

2 + 2̃λ2
2 +

3

10

(
1

10
g4

1 − g2
1 g2

2

+
15

2
g4

2

)
− λ2

(
g2

1 + 9g2
2 + 8g2

3

)
+ 12λh

(
λ2

+
1

3
λ̃2

)
+ 6λ2Tr

(
Xu + Xd +

1

3
Xl +

1

3
X2

)

− 4Tr

(
X2Xd + X̃l X̃2

)]
, (58)

β(̃λ2)
1−loop

R̃2,1−gen
=

1

16π2

[
3

5
g2

1 g2
2 + 4Tr

(
X̃2X̃l

)
+ λ̃2

{
8λ2

+ 4̃λ2 − g2
1 − 9g2

2 − 8g2
3 + 4λh + 6Tr

(
Xu + Xd

+
1

3
Xl +

1

3
X2

)}]
, (59)

For the three-generation case, λ2 and λ̃2 become two 3 × 3

matrices whose i j-th element indicates the quartic coupling

of the i-th and j-th generations of R̃2 with two Higgs fields.

However, as mentioned earlier, we restrict our parameter

space with no mixing among the generations of leptoquarks

at the initial scale; therefore, λ2 and λ̃2 become two diagonal

matrices. The one-loop beta functions for these two param-

eters are simply given by:

β(λi i
2 )

1−loop

R̃2,3−gen
=

[
β(λ2)

1−loop

R̃2,1−gen

]

i

β(̃λi i
2 )

1−loop

R̃2,3−gen
=

[
β(̃λ2)

1−loop

R̃2,1−gen

]

i
(60)

The full two-loop beta functions for these two parame-

ters with both one and three generations are presented in

Appendix E.

Now, we study the variation in quartic coupling between

the leptoquark and Higgs with perturbative scale, i.e. the scale

at which any of the coupling diverges. The variations in the

quartic couplings λ2 and λ̃2 for three generations of dou-

blet leptoquark are explained in Fig.4. In the first two plots,

Fig. 4a, b, λ2 corresponds to the quartic coupling term for

one particular generation of leptoquark while λ
j j
2 denotes the

remaining generations of λ2, and all the generations of the

other quartic coupling term λ̃2 are designated as λ̃i i
2 . Sim-

ilarly, for λ̃2 variation in Fig. 4c, d, λ̃2 corresponds to any
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(a) (b)

(c) (d)

Fig. 4 Variation in leptoquark-Higgs quartic coupling λ2 and λ̃2 with

perturbative scale for the doublet leptoquark R̃2 with three generations.

For plots in the first row, λ2 variation is considered for any one gener-

ation of the leptoquark, and other generations are defined as λ
j j
2 . The

other quartic couplings are designated by λ̃
j j
2 for all three generations

of leptoquark. The variations are taken for four different EW values of

quartic couplings, i.e. 0.01, 0.1, 0.4 and 0.8, which are depicted by red,

blue, orange and green curves, respectively. Similarly, for the plots in

the second row, λ̃2 describes the variation in any particular generation,

and the remaining generations are denoted by λ̃ j j . The other quartic

coupling terms λi i
2 are defined for all three generations of leptoquark.

The variations are considered for lower and higher values of Yφ , i.e. 0.1

(left) and 1.0 (right)

particular generation of leptoquark while the remaining gen-

erations are denoted by λ̃
j j
2 , and the other quartic coupling

terms λi i
2 signify λ2 for all three generations. The plots in

the left panel indicate a relatively low value of Yukawa, i.e.

Yφ = 0.1, whereas the same in the right panel illustrate the

variation in the mentioned couplings for a higher value of

Yukawa, i.e. Yφ = 1.0.

In the first two plots, the initial value of λ2 is varied from

0.1 to 0.8 keeping the values for other quartic couplings at EW

scale as 0.01, 0.1, 0.4 and 0.8, which are depicted by red, blue,

orange and green curves, respectively. As can be observed

from Eqs. (58) and (60), the one-loop beta function of λ2

receives enhanced contributions from positive-valued λ̃2, and

hence λ2 reaches non-perturbativity quickly for larger values

of λ̃2. It should be noted from Fig: 4a that for (λ
j j
2 , λ̃i i

2 ) =

0.01 and 0.1 at the EW scale, the theory remains perturbative

up to Planck scale for λ2 ≤ 0.62 and 0.52, respectively,

with Yφ = 0.1. As we increase the EW values to 0.4 and

0.8, the positive contribution from quartic couplings makes

the theory non-perturbative at ∼ 1012 GeV, 107 GeV for

lower initial values of λ2. For higher EW values of λ2, this

perturbative scale decreases slowly. The variation in λ2 with

perturbative scale for Yφ = 1.0, as displayed in Fig. 4b,

looks quite similar to the previous case. However, as can

be seen from Eqs. (58) and (60), the one-loop beta function

of λ2 obtains positive contributions from the 2λ2Tr X2 term

(since Yd and Yl are negligible), and therefore λ2 becomes

non-perturbative at a slightly lower energy scale than in the

previous case. In this case, λ2 is bounded above to 0.56 and

0.47 for EW values of other quartic couplings λ
j j
2 , λ̃i i

2 to be
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0.01 and 0.1, respectively. Further increases in EW values to

0.4 and 0.8 make the theory non-perturbative around 1011.2

GeV and 106.9 GeV, respectively, for lower initial values of

λ2, and the scale diminishes gently with higher initial values

of λ2. It is worth mentioning that the non-perturbativity of λ2

and λ̃2, attained with three generations of R̃2, is not a result

of any Landau pole, which is also apparent from the different

positioning of the non-perturbative scales compared to that

of the gauge couplings.

In a similar fashion, λ̃2 is altered gradually from 0.1 to

0.8 in the last two plots, fixing the values of other quartic

couplings as 0.01, 0.1, 0.4 and 0.8, which are depicted by

red, blue, orange and green curves, respectively. In this case,

λ2 provides a positive effect in the running of λ̃2, see Eqs. (59)

and (60); therefore, λ̃2 moves to the non-perturbative region

more rapidly for higher values of λ2. On the other hand, Y2

also contributes positively through the term 2̃λ2 TrX2, and

hence λ̃2 hits non-perturbativity at slightly lower energy scale

for higher Yukawa coupling. Form Fig. 4(c) we see that the

demand of Planck scale perturbativity constrains λ̃2 to be

smaller than 0.8 and 0.66 if the EW values of other quartic

couplings (̃λ
j j
2 , λi i

2 ) are set as 0.01 and 0.1 respectively, with

Yφ = 0.1. With higher values of λ̃
j j
2 , λi i

2 at EW scale, i.e.

0.4 and 0.8, the model becomes non-perturbative at much

lower energy than Planck scale. From Fig. 4d, in comparison

with Fig. 4c, we observe that λ̃2 is restricted to slightly lower

values, i.e. 0.73 and 0.59, if we begin with 0.01 and 0.1,

respectively, for the EW values of other quartic couplings

along with Yφ = 1.0. The statement with higher initial values

of the quartic couplings remains valid in this scenario as well.

3.2.2 Perturbativity of S3

In this section, we scrutinize the RG evolution of Higgs-

leptoquark quartic couplings for S3, namely λ3 and λ̃3. These

two parameters also should be bounded above by 4π . The

one-loop beta functions for these two parameters in the one-

generation case are given below:

β(λ3)
1−loop

S3,1−gen =
1

4π2

[
λ2

3 +
1

4
λ̃2

3 +
3

4

(
1

25
g4

1 −
2

5
g2

1 g2
2 + 2g4

2

)

−
1

4
λ3

(
13

10
g2

1 +
33

2
g2

2 + 8g2
3

)
+ 3λh

(
λ3 +

1

3
λ̃3

)

+
3

2
λ3Tr

(
Xu + Xd +

1

3
Xl +

1

3
X3

)
− Tr

(
X̃3X̃l + X3X̃ T

d

)]
,

(61)

β(̃λ3)
1−loop

S3,1−gen =
1

4π2

[
λ̃2

3 + 2 λ3̃λ3 + λh λ̃3 +
3

5
g2

1 g2
2

−
1

4
λ̃3

(
13

10
g2

1 +
33

2
g2

2 + 8g2
3

)
+

3

2
λ̃3Tr

(
Xu + Xd

+
1

3
Xl +

1

3
X3

)
+ Tr

(
X̃3X̃l + X3X̃ T

d
− X3X̃ T

u

)]
(62)

Like the doublet leptoquark case, for the three-generation

scenario, λ3 and λ̃3 become two 3 × 3 matrices whose i j-

th element indicates the quartic coupling of i-th and j-th

generations of S3 with two Higgs fields. Nevertheless, as

mentioned earlier, we have restricted our parameter space

with no mixing among the generations of leptoquarks at the

initial scale, making λ3 and λ̃3 two diagonal matrices. The

one-loop beta functions for these two parameters are given

simply by:

β(λi i
3 )

1−loop

S3,3−gen =
[
β(λ3)

1−loop

S3,1−gen

]

i

β(̃λi i
3 )

1−loop

S3,3−gen =
[
β(̃λ3)

1−loop

S3,1−gen

]

i
(63)

The full two-loop beta functions for S3 with both one and

three generations are presented in Appendix E.

Now, we consider the variation in quartic coupling

between the leptoquark S3 and Higgs with perturbative scale,

and it is illustrated in Fig. 5 for the case of three generations.

In the first two plots, Fig. 5a, b, λ3 corresponds to the quartic

coupling term for one particular generation of leptoquark,

while λ
j j
3 denote the remaining generations of λ3, and all the

generations of other quartic coupling terms λ̃3 are designated

as λ̃i i
3 . Similarly, for λ̃3 variation in Fig. 5c, d, λ̃3 corresponds

to any particular generation of leptoquark, while the remain-

ing generations are denoted by λ̃
j j
3 , and the other quartic cou-

pling terms λi i
3 signify λ3 for all three generations. The plots

in the left panel indicate a relatively low value of Yukawa,

i.e. Yφ = 0.1, whereas the same in the right panel illustrate

the variation in the mentioned couplings for a higher value

of Yukawa, i.e. Yφ = 0.8.

In the first two plots, Fig. 5a, b, we have gradually varied

the initial values forλ3 from 0.1 to 0.8, keeping the EW values

for other quartic couplings as 0.01, 0.1, 0.4 and 0.8, respec-

tively, which are presented by red, blue, orange and green

lines. Similar conditions for λ̃3 are presented in Fig. 5c, d.

As we already showed in the earlier sections, all the other cou-

plings for three generations of the triplet leptoquark diverge

at 1019.7 GeV due to the gauge coupling g2. The couplings λ3

and λ̃3 are also not different from that behaviour. Therefore,

unlike the R̃2 case, here λ3 and λ̃3 diverge at 1019.7 GeV for

any smaller initial values of λ3 and λ̃3 at EW scale with any

value of Yukawa coupling Yφ . Now, as can be observed from

Eqs. (61) and (63), λ̃3 contributes positively in the one-loop

beta function of λ3, and hence λ3 reaches non-perturbativity

at an early stage with higher values of λ̃3. On the other hand,

due to the positive effect of X3 at one-loop order, all the lines

shift slightly downward with higher values of Yukawa cou-

plings, but the shifts are almost unnoticeable. Both of the

above statements are also true for the running of λ̃3. For λ3,

Planck scale perturbativity is achieved until 0.51 and 0.37,

with other quartic coupling at EW scale being 0.01 and 0.1,
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(a) (b)

(c) (d)

Fig. 5 Variation in leptoquark-Higgs quartic coupling λ3 and λ̃3 for

triplet leptoquark S3 with the perturbative scale. For the plots in the

first row, λ3 variation is considered for any particular generation of lep-

toquark, and the same for the remaining generations are denoted by

λ
j j
3 . The other leptoquark-Higgs quartic couplings λ̃i i

3 include all three

leptoquark generations. Similarly, for the plots in the second row, the

variation in quartic coupling λ̃3 for any particular leptoquark generation

is depicted while symbolizing the same for the remaining generations

by λ̃
j j
3 . The other quartic coupling λi i

3 includes all three generations of

leptoquark. The variations are considered for four different initial val-

ues, i.e. 0.01, 0.1, 0.4 and 0.8, at EW scale, which are described by red,

blue, orange and green curves, respectively. Here, two different values

for Yφ are considered, which are 0.1 and 0.8

respectively, for both the Yukawa coupling. However, for

higher values of other quartic couplings at EW scale, i.e. 0.4

and 0.8, λ3 diverges at much lower scale, i.e. 1010.8 GeV and

106.4 GeV, with its lower initial values, and this decreases

with the increase in the beginning value of λ3. Likewise,

the quartic coupling λ̃3 is constrained to 0.76 and 0.52 for

Planck scale perturbativity, with EW values of other quartic

couplings at 0.01 and 0.1, respectively. For higher EW values

of quartic couplings, the theory becomes non-perturbative at

much lower scales as previously discussed.

3.2.3 Perturbativity of R̃2 + S3 with 3-gen

Now, we move to the combined scenario of R̃2 and S3 with

three generations. The one-loop beta functions for all the

Higgs-leptoquark quartic couplings in this case can easily be

written as:

β(λi i
2 )

1−loop

R̃2+S3,3−gen
= β(λi i

2 )
1−loop

R̃2,3−gen
,

β(̃λi i
2 )

1−loop

R̃2+S3,3−gen
= β(̃λi i

2 )
1−loop

R̃2,3−gen
,

β(λi i
3 )

1−loop

R̃2+S3,3−gen
= β(λi i

3 )
1−loop

S3,3−gen,

β(̃λi i
3 )

1−loop

R̃2+S3,3−gen
= β(̃λi i

3 )
1−loop

S3,3−gen. (64)

The full two-loop beta functions of all the Higgs-leptoquark

quartic couplings in this scenario are listed in Appendix G.

For three generations of S3 + R̃2, we have already seen

that all the gauge couplings diverge below Planck scale, i.e.
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(a) (b)

(c) (d)

Fig. 6 Variation in quartic coupling λ2, λ̃2, λ3 and λ̃3 with perturba-

tive scale for three generations of R̃2 + S3. Here, the variation in λ2 is

shown for any one generation of R̃2, and the remaining generations for

the λ2 term of R2 are defined by λ
j j
β . The λi i

α term corresponds to three

generations of R̃2 for the λ̃2 term and three generations of S3 for the λ3

and λ̃3 term. Again, the λ̃2 variation is depicted for any one generation

of R̃2, and the remaining generations of R̃2 are given by λ
j j
β for the λ̃2

terms. In this case, the λi i
α term corresponds to three generations of R̃2

for the λ2 terms and three generations of S3 for the λ3 and λ̃3 terms.

Similar notation is followed for the variation in λ3 and λ̃3. The EW scale

values for the quartic couplings other than the coupling whose variation

is considered are set to four different values, i.e. 0.01, 0.1, 0.4 and 0.8,

which are illustrated by red, blue, orange and green curves, respectively,

taking Yφ=0.1. Here, Yφ signifies both Y2 and Y3 with three generations

at 1014.4 GeV, mainly due to the typical behaviour of g2 at

two-loop order. This affects the running of quartic couplings

as well. We study the variation in these couplings with pertur-

bative scale in Fig. 6, assuming Yφ = 0.1. The adjustments in

these plots with larger Yφ are not very significant, and hence

we do not present them. When examining the variation in λ2

for any particular generation, the remaining generations of

λ2 are denoted as λ
j j
β , whereas the other quartic couplings

including λ̃2, λ3 and λ̃3 with all the generations are desig-

nated as λi i
α . The same notation is followed for all the other

quartic couplings. The colour codes are as discussed previ-

ously. It can be observed from Fig. 6a–c that even for lower

initial values of λi i
α and λ

j j
β , i.e. 0.01 and 0.1, the quartic cou-

plings enter the non-perturbative region at 1014.4 GeV due to

the appearance of the Landau pole in g2. For higher values

of the parameters at EW scale, non-perturbativity is reached

even at much lower scale. Thus, the demand of Planck scale

perturbativity rules out the three-generation scenario of the

S3+ R̃2 model for any values of the leptoquark-Higgs quartic

couplings. Therefore, we have to consider the one-generation

scenario of the S3 + R̃2 model.

3.2.4 Perturbativity of R̃2 + S3 with 1-gen

In this section, we look into the perturbativity of Higgs-

leptoquark quartic couplings for the combined scenario of

R̃2 and S3 with one generation. The one-loop beta functions

for all these parameters in this case can easily be written as:

β(λ2)
1−loop

R̃2+S3,1−gen
= β(λ2)

1−loop

R̃2,1−gen
,
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(a) (b)

(c) (d)

Fig. 7 Variation in quartic couplings λ2 and λ̃2 with the perturbative

scale for one generation of R̃2 + S3. Here, for the λ2 variation, λα corre-

sponds to {̃λ2, λ3, λ̃3}, and if we consider the behaviour of λ̃2, then λα

includes λ2, λ3 and λ̃3. All quartic couplings other than that for which

the variation is considered are assigned four different values at the EW

scale, i.e. 0.01, 0.1, 0.4 and 0.8, and these are delineated by red, blue,

orange and green curves, respectively. Two different values of Yφ are

i.e. 0.1 and 0.8, with Yφ representing the Yukawa couplings for both the

leptoquarks

β(̃λ2)
1−loop

R̃2+S3,1−gen
= β(̃λ2)

1−loop

R̃2,1−gen
,

β(λ3)
1−loop

R̃2+S3,1−gen
= β(λ3)

1−loop

S3,1−gen,

β(̃λ3)
1−loop

R̃2+S3,1−gen
= β(̃λ3)

1−loop

S3,1−gen. (65)

The full two-loop beta functions of all the Higgs-leptoquark

quartic couplings in this scenario are listed in Appendix G.

Now, we study the variation in leptoquark-Higgs quartic

couplings λ2, λ̃2, λ3 and λ̃3 with the perturbative scale for

the one generation of R̃2 + S3 model. The results for the

variation in λ2 and λ̃2 are presented in Fig. 7. When consid-

ering the variation in λ2, we denote all the other leptoquark-

Higgs quartic couplings, namely λ̃2, λ3 and λ̃3, as λα . By

the same token, when examining the behaviour of λ̃2, the

other leptoquark-Higgs quartic couplings, i.e. λ2, λ3 and λ̃3,

are taken as λα . The colour codes are as described in earlier

sections. As can be seen from Fig. 7a, b, the initial value of

λ2 is restricted to 0.62 and 0.54 from Planck scale perturba-

tivity for EW values of other quartic couplings of 0.01 and

0.1, respectively, with Yφ = 0.1, whereas with Yφ = 0.8,

these upper bounds roll down to 0.59 and 0.51, respectively.

For higher values of other quartic couplings at the EW scale,

i.e. 0.4 and 0.8, the theory becomes non-perturbative around

1014.1 GeV and 107.9 GeV with Yφ = 0.1, which differ

slightly (about 0.2 GeV) in the Yφ = 0.8 case even if the

initial value of λ2 is taken to be very small. Similarly, for λ̃2,

Planck scale perturbativity with Yφ = 0.1 is achieved up to

λ̃2 ≤ 0.82 and 0.68, which decrease to 0.76 and 0.63, respec-

tively, with Yφ = 0.8, while taking the initial values for other

quartic couplings as 0.01 and 0.1 at EW scale. Again, for

higher EW values of λα , i.e. 0.4 and 0.8, the theory becomes

non-perturbative at much lower scales, as shown in Fig. 7c,

123



Eur. Phys. J. C (2022) 82 :516 Page 17 of 44 516

(a) (b)

(c) (d)

Fig. 8 Variation in triplet leptoquark-Higgs quartic coupling λ3 and

λ̃3 for one generation of R̃2 + S3. Here, for the λ3 variation, λα ∈
{λ2, λ̃2, λ̃3}, and for λ̃3, λα ∈ {λ2, λ̃2, λ3}. We consider four differ-

ent values of λα at the EW scale, i.e. 0.01, 0.1, 0.4 and 0.8, which are

denoted by red, blue, orange and green curves, respectively. The black

dotted line parallel to the x-axis denotes the Planck scale

d. The reason for all these typical behaviours were already

discussed in the previous Sect. 3.2.1.

Correspondingly, the changes in λ3 and λ̃3 with pertur-

bative scale are displayed in Fig. 8. Here, for λ3 varia-

tion, we designate {λ2, λ̃2, λ̃3} as λα , whereas for λ̃3 vari-

ation, we assume λα ∈ {λ2, λ̃2, λ3}. The colour codes have

already been discussed. Here, Plank scale perturbativity with

Yφ = 0.1 restricts λ3 to 0.55 and 0.47 (see Fig. 8a), which

change to 0.53 and 0.45, respectively, with Yφ = 0.8 (Fig.

8b), for λα=0.01, 0.1 at the EW scale. Similarly, from Fig.

8c, d, one can observe that for Yφ = 0.1, λ̃3 should be

bounded above to 0.83 and 0.67, which reduce to 0.78 and

0.62, respectively, for Yφ = 0.8, in order to respect Plank

scale perturbativity with λα=0.01, 0.1 at the EW scale. For

higher initial values of λα , i.e. 0.4 and 0.8, the theory becomes

non-perturbative at very low scale, i.e. ∼ 1014−15 GeV and

108−9 GeV, even with very small EW value of λ3 and λ̃3 at

both the Yukawa couplings, and the scale decreases gradually

with the increase in initial values of these two parameters.

The reason for all these typical behaviours were already dis-

cussed in the previous Sect. 3.2.2. It is worth noting again that

there is no Landau pole of any gauge coupling in this model,

and the non-perturbativity discussed here appears because of

the Higgs-leptoquark quartic couplings growing beyond 4π

during the RG evolution.

3.2.5 Effects of self-quartic couplings of leptoquarks

Up to this point, for the sake of simplicity, we have not con-

sidered self-quartic couplings of the leptoquark. In this sub-

section, we discuss the effects of such couplings on the per-

turbativity of the model. We find that the introduction of

these couplings has little affect on the running of gauge cou-

plings; however, it brings in a non-negligible positive contri-

bution to the running of Higgs-leptoquark quartic couplings

up to two-loop order. Therefore, Higgs-leptoquark quartic

couplings attain the non-perturbative limit earlier than in

the scenario wherein self-quartic couplings of leptoquarks
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are neglected. For instance, one can add the self-interaction

term of ω2(R̃
†
2 R̃2)(R̃

†
2 R̃2) to the Lagrangian given by Eq. 1.

With values of 0.47 and 0.64 at EW scale, λ2 enters the non-

perturbative region at Planck scale in this case for other quar-

tic couplings λ
j j
2 , λ̃i i

2 and the newly introduced self-quartic

coupling of R̃2 (three generations, without any generation

mixing) being 0.01 and 0.1, respectively, assuming Yφ = 1.0.

Before the introduction of self-quartic coupling of R̃2, the

values of λ2 for which non-perturbativity was achieved at

Planck scale under the same values of other quartic couplings

were 0.47 and 0.31, respectively (see Fig. 4b). With the same

value of Yφ and other quartic couplings, λ̃2 maintains Planck

scale perturbativity until values at EW scale of 0.64 and 0.41,

which were 0.73 and 0.58, respectively (see Fig. 4d), before

the introduction of self-quartic coupling of R̃2 (three gener-

ations, without any generation mixing). On the other hand,

for S3 with three generations, the positive effects of self-

quartic couplings of leptoquarks are even stronger. As an

example, we add a self-quartic term6 of Tr
[
(Sad

3 )†Sad
3

]2
to

the Lagrangian given by Eq. 4. With Yφ = 0.8, the parameters

λ3 and λ̃3 now cannot achieve Planck scale perturbativity for

small values of other quartic couplings such as 0.01 at EW

scale. Before the consideration of self-quartic coupling of

the leptoquark, λ3 and λ̃3 achieved Planck scale perturbativ-

ity with other quartic couplings of 0.1 at EW scale (see Fig.

5b, d).

4 Vacuum stability

There exist two approaches in the literature regarding stabil-

ity analysis. The first is the running of Higgs quartic cou-

pling λh using beta functions, and the other method is the

Coleman–Weinberg effective potential approach [145].

First, we scrutinize the running of self-quartic coupling

for the Higgs boson, i.e. λh , which in turn would indicate

the change in stability of the Higgs vacuum. This parameter

is also expected to be below 4π in the entire energy scale

to respect the perturbativity. However, for the purpose of

this section, we focus on the stability of the vacuum, which

suggests that λh should be a positive quantity throughout the

energy scale. The one- and two-loop beta functions for λh

under the SM are given by:

β(λh)
1−loop
SM =

3

8π2

[
λ2

h +
3

200
g4

1 +
3

16

(
g2

1

5
+ g2

2 − 4λh

)2

+ 2 λh Tr

(
Xu + Xd +

1

3
Xl

)
− Tr

(
X 2

u + X 2
d

+
1

3
X 2

l

)]
,

(66)

6 There could be another term such as Tr
[
(Sad

3 )†Sad
3 (Sad

3 )†Sad
3

]
.

β(λh)
2−loop
SM = β(λh)

1−loop
SM +

1

(16π2)2

[(
−

3411

2000
g6

1

−
1677

400
g4

1 g2
2 −

289

80
g2

1 g4
2 +

305

16
g6

2 +
1887

200
g4

1λh

+
117

20
g2

1 g2
2λh −

73

8
g4

2λh +
108

5
g2

1λ2
h + 108g2

2λ2
h

− 312λ3
h

)
+

{
9

20

(
g4

1 + 6g2
1 g2

2 − 5g4
2

)
+

5

2
λh

(
g12

+ 9g2
2 + 32g2

3

)
− 144λ2

h

}
Tr Xd −

{
3

4

(
3g4

1 −
22

5
g2

1 g2
2

+ g4
2

)
−

15

2
λh

(
g2

1 + g2
2

)
+ 48λ2

h

}
Tr Xl −

{
9

10(
19

10
g4

1 − 7g2
1 g2

2 +
5

2
g4

2

)
− λh

(
17

2
g2

1 +
45

2
g2

2 + 80g2
3

)

+ 144λ2
h

}
Tr Xu − Tr

{
λh

(
X 2

l
+ 3X 2

u + 3X 2
d

+ 42X̃u X̃d

)

−
4

5
g2

1

(
X 2

d
− 2X 2

u − 3X 2
l

)
+ 32 g2

3

(
X 2

u + X 2
d

)}

+ 10 Tr

{
X 3

l
+ 3

(
X 3

u + X 3
d

)
−

3

5
X̃d X̃u

(
X̃u − X̃d

)}]
.

(67)

It is well known that in the case of the SM, λh enters the

negative-valued region between the 109 GeV and 1010 GeV

energy scale [144,146] at two-loop order. At this point it is

worth mentioning that in the case of λh , the two-loop con-

tributions affect the running significantly. The addition of

right-handed neutrinos pulls the stability scale further down

with more negative contributions [115–119]. In contrast, the

presence of scalar leptoquarks is expected to further push the

stability scale by adding positive contributions to these beta

functions.

4.1 Vacuum stability of R̃2

First, we look into the effects of the doublet leptoquark R̃2.

The one- and two-loop beta functions for λh in this case are

given by:

β(λh)
1−loop

R̃2,1−gen
= β(λh)

1−loop
SM + Δβ(λh)

1−loop

R̃2

β(λh)
1−loop

R̃2,3−gen
= β(λh)

1−loop
SM +

3∑

i=1

[
Δβ(λh)

1−loop

R̃2

]

i

with Δβ(λh)
1−loop

R̃2
=

3

8π2

(
λ2

2 + λ2 λ̃2 +
1

2
λ̃2

2

)
, (68)

β(λh)
2−loop

R̃2,1−gen
= β(λh)

2−loop
SM + Δβ(λh)

2−loop

R̃2

β(λh)
2−loop

R̃2,3−gen
= β(λh)

2−loop
SM +

3∑

i=1

[
Δβ(λh)

2−loop

R̃2

]

i

with Δβ(λh)
2−loop

R̃2,1−gen
= Δβ(λh)

1−loop

R̃2
+

3

(16π2)2
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(a) (b)

Fig. 9 Running of SM Higgs quartic coupling with scale for stability

analysis. Stability scale is defined as the scale after which λh < 0. Here,

blue, yellow and red curves describes the running of λh for SM, one

generation and three generations of R̃2. With three generations of R̃2,

the positive contribution from gauge couplings and other quartic cou-

plings is large enough and is compensated by the negative contribution

of Y2. The crucial value of Y2 is 1.36; λh will go negative if higher

values of Y2 are considered and stability is lost. On the other hand, for

one generation of R̃2, λh always goes to a negative value before Planck

scale

×
[

−
7

8

(
1

125
g6

1 +
1

75
g4

1 g2
2 +

1

5
g2

1 g4
2 + g6

2
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+

15

2
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1

75
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1

+ g4
2

) (
λ2 +

1

2
λ̃2 +
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30
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+

1

2
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1 g2
2 λ̃2 − 8 λ̃2

2

(
λ2

+
1

2
λ̃2 +

3

8
g2

2 +
1

4
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)
+ 12

(
1

45
g2

1 + g2
2 +

16

9
g2

3

−
5

3
λh −

2

3
λ2 −

1

3
λ̃2

) (
λ2

2 + λ2̃λ2 +
1

2
λ̃2

2

)
− 6 λh

Tr

(
X2 Xd +

1

2
X̃2 X̃l

)
+ 4 Tr

(
X2 X 2

d
+ Y2 Xl Y

†
2 Xd

+
1

2
X̃2 X̃ 2

l

)]
. (69)

In the last section, we observed that there is not much room

for the Higgs-leptoquark quartic couplings to be varied ran-

domly from the perspective of Planck scale perturbativity.

However, the Yukawa couplings for leptoquarks do not attain

such serious constraints. Therefore, we address the issue of

vacuum stability from the effects of leptoquark Yukawa cou-

pling. However, it should be noted from Eqs. (68) and (69)

that the contributions of Y2 appear at the two-loop level only.

The effects of Y2 in the running of λh for R̃2 with both one-

generation and three-generation cases are shown in Fig. 9.

Here, the blue, yellow and red curves explain the running

of λh for SM, one generation of R̃2 and three generations

of R̃2, respectively. For all the analyses, we assume every

Higgs-leptoquark quartic coupling to be 0.01.

As already mentioned, the stability scale after which λh

turns negative for the SM is just above 109 GeV at the two-

loop level. However, when considering the RG evolution of

λh in the R̃2 case, the gauge couplings and other quartic cou-

plings contribute positively whereas the Yukawa coupling of

the leptoquark inserts negative contributions at the two-loop

level, as can be seen from Eqs. (68) and (69). Again, since

the additional contribution in the beta function of λh for the

case of three generations is the sum of all individual gener-

ations, and the gauge couplings at any particular scale for

the three-generation case are higher than the same for the

one-generation case, the three-generation scenario obtains

more positive contributions than the one-generation case. It

should also be noted that although there are two negative and

three positive terms containing X2 in Eq. (69), the positive

terms are quadratic in Xd and Xl , and therefore smaller than

the negative terms which are linear in Xd and Xl . Thus the

yellow curve representing leptoquark R2 with one genera-

tion stays above the blue line depicting the SM, and the red

curve signifying R2 with three generations lies further above

the region. However, due to the negative contributions of the

Yukawa couplings of the leptoquark, the red and yellow line

move downward with the enhancement in Yφ . In Fig. 9a, b,

we depict the variations in λh with the energy scale, taking the

initial values for Yφ as 1.0 and 1.36, respectively. As can be

observed, for both cases the vacuum of the leptoquark model

R̃2 with one generation remains stable up to ∼ 109.5 GeV,

slightly higher than the SM estimates. However, it is interest-

ing to observe in the left panel that the red curve remains in

the positive region of λh for all energy values, indicating the

stability of the vacuum all the way to Planck scale with three

generations of R̃2 and Yφ = 1.0. Once we start with an initial

value of Yφ of 1.36, we observe in the right panel that the red

curve touches the λh = 0 line, and thus for higher values of

Yφ the Planck scale stability will be lost. One can also observe

that for this particular value of Yφ , the red curve touches the

λh = 0 line at ∼ 1014.5 GeV and remains very flat up to the
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(a) (b)

Fig. 10 Running of Higgs quartic coupling with scale for triplet lep-

toquark S3 at two-loop level. Here, λh running for SM, one gener-

ation and three generations of S3 is delineated by blue, yellow and

red curves, respectively. If Yφ is assumed to be greater than 1.29, the

one-generation model of S3 loses stability at two-loop order, although

the three-generation scenario remains stable. However, if we consider

Yφ > 3.9, the three-generation scenario of the S3 model also leaves the

stable region at two-loop order

Planck scale. One can also find that this value of Yφ of 1.36

is higher than the required Yukawa coupling YN in inert dou-

blet+type III seesaw or inverse type III seesaw to maintain

the Planck scale stability [120]. On the contrary, it should be

noted that leptoquark R̃2 with one generation does not show

Planck scale stability even with very low Yukawa. Now, it is

worth mentioning that with the change in Higgs-leptoquark

couplings from 0.01 to 0.1, we do not find any significant

changes in the behaviour of λh . Although very high values

of λ2 and λ̃2 might shift the red curve in an upward direc-

tion, these higher values are disfavoured from Planck scale

perturbativity of λ2 and λ̃2. Consideration of the self-quartic

coupling of the leptoquark introduces positive contributions,

indicating the need for a higher initial value of Yφ to push

λh to the negative region. However, for R̃2 with three gener-

ations, we find little difference in the critical value of Yφ .

4.2 Vacuum stability of S3

Now, we discuss the stability of Higgs vacuum for the S3

scenario. The one- and two-loop beta functions of λh in this

case are as follows:

β(λh)
1−loop

S3,1−gen = β(λh)
1−loop
SM + Δβ(λh)

1−loop

S3

β(λh)
1−loop

S3,3−gen = β(λh)
1−loop
SM +

3∑

i=1

[
Δβ(λh)

1−loop

S3

]

i

with Δβ(λh)
1−loop

S3
=

9

16π2

(
λ2

3 + λ3 λ̃3 +
5

12
λ̃2

3

)
,

(70)

β(λh)
2−loop

S3,1−gen = β(λh)
2−loop
SM + Δβ(λh)

2−loop

S3

β(λh)
2−loop

S3,3−gen = β(λh)
2−loop
SM +

3∑

i=1

[
Δβ(λh)

2−loop

S3

]

i

with Δβ(λh)
2−loop
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1−loop
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+

3
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1
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2 +
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3
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1

8
Tr X3

)(
λ2

3 + λ3̃λ3 +
5

12
λ̃2

3

)

−
9

2
λhTr

(
X̃3X̃l + X3X̃ T

d
+ X3X̃ T

u

)
+ 3 Tr

{
X̃3X̃ 2

l

+ X3(X̃
T
d

)2 + X3(X̃
T
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Y3X̃l Y

†
3

(
X̃ T
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+
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(71)

The running of Higgs quartic coupling for the triplet lep-

toquark S3 is displayed in Fig. 10 taking the EW value of

λ3 and λ̃3 as 0.01. Here, blue, yellow and red curves denote

the RG evolution of λh for SM, one generation of S3 and

three generations of S3, respectively, at two-loop order. As

discussed in the previous section 4.1, gauge couplings and

Higgs-leptoquark quartic couplings contribute positively in

the running of λh , while the leptoquark Yukawa coupling

brings in negative effects (see Eqs. (70) and (71)). Further-

more, since R̃2 lies in fundamental representation of SU (2)L ,

while S3 stays in adjoint representation, the positive effects

in the case of S3 are very large compared to the same for
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R̃2; therefore, large Yukawa coupling for S3 will be needed

to make the vacuum unstable. We show the results for Yφ of

1.29 and 3.9 in Fig. 10a, b, respectively. In the left panel,

we see that both the case of S3 with one generation and

that with three generations show Planck scale stability for

Yφ = 1.29, but the yellow curve touches the λh = 0 line,

implying that a further increase in Yφ will make the theory

unstable before the Planck is reached. It is also interesting

to note that the yellow curve touches the λh = 0 line at

∼ 1015 GeV and remains very flat up to the Planck scale as

in the R̃2 scenario with three generations. In the right panel,

one can observe that the higher value of Yφ , i.e. 3.9, has

forced the red and yellow curves to move downward pushing

the one-generation S3 to the unstable region. However, the

red curve touches the λh = 0 line at this Yukawa coupling,

indicating that Yφ ≤ 3.9 in order to preserve Planck scale

stability with three generations of S3. It is worth mentioning

that here the red curve just kisses the λh = 0 line at a lower

energy scale of ∼ 1013.5 GeV, and then the positive contribu-

tions cause it to grow faster in the positive direction, unlike

the previous cases. However, to ensure perturbativity of the

model, Yφ ≤
√

4π ≈ 3.54. Therefore, combining vacuum

stability and perturbativity, one should consider
√

4π as the

upper limit of Yφ for the three-generation scenario of S3. Like

R̃2, in this case also, the behaviour of these plots does not

show any notable alteration if λ3 and λ̃3 are increased to 0.1

from 0.01. The inclusion of leptoquark self-quartic coupling

inserts huge positive effects for S3. Therefore, with three

generations of S3, the critical initial value of 3.9 for Yφ now

goes beyond 5. However, since
√

4π ≤ 5, the upper bound

on Yφ remains
√

4π when considering combined constraint

from vacuum stability and perturbativity.

4.3 Vacuum stability of R̃2 + S3 with 3-gen

The one-loop and two-loop beta functions for λh with three

generations of R̃2 + S3 can be written as:

β(λh)
1−loop

R̃2+S3,3−gen
=

3∑

i=1

[
β(λh)

1−loop

R̃2+S3,1−gen

]

i

β(λh)
2−loop

R̃2+S3,3−gen
=

3∑

i=1

[
β(λh)

2−loop

R̃2+S3,1−gen

]

i
(72)

The result at two-loop order for this scenario with all the

leptoquark Yukawa couplings being 1.0 and all the Higgs-

leptoquark couplings being 0.01 are shown in Fig. 11. We

have already seen that in this model all the parameters blow

up at the energy scale of 1014.4 GeV. The parameter λh is also

no different from them. With any value of Higgs-leptoquark

coupling or Yukawa coupling less than one, this divergence

is unavoidable for this model. It is also noteworthy that λh

Fig. 11 Running of Higgs quartic coupling λh for three generations of

R̃2+S3 at the two-loop level. Here, all the leptoquark Yukawa couplings

are assumed to be 1.0 and all the Higgs-leptoquark couplings are taken

to be 0.01. In this model, λh diverges at an energy scale (∼ 1014.4 GeV)

far below the Planck scale at two-loop order

grows into the non-perturbative region before the emergence

of instability in this model. Therefore, we will discuss the

behaviour of λh for one generation of R̃2 + S3.

4.4 Vacuum stability of R̃2 + S3 with 1-gen

The one- and two-loop beta functions for λh for the com-

bined scenario of R̃2 + S3 with one generation can simply

be expressed as:

β(λh)
1−loop

R̃2+S3,1−gen
= β(λh)

1−loop
SM + Δβ(λh)

1−loop

R̃2

+ Δβ(λh)
1−loop

S3
,

β(λh)
2−loop

R̃2+S3,1−gen
= β(λh)

2−loop
SM + Δβ(λh)

2−loop

R̃2

+ Δβ(λh)
2−loop

S3
. (73)

The two-loop result for this case with all the leptoquark-

Higgs coupling being 0.01 is displayed in Fig: 12, where the

blue curve represents the SM and the yellow line denotes this

particular model. As can be seen, with Yφ = 1.0, λh stays

entirely in the positive region, whereas for Yφ ≥ 1.21, this

model no longer remains stable. With Yφ = 1.21, the orange

curve touches the λh = 0 line at a relatively higher scale,

∼ 1016 GeV, and remains mostly flat up to Planck scale.

Here, Yφ includes the leptoquark Yukawa couplings for both

R̃2 and S3. The result remains almost the same with all the

leptoquark-Higgs coupling being 0.1.

4.5 Bounds from effective potential stability constraints

Now, to study the stability, we follow the Coleman–Weinberg

effective potential approach [145], where the one-loop con-

tributions from all the particles at zero temperature with van-
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Fig. 12 Higgs quartic coupling running with scale is given for one

generation of R̃2+S3 . Here, λh running for SM and one 0 of R̃2+S3 are

explained by blue and yellow curves, respectively. In order to maintain

Planck scale stability, the upper bound on Yφ for this model is 1.21.

Here, Yφ includes the leptoquark Yukawa couplings for both R̃2 and S3

ishing moments are included in effective coupling λeff . The

effective potential for high field values in the h-direction can

be defined as

Veff(h, μ) ≃ λeff(h, μ)
h4

4
, with h ≫ v , (74)

The possibility of minima in the leptoquark direction can

lead to charge- and colour-breaking minima, which is phys-

ically unwanted. However, such possibilities have little rel-

evance in our case. Firstly, unlike the Higgs field, the bare

mass term for the leptoquark is chosen sufficiently large and

positive, ensuring a positive sign of the effective leptoquark

mass term, i.e. for R̃2, m2
2 + λ2

v2

2
, m2

2 + (λ2 + λ̃2
v2

2
> 0,

which gives < R̃2 >= 0, for both with and without self-

leptoquark couplings at the tree level. The chances of a non-

zero vacuum expectation value (VEV) at the loop level in the

presence of the self-quartic coupling and with the negative

Higgs-leptoquark quartic coupling, though possible, but for

the choice of large positive bare leptoquark mass term, which

is of the order of TeV, are diminished in our case. It should

be noted that the possibility of the resultant negative mass

gives rise to the unphysical solution.

Such observations have also been made in the context of

2HDM, that if v1 ≫ v2, where v1,2 are the two VEVs corre-

sponding to the two Higgs doublets Φ1,2, the potential along

the Φ2 direction remains almost flat, and hence it is instruc-

tive to show the variation in the potential perpendicular to it,

i.e. along Φ1 [147, 111, 118]. Even at the one-loop φ2 direc-

tion, it is not possible to have any deeper minima as compared

to the φ1 direction. Similarly, in our leptoquark case, as the

tree-level VEV in the leptoquark direction is zero, the possi-

bility of deeper minima in that direction also ceases to exist.

The total potential including tree-level potential and the

one-loop contributions from SM particles and leptoquarks

Table 2 Different particles and the corresponding coefficients which

contribute to the Coleman–Weinberg effective potential cf. Eq. (76).

Here, the number of degrees of freedom for three generations of lepto-

quarks, i.e. 18, is shown outside the parentheses, while the same with

one generation of leptoquark, i.e. 6, is listed inside the brackets

Particles i F ni ci κi κ ′
i

SM W ± 0 6 5/6 g2
2/4 0

Z 0 3 5/6 (g2
1 + g2

2)/4 0

t 1 12 3/2 Y 2
t 0

h 0 1 3/2 λh m2

G± 0 2 3/2 λh m2

G0 0 1 3/2 λh m2

R̃2 R̃
2/3
2 0 18 (6) 3/2 λ2/2 m2

2

R̃
1/3
2 0 18 (6) 3/2 (λ2 + λ̃2)/2 m2

2

S3 S
4/3
3 0 18 (6) 3/2 λ3/2 m2

3

S
2/3
3 0 18 (6) 3/2 (λ3 + λ̃3)/2 m2

3

S
1/3
3 0 18 (6) 3/2 (2λ3 + λ̃3)/4 m2

3

can be defined as:

V = V0 + V SM
1 + V

R̃2/S3/R̃2+S3

1 , (75)

where V0 is the tree-level potential of the model and V1 is

the one-loop effective potential which includes the contribu-

tions from the SM particles and the leptoquarks, and can be

expressed as:

V1(h, μ) =
1

64π2

∑

i

(−1)F niM
4
i (h)

[
log

M2
i (h)

μ2
− ci

]
.

(76)

Here, the summation includes all the particles which couple

to Higgs field h at tree level, where ni denotes the number of

degrees of freedom for those particles, ci is a constant taking

value 5
6

for gauge bosons and 3
2

for fermions and scalars,

and the quantity F is another constant which becomes 0 for

bosons and 1 for fermions. The entity Mi , which is given by

M
2
i (h) = κi h

2 − κ ′
i , (77)

signifies the field-dependent masses for the particles in the

model, with κ and κ ′ being two constants. All the particles

relevant for this paper are listed in Table 2 along with all

the corresponding constants. For the numerical analysis, we

have considered h = μ, since the potential remains invariant

at this scale [147].
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(a) (b)

Fig. 13 Phase space diagram with Higgs mass Mh vs top mass Mt in GeV for R̃2. Green, yellow and red colours correspond to stable, metastable

and unstable regions, respectively. The black dotted circles denote 1σ , 2σ and 3σ contours, and the black dot denotes the current Higgs mass and

top mass value

(a) (b)

Fig. 14 Phase diagram for S3 with Mh in GeV vs Mt in GeV. The stable, metastable and unstable regions are delineated by green, yellow and red

colours, respectively. The black dot denotes the current values of Higgs mass and top mass in GeV, and black circles are 1σ , 2σ and 3σ contours

The full effective potential in (75) can be redefined in

terms of an effective quartic coupling λeff , as in (74) using

one-loop potential (76) as follows:

λeff (h, μ) ≃ λh (μ)︸ ︷︷ ︸
tree-level

+
1

16π2

∑

i=W±,Z ,t,

h,G±,G0

niκ
2
i

[
log

κi h
2

μ2
− ci

]

︸ ︷︷ ︸
Contribution from SM

+
1

16π2

∑
niκ

2
i

[
log

κi h
2

μ2
− ci

]

︸ ︷︷ ︸
Contribution from R̃2/S3/R̃2 + S3

, (78)

Now let us consider that there are two minima of the Higgs

potential and we reside at the first one. If the second minimum

is higher than the first one, the tunnelling from first minimum

to the second one will be impossible, which in turn would

indicate that the first minimum lies in thestable region,

denoted by λeff > 0. But if the height of the second mini-

mum is lower than that of the first one, there would be a

finite probability for the system to tunnel to the second one.

In this scenario, if the tunnelling lifetime becomes greater

than the age of the universe, we term the first minimum as

metastable region.

The tunnelling probability in this scenario is given by:

P = T4
0μ

4e
−8π2

3λeff (μ) , (79)

where μ is the scale at which the probability is maximum, i.e.
∂ P
∂μ

= 0, and T0 is the age of the universe. Using condition
∂ P
∂μ

= 0 along with βλ = 0, we can obtain the expression of

λeff at different scales:
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Fig. 15 Higgs mass Mh vs top quark mass Mt plot in GeV for one

generation of R̃2 and S3. The green and yellow colours represent stable

and metastable regions. The black circles are 1σ , 2σ and 3σ contours,

with the current experimental values of Higgs mass and top quark mass

denoted by dots at the centre

λeff(μ) =
λeff(v)

1 − 3
2π2 log

(
v
μ

)
λeff(v)

. (80)

Now, if we set P = 1, T0 = 1010 years and μ = v, where

v ≃ 246 GeV is the EW VEV in Eq. (79), then λeff(v)

comes out to be 0.0623. However, if we consider P < 1 with

T0 = 1010 years, then it will be equivalent to demanding that

the tunnelling probability from the first vacuum to the deeper

one is greater than T0, and we will obtain the condition for

metastability as [94]:

0 > λeff(μ) �
−0.065

1 − 0.01 log
(

v
μ

) . (81)

Lastly, if the tunnelling probability from the first mini-

mum to the deeper one is less than the age of the universe,

i.e. λeff < 0, then the first minimum will be designated as the

unstable region. We know that the SM vacuum lies in

the metastable region. However, the presence of lep-

toquarks will exert extra effects in λeff , which will alter the

metastability of the Higgs vacuum. Different regions with

respect to stability, metastability and instability for R̃2, S3

and one generation of R̃2 + S3 are presented in Figs. 13, 14

and 15. We refrain from three generations of R̃2 + S3, as

it obtains serious constraints from Planck scale perturbativ-

ity and stability. We have plotted Higgs mass Mh (in GeV)

versus top mass Mt (in GeV) in the above-mentioned fig-

ures along with the stable, metastable and unstable regions

coloured by green, yellow and red, respectively. The black

circles define 1σ , 2σ and 3σ contours, with a dot at the cen-

tre denoting the current Higgs mass and top mass values

[144,148,149]. In Fig. 13a, b, the results for one generation

and three generations of R̃2 are illustrated. For this analysis,

Mh is varied between 119 GeV and 135 GeV, whereas Mt is

varied from 165 GeV to 185 GeV with fixed λh = 0.1264

and Y 33
u = 0.9369 at the EW scale. The other quartic cou-

plings λ2 and λ̃2 are varied from 0.1 to 0.8. As can be seen,

for one generation of R̃2, only the 3σ contour hits metastabil-

ity while the three-generation scenario resides entirely inside

the stable region, as the positive effects of gauge couplings

and quartic couplings are very large. Again, the positive con-

tributions forming gauge couplings in the triplet leptoquark

case are even higher than in the R̃2 scenario. Therefore, we

obtain the complete stable region with both one generation

and three generations of S3, shown in Fig. 14a, b. The posi-

tive gauge coupling contributions are higher for the R̃2 + S3

case, and hence we obtain a completely stable region for this

case as well, see Fig. 15.

5 Phenomenology

In this section, we discuss different experimental bounds on

the parameter space of scalar leptoquarks and compare them

with the theoretical bounds arising from the demand of per-

turbativity and stability of the theory up to Planck scale. There

are both direct and indirect bounds on leptoquarks. While

the indirect limits are obtained using effective four-fermion

interactions induced by leptoquarks at various low-energy

experiments, the direct ones are drawn from the cross sec-

tion involving their production (if any) at high energy collid-

ers. B-anomalies in semi-leptonic B decays, lepton flavour

non-universality, lepton flavour-violating decays, anomalous

magnetic moment of muon and rare kaon decays are a few

low-energy phenomena constraining leptoquarks. A compre-

hensive list containing all the indirect bounds on leptoquarks

can be found in the “Indirect Limits for Leptoquarks” section

of Ref. [149]. However, most of the indirect limits involve

bounds on the product of one diagonal and one off-diagonal

Yukawa coupling of the leptoquarks with quarks and leptons

[92,150,151]. Since this coupling has been considered diag-

onal in our analysis, those indirect limits are automatically

satisfied.

On the other hand, it is well known that leptoquarks cou-

pling to multiple generations of quarks and leptons are capa-

ble of inducing flavour-changing neutral currents. For exam-

ple, non-chiral leptoquarks, which can interact with both

left- and right-handed leptons, obtain stringent constraints

from muon g − 2 [153] and the ratio of partial decay rates

(π → eν)/(π → μν) [154] if they are allowed to interact

with multiple generations of quarks and fermions. In our anal-

ysis, we neither force any leptoquark to couple to different

generations of quarks and leptons, nor work with any non-

chiral leptoquark.7 Therefore, the constraints arising from

flavour-changing neutral currents will be much weaker in

7 Both R̃2 and S3 are chiral leptoquarks since they couple to left-handed

leptons only.
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Fig. 16 Constraint on Yukawa coupling of S3 as a function of its mass

describing RK (∗) anomalies [15]. The yellow and green colours indicate

1σ and 2σ allowed regions

our scenarios. It is interesting to mention that the possibil-

ities of larger Yukawa couplings of leptoquarks, i.e. O(1),

are not completely ruled out by the low-energy observables

[8,22,23,25,26,73].

Now, it is impossible to find any single scalar leptoquark

solution to all the flavour anomalies, and therefore combi-

nations of different scalar leptoquarks are essential to take

various flavour anomalies into account. For example, lep-

toquarks S1 and R2 can explain the observed anomalies in

RD(∗) , whereas leptoquark S3 can account for RK (∗) anoma-

lies [23]. So, in order to describe both the B-anomalies, one

should consider S1 − S3 or R2 − S3 pairs.8 In Fig. 16, we

depict the constraints on the parameter space of S3 describ-

ing RK (∗) anomalies, where the yellow and green regions

indicate 1σ and 2σ allowed ranges [15]. Again, To generate

tiny neutrino masses through loops within the framework of

leptoquark models, one has to combine S1 or S3 with R̃2

[29,155]. Moreover, although non-chiral leptoquarks S1 and

R2 can accommodate muon and electron (g −2), the masses

of the leptoquarks required for illustrating the experimental

values are ≈ 100 TeV considering the Yukawa couplings

under perturbative limit [155]. Therefore, one should con-

sider combinations of S1 & S3, S̃1 & S3 or R2 and R̃2 mix-

ing through the Higgs field [155]. However, the imposition of

various flavour physics constraints along with LHC bounds

and μ → eγ result suggests that none of these scenarios

can accommodate both muon and electron (g − 2). There-

fore, to gain a complete picture regarding various low-energy

observables, study of the bounds on the parameter space of

different leptoquarks is indispensable.

We have already mentioned that we have considered only

diagonal Yukawa couplings, whereas most of the indirect

bounds involve off-diagonal elements as well. For instance,

Fig. 16 shows the bound on

√
|Y ∗32

3 Y 22
3 | as a function of

8 Leptoquark R̃2 cannot explain either of these two anomalies.

Fig. 17 Flavour constraint on Yukawa coupling of first-generation S3

as a function of its mass [152]. The blue and red lines indicate the

bounds from the ratio B(K + → π+ee)/B(K + → π+μμ) and the

branching fraction B(K + → π+νν). The cyan and orange lines indi-

cate constraints from neutral kaon and D-meson mixing, respectively.

The black line signifies leptoquark (S3) contribution of − 0.0005 to the

Wilson coefficient (Ceν
11 ) involved in the ratio B(π → μν)/B(π → eν)

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 18 Leading-order Feynman diagrams involving direct bounds on

leptoquarks. The first two rows correspond to Leptoquark pair produc-

tion (PP) at LHC, while the third and fourth rows signify single produc-

tion (SP) of leptoquark associated with a quark, leptoquark contribution

to Drell–Yan-like di-lepton process and single resonant production of

leptoquark (SRP). Regarding pair production, the first three diagrams

indicate gluon fusion (GF), while the last two illustrate quark fusion

(QF). The photon and Z-mediated diagrams have been ignored due to

the very small contribution
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(a) (b)

(c) (d)

Fig. 19 Bounds on parameter space of scalar leptoquark coupling to

first generation of quarks and leptons [156,157]. The shaded regions are

disallowed by direct detection. The limits from pair production involv-

ing charged leptons are recast from [158], while the same involving

neutrinos are recast from [90]. These bounds are shown in yellow. The

limits emerging from single production (SP), Drell–Yan (DY) and sin-

gle resonant production (SRP), shown by bluish, maroonish purple and

reddish portions, are based on Refs. [157,159,160]. On the other hand,

the mono-jet limits (bluish) are drawn from Ref. [161]. The dotted lines

with magenta and sea green colours represent constraints from weak

hypercharge measurements involving R̃2 and S3, respectively. Finally,

the dashed lines indicate theoretical upper bounds on the Yukawa cou-

pling appearing from Planck scale stability up to two-loop order; the

brown and red lines represent the limits for three generations of S3

and R̃2, whereas the green and black lines portray the same for one

generation of S3 and R̃2 + S3

mass for S3 to explain RK (∗) anomalies. Now, the upper

limits on the diagonal Yukawa couplings derived from the

demand of Planck scale stability and perturbativity are not

expected to change much with the introduction of small off-

diagonal couplings. However, these small off-diagonal cou-

plings along with large diagonal elements can now be used

to explain various flavour anomalies with respect to different

indirect bounds. Again, there arise some additional flavour

constraints on the parameter space of the first-generation

scalar triplet leptoquark (S3) [152], which are depicted in

Fig. 17, but such bounds do not appear for R̃2. Moreover,

different low-energy bounds on the Yukawa couplings of the

R̃2 − S3 model are described in Ref. [29]. However, we are

mostly interested in the constraints from the collider perspec-

tive.

When discussing the direct bounds on leptoquarks, we

consider pair production (PP), single production (SP) asso-

ciated with a quark, Drell–Yan processes (DY) and single

resonant production of leptoquark (SRP). At the pp collider,

like LHC, pair production of leptoquarks can occur through

both gluon fusion (GF) and quark fusion (QF), whose corre-

sponding Feynman diagrams are shown in the first and second

rows of Fig. 18. The Feynman diagrams for single produc-

tion of the leptoquark, contribution to Drell–Yan like dilepton

processes and SRP are presented in the third and fourth rows

of Fig. 18. Regarding the coupling of leptoquarks to charged

leptons, we obtain the opposite-sign di-lepton (OSD) signa-

ture for DY processes, as shown in Fig 18(h), whereas PP

and SP provide di-jet plus OSD and mono-jet plus OSD final

states at the detector [43,73]. Conversely, for leptoquarks
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(a) (b)

(c) (d)

Fig. 20 Bounds on parameter space of scalar leptoquark coupling to

second generation of quarks and leptons [156,157]. The shaded regions

are disallowed by direct detection. The limits from pair production

involving charged leptons are recast from [162], while the same involv-

ing neutrinos are recast from [90]. These bounds are shown in yellow.

The limits emerging from single production (SP), Drell–Yan (DY) and

single resonant production (SRP), shown by bluish, maroonish purple

and reddish portions, are based on Refs. [157,159,160]. On the other

hand, the mono-jet limits (bluish) are drawn from Ref. [161]. Finally,

the dashed lines indicate theoretical upper bounds on the Yukawa cou-

pling appearing from Planck scale stability up to two-loop order; the

colour codes are as mentioned in Fig. 19

coupling to neutrinos, we have di-jet plus missing energy and

mono-jet plus missing energy signatures only. The full data

set collected at HERA in ep collision excluded the first gen-

eration of leptoquarks with mass up to 800 GeV at 95% confi-

dence limits for coupling to be 0.3 [82]. In a more recent study

they have modified Yφ/mφ limits for the first generation of

leptoquarks [83]. The CMS collaboration at the LHC also

searched for single production of leptoquarks which probe

the high coupling region of leptoquarks [88,160].

We depict different direct constraints on the parameter

space of scalar leptoquarks in Figs. 19, 20 and 21. These

bounds can be recast for different models of scalar lepto-

quarks depending on the cross sections and the corresponding

decay branching fractions leading to the final states. Figure

19 summarizes the bounds for the first generation of lepto-

quarks, and Figs. 20 and 21 show the same for the second and

third generations of leptoquarks, respectively. All the plots

presented in Figs. 19 and 20 are taken from Refs. [156,157],

which use Refs. [90,158,162] for PP, Ref. [159] for SP, Ref.

[160] for DY, LHC Run II data for SRP and Ref. [161] for

mono-jet signature with first and second generations of lep-

tons to restrict the parameter space for leptoquark-quark-

lepton coupling below 3.0 with leptoquark mass below 3

TeV. Conversely, Fig. 21a describing constraints on φτb cou-

pling is taken from Ref. [156], which use Refs. [163–165]

for their analysis, and Fig. 21b illustrating limits on φνb cou-

pling is taken from Ref. [91]. For the final states involving

charged leptons, the yellow, blueish, maroonish purple and

reddish portions indicate the prohibited region from PP, SP,

DY and SRP processes, respectively. On the contrary, for the

final states involving missing energy, the yellow and bluish

regions signify PP and mono-jet signals.
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(a) (b)

Fig. 21 Bounds on parameter space of scalar leptoquark coupling to

third generation of quarks and leptons [91,156]. The shaded regions are

disallowed by direct detection. The limit from pair production involv-

ing charged leptons is recast from [163], which is shown in yellow.

The limits emerging from single production (SP) and Drell–Yan (DY),

shown by bluish and maroonish purple portions, are based on Refs.

[164,165]. Finally, the dashed lines indicate theoretical upper bounds

on the Yukawa coupling appearing from Planck scale stability up to

two-loop order; the colour codes are as mentioned in Fig. 19

We impose the theoretical bounds obtained from the per-

turbative unitarity and the stability at the two-loop for the

dimensionless couplings in the mφ − Yφ plane for R̃2, S3

and R̃2 + S3, respectively. The brown (Yφ = 3.90) and the

red (Yφ = 1.36) dashed lines depict the theoretical upper

limits on the Yukawa couplings of leptoquarks for three gen-

erations of S3 and R̃2, respectively, considering Planck scale

stability at the two-loop level. The same for one generation

of S3 and R̃2 + S3 are presented by the green (Yφ = 1.29)

and the black (Yφ = 1.21) dashed lines.

At this point it is worth mentioning that we do not present

the bounds on R̃2 with one generation and R̃2 + S3 with three

generations in these plots. Actually, as described earlier, R̃2

with one generation cannot achieve Planck scale stability for

any small value of Yφ at two-loop order. On the other hand,

although R̃2 + S3 with three generations shows stability for

Yφ ≤ 1.0, it loses perturbativity at an energy scale (∼ 1014.4

GeV) far below the Planck scale at two-loop order.

For the first-generation leptoquark coupling to charged

leptons, there exists another bound from measurement of

the weak charge of proton and nuclei [156]. This quan-

tity is measured through atomic parity violation and parity-

violating electron scattering [149,166]. For R̃2 and S3, these

measurements translate into Yφ ≤ 0.17

(
mφ

1TeV

)
and Yφ ≤

0.21

(
mφ

1TeV

)
, respectively, which are shown by the dotted

lines in magenta and sea green colours, respectively. Since

R̃2 couples to the down-type quarks only, while S3 interacts

with both up-type and down-type quarks, we find the magenta

line in Fig. 19b only, whereas the sea green line exists in both

Fig. 19a and b. Because the nuclei do not contain other gen-

erations of quarks as valance quarks, this kind of limit does

not appear for other generations of leptoquarks.

From these results it is evident that the theoretical limits

coming from Planck scale stability and perturbative unitarity

up to two-loop order might put stronger constraints on the

parameter space of leptoquarks with higher mass range in

particular for the second and third generations of the lepto-

quarks. On the other hand, bounds on the Higgs-leptoquark

quartic coupling are not very well studied in the literature.

In our analysis, we find that this coupling being larger than

∼ 0.2 disturbs the perturbativity of the theory up to Planck

scale.9

6 Conclusion

In this paper, we have studied the scalar doublet leptoquark

R̃2, the scalar triplet leptoquark S3 and their combination

with both one generation and three generations with respect

to the perturbativity and the stability of the Higgs vacuum.

The extra contribution in the running of the gauge couplings

at one-loop level mainly depends on the number of the lepto-

quark components present in the model, which is determined

by its gauge structure. Although at the two-loop level they

depend on the leptoquark Yukawa couplings, they do not

depend on the Higgs-leptoquark couplings explicitly. With

the two-loop effects, the gauge coupling g2 for the leptoquark

S3 and the combined scenario of R̃2 and S3 with three gen-

9 To be more specific, for three generations of R̃2 one needs (λ2, λ̃2) ≤
0.22, and for three generations of S3 we require (λ3, λ̃3) ≤ 0.18 in

order to confirm Planck scale perturbativity.
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erations diverges at 1019.7 GeV and 1014.4 GeV, respectively,

which forces the other couplings to hit singularity at those

scales. But at the one-loop level, all the leptoquark models

considered in this paper achieve Planck scale perturbativity

with gauge couplings. It is also noteworthy that no Landau

pole emerges in the running of gauge couplings for two gen-

erations of these leptoquarks. The Higgs-leptoquark quartic

couplings acquire severe constraints from Planck scale per-

turbativity. With larger EW values of these couplings (e.g.

0.3), the theories become non-perturbative at much lower

energy scales than the Planck scale. These constraints do

not change much due to alteration in the leptoquark Yukawa

couplings. For the three-generation scenario with R̃2 and S3

combined, the Higgs-leptoquark quartic couplings diverge

much below the Planck scale. On the other hand, the lepto-

quark Yukawa couplings obtain the upper bound from the

Planck scale perturbativity and stability of the Higgs vac-

uum. In the running of λh , the gauge couplings exert posi-

tive contributions, whereas the Yukawa couplings of lepto-

quarks introduce negative effects. For three generations of

R̃2 with the Higgs-leptoquark quartic couplings being 0.1,

the Yukawa coupling should be smaller than 1.36 for the the-

ory maintaining stability up to Planck scale. This number

becomes 1.29, 3.910 and 1.21 for one generation of S3, three

generations of S3 and one generation of R̃2 + S3, respec-

tively. Finally, regarding the Coleman–Weinberg effective

potential approach, the presence of any of these leptoquarks

with any number of generations pushes the metastable vac-

uum of SM to the stable region, although the 3σ contour

of R̃2 with one generation marginally touches the metastable

region. The phenomenological bounds obtained mainly from

the collider experiments are also drawn along with our the-

oretical bounds. We see that the Planck scale perturbativity

and stability puts some theoretical additional restrictions on

the parameter space of the leptoquarks in addition to the

experimental bounds.
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Appendix A: Two-loop beta functions of g3

Using SARAH, we generate the beta function of g3 for dif-

ferent models up to two loops, which are given below:

β(g3)
2−loop
SM = − 7

(
g3

3

16π2

)
+

g3
3

(16π2)2

[
11

10
g2

1 +
9

2
g2

2 − 26 g2
3

− 2 Tr
(
Xu + Xd

)]
, (82)

β(g3)
2−loop

R̃2,1−gen
= −

20

3

(
g3

3

16π2

)
+

g3
3

(16π2)2

[
7

6
g2

1 +
15

2
g2

2

−
56

3
g2

3 − 2 Tr

(
Xu + Xd +

1

2
X2

)]
, (83)

β(g3)
2−loop

R̃2,3−gen
= − 6

(
g3

3

16π2

)
+

g3
3

(16π2)2

[
13

10
g2

1 +
27

2
g2

2

− 4 g2
3 − 2 Tr

(
Xu + Xd +

1

2

3∑

i=1

X2,i

)]
, (84)

β(g3)
2−loop

S3,1−gen = −
13

2

(
g3

3

16π2

)
+

g3
3

(16π2)2

[
3

2
g2

1 +
33

2
g2

2

− 15 g2
3 − 2 Tr

(
Xu + Xd +

3

4
X3

)]
, (85)

β(g3)
2−loop

S3,3−gen = −
11

2
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g3

3

16π2
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g3
3

(16π2)2
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10
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1 +
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2
g2
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+ 7g2
3 − 2 Tr
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Xu + Xd +

3
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i=1

X3,i

)]
, (86)

β(g3)
2−loop

R̃2+S3,1−gen
= −

37
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g3
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16π2
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g3
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(16π2)2
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β(g3)
2−loop
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9
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g3

3

16π2
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g3
3

(16π2)2
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2
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1 +
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(
Xu + Xd +

1

2

3∑

i=1

X2,i +
3

4

3∑

i=1

X3,i

)]
.

(88)
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Appendix B: Two-loop beta functions of g1

Now, with the help of SARAH, we show the two-loops beta

function of g1 for all the models as follows:

β(g1)
2−loop
SM =

41

10

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
199

50
g2

1 +
27

10
g2

2

+
44

5
g2

3 −
3

2
Tr

(
Xl +

17

15
Xu +

1

3
Xd

)]
, (89)

β(g1)
2−loop

R̃2,1−gen
=

62

15

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
299

75
g2

1 + 3 g2
2

+
28

3
g2

3 −
3

2
Tr

(
Xl +

17

15
Xu +

1

3
Xd +

13

15
X2

)]
, (90)

β(g1)
2−loop

R̃2,3−gen
=

21

5

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
4 g2

1 +
18

5
g2

2

+
52

5
g2

3 −
3

2
Tr

(
Xl +

17

15
Xu +

1

3
Xd +

13

15

3∑

i=1

X2,i

)]
,

(91)

β(g1)
2−loop

S3,1−gen =
43

10

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
207

50
g2

1 +
15

2
g2

2

+ 12 g2
3 −

3

2
Tr

(
Xl +

17

15
Xu +

1

3
Xd + X3

)]
, (92)

β(g1)
2−loop

S3,3−gen =
47

10

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
223

50
g2

1 +
171

10
g2

2

+
92

5
g2

3 −
3

2
Tr

(
Xl +

17

15
Xu +

1

3
Xd +

3∑

i=1

X3,i

)]
,

(93)

β(g1)
2−loop

R̃2+S3,1−gen
=

13

3

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
311

75
g2

1

+
39

5
g2

2 +
188

15
g2

3 −
3

2
Tr

(
Xl +

17

15
Xu

+
1

3
Xd +

13

15
X2 + X3

)]
, (94)

β(g1)
2−loop

R̃2+S3,3−gen
=

24

5

(
g3

1

16π2

)
+

g3
1

(16π2)2

[
112

25
g2

1

+ 18 g2
2 + 20 g2

3 −
3

2
Tr

(
Xl +

17

15
Xu

+
1

3
Xd +

13

15

3∑

i=1

X2,i +
3∑

i=1

X3,i

)]
. (95)

Appendix C: Running of top Yukawa coupling

Top Yukawa coupling plays a very important role in the stabil-

ity of the Higgs vacuum. Therefore, it is important to study

the RG evolution of this parameter. As already mentioned

in Eq. (15), the absolute value for top Yukawa coupling at

any energy scale must be less than
√

4π in order to ensure

the perturbativity of the model. It is worth mentioning that

although the Yukawa couplings for leptons and other quarks

also vary with the scale, their initial value at the EW scale are

so small that they usually never cross the perturbativity bound

unless some other parameter hits the divergence. Therefore,

we restrict our discussion for the top Yukawa coupling only.

Now, to investigate the running of the top Yukawa coupling,

we study the RG evolution of Yu (Yukawa matrix for up-type

quarks) whose (3,3) component would provide us the desired

result. The one-loop and two-loop beta functions of Yu under

SM are as follows:

β(Yu )
1−loop
SM =

Yu

16π2

[
3

2

(
X̃u − X̃d

)
− I3

(
17

20
g2

1 +
9

4
g2

2

+ 8g2
3

)
+ 3 I3Tr

(
Xu + Xd +

1

3
Xl

)]
, (96)

β(Yu )
2−loop
SM = β(Yu )

1−loop
SM +

Yu

(16π2)2

[(
11

4
X̃ 2

d
− X̃u X̃d

+
3

2
X̃ 2

u −
1

4
X̃d X̃u

)
+ X̃u

{
223

80
g2

1 +
135

16
g2

2

+ 16g2
3 − 12λh −

27

4
Tr

(
Xu + Xd +

1

3
Xl

)}

− X̃d

{
43

80
g2

1 −
9

16
g2

2 + 16g2
3 −

15

4
Tr

(
Xu

+ Xd +
1

3
Xl

)}
+ I3

(
6λ2

h +
1187

600
g4

1 −
23

4
g4

2

− 108g4
3 −

9

20
g2

1 g2
2 +

19

15
g2

1 g2
3 + 9g2

2 g2
3

)

+
5

8
I3 Tr

{(
g2

1 + 9g2
2 + 32g2

3

)
Xd +

(
17

5
g2

1

+ 9g2
2 + 32g2

3

)
Xu + 3

(
g2

1 + g2
2

)
Xl

}

−
27

4
I3 Tr

(
X 2

u + X 2
d

−
2

9
X̃u X̃d +

1

3
X 2

l

)]
. (97)

The above two expressions are matrix equations, with I3

indicating the 3 × 3 identity matrix in the flavour space of

up-type quarks.

Now, for leptoquark R̃2 (with both one generation and

three generations), the one-loop beta function of Yu does not

obtain any additional contribution at the one-loop level, i.e.

Δβ(Yu )
1−loop

R̃2
= 0. Hence, it remains the same as that of

SM:

β(Yu )
1−loop

R̃2,1−gen
= β(Yu )

1−loop

R̃2,3−gen
= β(Yu )

1−loop
SM . (98)

Nevertheless, there exist some non-vanishing two-loop

contributions to it, and hence the full two-loop beta func-

tions of Yu for leptoquark R̃2 with one both generation and
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(a) (b)

Fig. 22 Variation in top quark Yukawa with scale

three generations can be expressed as follows:11

β(Yu )
2−loop

R̃2,1−gen
= β(Yu )

2−loop
SM + Δβ(Yu )

2−loop

R̃2

β(Yu )
2−loop

R̃2,3−gen
= β(Yu )

2−loop
SM +

3∑

i=1

[
Δβ(Yu )

2−loop

R̃2

]

i

where Δβ(Yu )
2−loop

R̃2
=

Yu

(16π2)2

[
7

4
Y

†

d
X2Yd + I3

{(
2

45
g4

1

+
3

2
g4

2 +
44

9
g4

3

)
+ 3

(
λ2

2 + λ2̃λ2 + λ̃2
2

)

−
9

2
Tr

(
X2Xd +

1

2
X̃2X̃l

)}]
. (99)

In the case of leptoquark S3, the correction to the one-

loop beta function of Yu contains only one term, and hence

it looks like:

β(Yu )
1−loop

S3,1−gen = β(Yu )
1−loop
SM + Δβ(Yu )

1−loop

S3

β(Yu )
1−loop

S3,3−gen = β(Yu )
1−loop
SM +

3∑

i=1

[
Δβ(Yu )

1−loop

S3

]

i

with Δβ(Yu )
1−loop

S3
=

3

64π2
YuX T

3 . (100)

The full two-loop beta function for Yu in this scenario

becomes:

β(Yu )
2−loop

S3,1−gen = β(Yu )
2−loop
SM + Δβ(Yu )

2−loop

S3

β(Yu )
2−loop

S3,3−gen = β(Yu )
2−loop
SM +

3∑

i=1

[
Δβ(Yu )

2−loop

S3

]

i
with

11 It should be noted that when taking
∑3

i=1 Δβ for any parameter,

one has to change Xγ to
∑3

i=1 Xγ,i and f (λγ , λ̃γ ) to
∑3

i=1 f (λi i
γ , λ̃i i

γ ),

along with making all the other additive terms three times those of the

one-generation case.

Δβ(Yu )
2−loop

S3
= Δβ(Yu )

1−loop

S3
+

Yu

(16π2)2

[
I3

{
4

15
g4

1 + 6g4
2

+
22

3
g4

3 +
9

2

(
λ2

3 + λ3̃λ3 +
3

4
λ̃2

3

)
−

27

8
Tr

(
X̃3X̃l

+ X3 X̃ T
d

+ X3 X̃ T
u

)}
+

(
− 3λ3 −

9

2
λ̃3 +

43

20
g2

1

+
45

4
g2

2 +
11

2
g2

3 −
9

8
Tr X3

)
X T

3 −
3

16
Y ∗

3 X̃ T
l

Y T
3

+
3

2
X T

3 X̃d −
3

8
X T

3 X̃u −
27

32
(X T

3 )2

]
. (101)

Now, in the combined scenario of R̃2 and S3, apart from

the individual contributions of R̃2 and S3 to the running of Yu ,

there emerges another at the two-loop level which contains

effects of Y2 and Y3 simultaneously. Therefore, the beta func-

tion for Yu up to two-loop order in this case can be expressed

as:

β(Yu )
2−loop

R̃2+S3,1−gen
= β(Yu )

2−loop
SM + Δβ(Yu )

2−loop

R̃2

+ Δβ(Yu )
2−loop

S3
−

9

4096π2
Yu Y ∗

3 X̃ T
2 Y T

3 , (102)

β(Yu )
2−loop

R̃2+S3,3−gen
= β(Yu )

2−loop
SM +

3∑

i=1

[
Δβ(Yu )

2−loop

R̃2

]

i

+
3∑

i=1

[
Δβ(Yu )

2−loop

S3

]

i
−

9 Yu

4096π2

3∑

(i,l)=1

Y ∗
3,i X̃

T
2,l Y

T
3,i . (103)

At this point, it is important to mention that for our

choice of leptoquark couplings in the three-generation cases,

Yγ,i Yγ ′, j = 0 for i �= j , where (γ, γ ′) ∈ {2, 3}.
We depict the results for the variation in the top Yukawa

coupling with the energy scale at the two-loop level under

different models in Fig. 22, where the left and right panels

show the leptoquark coupling with quarks and leptons (Yφ)

to be 0.4 and 1.0, respectively. The green curve explains the
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SM scenario, while the yellow and blue lines illustrate R̃2

and S3 leptoquarks with three generations. As expected, the

SM value of the top Yukawa coupling decreases with energy.

With the inclusion of leptoquarks, this coupling shifts further

down, and for the case of S3 it achieves divergence at 1019.7

GeV. Since R̃2 and S3 with one generation do not show any

abnormal behaviour, we do not present them here. On the

other hand, the brown (solid) and black (dashed) curves rep-

resent the combined models of R̃2 and S3 with one and three

generations, respectively. As anticipated, the case with three

generations of both leptoquarks stays at the bottom of all the

other lines for lower values of Yφ (e.g. Yφ = 0.4, shown by

the left panel of Fig. 22), although only this curve is notice-

ably affected if Yφ is increased to some sufficiently higher

value (e.g. Yφ = 1.0, as exhibited in the right panel of Fig.

22). Like all the other couplings for this scenario, it also

diverges at 1014.4 GeV. The relative positions of the curves

in the above-mentioned plot depend primarily on the nega-

tive contributions from the gauge couplings at the one-loop

level, see Eqs. (96)–(100). With the increase in the number

of leptoquark components, the values of gauge couplings are

enhanced at any particular energy scale, which in turn will

push the top Yukawa coupling downward.

Appendix D: Running of leptoquark Yukawa couplings

Now, let us discuss the evolution of leptoquark Yukawa cou-

plings Y2 and Y3. As mentioned in Eq. (15), these parameters

should also have an upper bound of
√

4π at any energy scale

μ. For the R̃2 scenario, the one-loop and two-loop beta func-

tions for Y2 are given by:

β(Y2)
1−loop

R̃2,1−gen
=

1

16π2

[
Xd Y2 +

5

2
X2Y2 +

1

2
Y2X̃l
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13

20
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4
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2 + 4g2
3 − TrX2
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]
, (104)

β(Y2)
2−loop

R̃2,1−gen
= β(Y2)

1−loop
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+

1

(16π2)2
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{
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80
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+
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1
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+ 2Xd Y2 X̃ l

−
1

4
X 2

d
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1

4
Yd X̃uY

†

d
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+ X2Y2

(
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48
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1 +
201

16
g2

2 +
73

3
g2

3 −
15

4
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3 +
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1 g2
2 +
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2 +
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TrX2

−
3

2
Tr

(
X2Xd +

1

2
X̃ l X̃2 +

5

2
X 2

2

)}]
. (105)

Now, for three generations of R̃2, we have three Yukawa

matrices of leptoquark (Y2,i ) corresponding to three different

generations of quarks and leptons. The running of each of

these Yukawa matrices at the one-loop level can be expressed

as:

β(Y2,i )
1−loop

R̃2,3−gen
=

[
β(Y2)

1−loop

R̃2,1−gen

]

i

+
1

16π2

∑

j �=i

[
3

2
Y2,i X̃2, j + X2, j Y2,i + Y2, j Tr

(
Y2,i Y

†
2, j

)]
.

(106)

At this point we remind the reader again that
[
β
]
i for

any parameter indicates the beta function of that param-

eter with the replacement of f (Yγ , Xγ , X̃γ , λγ , λ̃γ ) to

f (Yγ,i , Xγ,i , X̃γ,i , λi i
γ , λ̃i i

γ ) with γ ∈ {2, 3} and i rep-

resenting the generation. It is interesting to note that there

appear some additional terms with inter-generation interac-

tions. The beta function for the i-th generation of Y2 at two-

loop order is given by:

β(Y2,i )
2−loop

R̃2,3−gen
=

{
β(Y2,i )
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−
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2−loop

R̃2,1−gen

]

i
+

Y2,i

(16π2)2

(
7

90
g4

1 + 3g4
2 +

32

9
g4

3

)

+
1

(16π2)2

∑

j �=i

[
−

3

2
Y2,i Tr

(
X2,i X2, j +

3

2
X̃2,i X̃2, j

)

+
(

47

80
g2

1 +
99

16
g2

2 + 17g2
3

)
Y2,i X̃2, j

+
(

197

120
g2

1 +
51

8
g2

2 +
22

3
g2

3

)
X2, j Y2,i −

3

4
X2,i X2, j Y2,i

−
3

4
Y2,i Y

†
2, j Xd Y2, j +

5

4
Y2,i Y

†
2, j X2,i Y2, j

−
3

4
Y2,i X̃2, j X̃2,i −

3

4
Y2,i X̃

2
2, j −

1

4
Y2, j X̃l Y

†
2, j Y2,i

+
5

4
Y2, j X̃2,i Y

†
2, j Y2,i + 2 X2, j Y2,i X̃2, j −

3

4
X 2

2, j Y2,i

+
∑

k/∈{i, j}

(
2Y2, j Y

†
2,kY2,i Y

†
2, j Y2,k −

3

4
Y2, j X̃2,kY

†
2, j Y2,i

−
3

4
Y2,i Y

†
2, j X2,kY2, j

)
+

{(
13

24
g2

1 +
15

8
g2

2 +
10

3
g2

3

)
Y2, j

123



Eur. Phys. J. C (2022) 82 :516 Page 33 of 44 516
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The term within the curly brackets is added to the above

expression in order to incorporate the extra contribution at

one-loop order coming from the cross-generation interaction,

as shown in Eq. (106). The rest of the terms arise from two-

loop contributions.

In a similar fashion, the one-loop and two-loop beta func-

tions for Y3 in the case of leptoquark S3 can be expressed as

follows:

β(Y3)
1−loop

S3,1−gen =
1

32π2
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For the three-generation case of S3, the one-loop beta of the

i-th-generation leptoquark Yukawa coupling takes the form:

β(Y3,i )
1−loop

S3,3−gen =
[
β(Y2)

1−loop
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]
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+
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†
3, j

)]
.

(110)

As in the case of R̃2, here also some new terms appear due to

inter-generation interactions at the one-loop level. Encom-

passing these additional terms, the two-loop beta function

can be written as:
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(111)

Now, for the combined scenario of R̃2 and S3, the above

expressions are modified, and extra contributions from the

interactions of doublet and triplet leptoquarks emerge at both

the one- and two-loop levels. Thus, they can be written as

follows:
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In all of the above four expressions, the first term indicates

the extra contribution at one-loop order due to the presence

of both doublet and triplet leptoquarks.

Since one-generation cases do not show any irregularities,

we depict the variations in Y2 and Y3 in three-generation sce-

narios of the leptoquarks in Fig. 23. Figure 23a, b in the first

row illustrate the variations in any diagonal element of Y2

starting from 0.4 and 1.0, respectively, while Fig. 23c, d in

the second row demonstrate the similar situation for Y3. As

can be observed, for low Yukawa, the combined scenarios

stay below the individual cases, whereas the situation flips
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(a) (b)

(c) (d)

Fig. 23 Variation in leptoquark Yukawa with scale

for higher Yukawa cases due to the large effects from the

combined terms of Y2 and Y3. As expected, Y3 for three gen-

erations of S3 decreases monotonically with energy and hits

the divergence at 1019.7 GeV, while both Y2 and Y3 diverge

at 1014.4 GeV for the three-generation R̃2 + S3 case. How-

ever, Y2 shows different behaviour for large Yukawa. For

the R̃2 case, as can be observed from Fig. 23b, it initially

decreases with scale, then reaches a minimum and gradu-

ally starts increasing. For the R̃2 + S3 case, it increases with

energy from the beginning, then reaches a maximum and

starts to fall off, but suddenly blows up at 1014.4 GeV.

Appendix E: Two-loop beta functions of Higgs-leptoquark

quartic couplings for R̃2
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Appendix F: Two-loop beta functions of Higgs-leptoquark

quartic couplings for S3
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Appendix G: Two-loop beta functions of Higgs-leptoquark

quartic couplings for R̃2 + S3
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