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Ferroelectric domains were investigated using piezoresponse force microscopy in 

superlattices composed of multiferroic BiFeO3 and SrTiO3 layers. Compared to single BiFeO3 

thin films, a reduction in the domains size and a suppression of the in-plane orientation of 

domains are observed in a superlattice of (BiFeO3)4(SrTiO3)8, suggesting a constrained 

ferroelectric domain orientation along the out-of-plane <001> direction. Such modification of 

domain size and orientation in BiFeO3-based heterostructures could play a vital role on 

engineering the domains and domain wall mediated functional properties necessary for device 

applications.
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Multiferroic materials that possess the simultaneous co-existence of ferroelectricity 

(FE) and magnetic ordering have been studied extensively both from fundamental and 

technological applications point of view.1 However, only few materials possess both the FE 

and magnetic ordering at room temperature facilitating their utilization in device applications.1 

BiFeO3 (BFO) is one among the extensively studied simple perovskite that exhibits 

multiferroic (ferroelectric and antiferromagnetic) characteristics at room temperature, with an 

antiferromagnetic TN around 650K and FE TC around 1105 K.2 The possible coupling between 

ferroelectric and magnetic ordering is still a key issue which have triggered the study of the 

domains and domains walls3 which might play an important role in future devices, given their 

small size as well as the fact that their location can be controlled.4 Consequently, by analyzing 

the ferroelectric domains, their sizes and morphology of (001)-BFO epitaxial thin films,3,5 the 

strong correlation between the antiferromagnetic and FE domains has confirmed the 

importance of domain walls and their influences over the magneto electric coupling.3,5 A size 

and process dependent striped, mosaic and a fractal type FE domain pattern was in fact 

evidenced for single BFO thin films.5,6  However, the origin of such size and process 

dependence of the domain pattern remains ambiguous,5,6 despite their extensive study utilizing 

piezoresponse force microscope (PFM).7,8 The FE polarization in BFO thin films is known to 

be along the pseudo cubic body diagonal <111>.7,8 Hence, eight different orientations of 

polarization are theoretically possible along the body diagonals {111}C of a pseudo cubic unit 

cell.7,8 The polarization variants and its switching give rise to the formation of 180o, 71o and 

109o domains and their respective domain walls in BFO thin films.7,8 The fractal domains 

(whose origin still remains ambiguous) are expected to arise from the crystal anisotropy and 

the presence of pinning defects. 5,6 Since, the formation of irregular domain walls are costly in 

terms of elastic energy consideration, it could arise from extrinsic factors such as process 

induced defects, misfit dislocations and strain fields.5 
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Recent study on the strain effect on epitaxial (001) BFO thin films shows that, though 

the magnitude of the polarization remains unchanged, the polarization variants in BFO could 

be altered by strain.9 A strain-induced out-of-plane rotation of polarization from the (111) 

plane to the (100) plane was observed.9 In addition to that strain-induced rotation of 

polarization9, Lee et al.10,11 observed the coupling of magnetic ordering with the orientation of 

polarization, which collectively suggests a possible way to tune the properties with an external 

parameter leading to a fixed orientation of polarization. In order to experience the strain-

induced effect in BFO, epilayers needs to be grown with ultra small thicknesses, such that the 

strain would not be relaxed.12 In addition, earlier studies on BFO show that one of the major 

hindrances in utilizing the BFO thin films in device applications is the leakage current at lower 

thicknesses.13 Considering the reduction in leakage and maintaining a strained BFO layers, the 

superlattice approach was employed.13 For these reasons, the simple perovskite SrTiO3 (STO) 

having a good lattice matching with BFO and a larger band gap (in comparison to BFO) was 

selected.13 

In this letter, superlattice structures comprising (BiFeO3)m(SrTiO3)n were fabricated. 

FE domain patterns of these heterostructures were studied by PFM. The domain size and their 

corresponding in-plane (IP) and out-of-plane (OP) orientation was studied in a (BFO)m(STO)n 

superlattice structure with different periodicity. Further studies on bilayers of BFO and STO 

were performed to confirm and understand the constraints observed in the domain orientation, 

and the results observed in a (BiFeO3)4(SrTiO3)8 superstructure are presented in this letter. 

Thin films of BFO, STO and their superlattices were grown on conductive buffer layer 

of LaNiO3 deposited on (001)-oriented STO substrates (CrysTec, Germany), at 700oC in an 

oxygen pressure of 20 mTorr using a multitarget pulsed laser deposition technique. The 

superlattice structures were synthesized by repeating the couple consisting of ‘m’ unit cells 

thick BFO layer and ‘n’ unit cells thick STO layer, with m,n taking integer values from 2 to 
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20, keeping a constant total thickness of the superlattice (1200Å). The details of the structural 

and macroscopic electrical measurements could be found elsewhere.13,14 FE domain pattern of 

the superlattices was observed using a modified commercial atomic force microscope  

(Multimode, Nanoscope IIIa, Digital Instruments) operating in a piezoelectric constant mode 

equipped with a platinum/iridium coated silicon tip with spring constant of ∼ 2.5 N/m. 

Frequency and amplitude of the driving AC voltage were adjusted to 6.15 kHz and 3.0 Vpp 

respectively, to obtain optimized contrasted images. Out-of-plane PFM (OP-PFM) and in-

plane PFM (IP-PFM) images were performed to reveal the domains orientation and the 

corresponding polarization.  

The micro-structural quality of the superlattices was investigated using a JEOL2010F 

transmission electron microscope on cross-section specimens prepared on samples with or 

without LaNiO3 buffer layer, by the standard techniques using mechanical polishing followed 

by ion-milling (Technoorg Linda). Fig. 1(a) shows a representative High Resolution 

Transmission Electron Microscope (HRTEM) image of the top part of a (BiFeO3)4(SrTiO3)8 

superlattice structure with a periodicity of Λ ≈47 Å (≈ 12 x aSTO). The HRTEM image reveals 

the coherent growth of BFO and STO layers as confirmed by the selected area electron 

diffraction (SAED) pattern which displays satellite reflections close to the intense spots 

characteristic of a [100]STO zone axis pattern (insert of Fig.1a). The periodicity, calculated 

from the SAED pattern on various samples, matched well with the average periodicity 

calculated using X-ray diffraction pattern.14 Noticeably the TEM investigations reveal the 

presence of strain throughout the film that could be imaged in bright field as dark contrasted 

zones (see top left and bottom right of Fig.1a). The presence of strains in the superlattice 

structure was further investigated by x-ray diffraction through the reciprocal space mapping 

(RSM) performed around the (103) reflection. The obtained RSM (Fig. 1b) confirms that the 

whole superlattice takes the same in-plane lattice parameter value of STO (3.905Å). Also, no 
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distinctive splitting was observed in the average SL0 peak as observed for BFO thin films 

with monoclinic symmetry due to (103) and (-103) reflections. Collective observations from 

the RSM and TEM lead to a calculated average out-of-plane and an in-plane sublattice 

parameters for the superlattice of 3.94Å and 3.905Å, respectively. This indicates an out-of-

plane strain (εzz) of 1.39%, while the in-plane compressive strain (εxx εxy & εyy) is close 

0.51%, as compared to bulk BFO (3.96Å).2. Such stress would be higher for the superlattice 

with lower period than that of higher period. Furthermore, comparative Raman spectral 

studies on BFO thin film with bulk ceramic sample shows a blue shift in A1(TO) mode, which  

could be attributed to the strain in BFO thin film.15  

The macroscopic ferroelectric polarization and the leakage behavior of the 

(BFO)m(STO)n superlattice structures has been previously reported.13,14 Further investigations 

of the FE domain pattern of the fabricated thin films were studied by PFM as explained 

earlier. Initial studies on the FE domain of a single layer BFO (120 nm) agrees well with 

previous results5 for a given thickness.16 The FE domains of (BFO)4(STO)8 superlattice are 

presented here, as well as BFO/STO bilayers for references. Typical morphology and grain 

sizes were observed for the superlattices. The Rrms roughness was measured to be close to 1 

nm. FE domain pattern was observed by mapping the piezo force experienced by the 

cantilever normal to the surface of the film (OP-PFM, see Fig. 2 (a)). It is conventional to 

assign the bright and dark regions to the domains that correspond to the upward force and 

downward force experienced by the cantilever respectively, and the vice versa is theoretically 

plausible.3-8 The PFM images reveal the presence of both up and down oriented domains in a 

superlattice structure. While the domain size is different in the superlattice in comparison to 

the BFO single layer of same total thickness, whereas, the domain pattern of the superlattice 

structures are similar to those of the single layer BFO thin films.5,16 Thus, the superlattice 

structures revealed clearly a reduction in the domain size in comparison to the epitaxial thin 
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films of BFO on (001)-oriented STO.16 The domain size was calculated from the conventional 

method of counting the domain walls in various directions.17 In the case of epitaxial BFO thin 

films, a fractal-kind of domain pattern is widely observed in spite of the dependence of the 

domain pattern on the processing.5,12,16 The domain walls of a (BFO) (STO) SL in a given 

scan region and  given direction  was counted and compared with the BFO single layer. In 

comparison the domain sizes of the superlattice were observed to be smaller by 30-50 nm than 

the BFO single layer of same total thickness. Several explanations proposed for the possible 

extrinsic modification of the domain size for a given total thickness and crystallite size 

includes the reduction of domain wall formation energy due to the strain across the 

superlattice structures5 or even the strong electrostatic coupling between the layers.18  

In the (BFO)4(STO)8 superlattice structure studied, only OP-PFM images are observed 

and, no domain contrasts was observed in the IP-PFM images. Fig. 2a and 2b show the OP-

PFM and IP-PFM, respectively with BFO layer on top. To understand the role of the top layer 

(ending the superlattice structure), we also present in Fig. 2 (c and d) the OP-PFM and IP-

PFM, respectively for the same (BFO)4(STO)8 superlattice (Λ ~ 47Å) with STO layer on top. 

The aforementioned observations are confirmed by scanning different regions and on different 

rotations of the sample. Consequently, the absence of contrast in IP-PFM images indicates the 

absence of domains, oriented in the lateral directions with respect to the cantilever tip.19 

Considering the weak thickness of the BFO layers and the crystallite size in all superlattice 

structures, it appears that the in-plane strain imposed by the STO substrate and intercalation 

layers on the BFO layers induces domains oriented perpendicular to the film surface, and thus 

hinders other orientations. Indeed, the very small thickness (a few unit cells only) of the BFO 

layers associated with first, the strong cubic character of the STO substrate, and second, the 

reinforcement of this character by the STO intercalated layers can be expected to impose to 

the BFO layers a strong tetragonal constrain. Let us remind the reader that such tetragonal 
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geometry was recently observed in bulk ceramics20 and in (La2/3Ca1/3MnO3)n(BaTiO3)m 

superlattices.21
 In addition, recent theoretical studies provided significant evidences of domain 

orientation modulation by strain constraints in BFO22 while similar modification of dipolar 

orientations were observed in the case of BaTiO3 and STO-based superlattice structures.23  

Let us now consider the consequences of such a geometrical constrain on the BFO 

layer. The STO belonging to a space group of Pm-3m, posses 48 symmetry operators among 

which, four of them involve only in-plane transformations and can thus be imposed on the 

BFO layers by strains at interfaces. Those symmetry operations are namely the four-fold and 

the two-fold rotations around the c axis, and the two (a,c) and (b,c) mirror planes. It is easier 

to see that imposing such symmetry operations (possibly associated with a doubling of the 

unit cell in the a and b directions) on BFO would involve smaller atomic movements. A 

simple symmetry calculation shows that the only polarization direction allowed by both the 

four-fold rotation and the two-fold rotation (which is also the combination of the two 

reflection operations) is the out-of plane c direction as observed in superlattice structures, 

which is is confirmed by the absence of splitting in RSM (Fig.1b). 

The observed effect was further confirmed by the study of a couple of bilayer thin 

films (BFO)n(STO)n, with individual layer thickness kept around 65nm. Fig. 3a and 3b show 

the OP-PFM image and IP-PFM image of a bilayer sample with BFO on top. The domain 

images and the color contrasts observed in both OP-PFM and IP-PFM clearly show the 

presence of domains oriented both normal to the surface of the film and in the lateral 

directions with respect to the tip. It is worth mentioning that in a bilayer with BFO on top, the 

domain size, and pattern are consistent with a single layer BFO thin film of the same 

thickness (~ 65nm).5,16 The good correlation of this bilayer sample (with BFO on top) with 

the single layer BFO thin films6,8 suggests that the absence of in-plane orientation of domains 

is indeed a direct effect of the formation of a superstructure. In the case of the other bilayer 
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sample having STO on top, a clear dark and bright contrast is observed for the OP-PFM mode 

(see Fig. 3c). Considering the domain size and the pattern observed, it could be a 

combinatorial effect of interfacial strain, induced polarization in STO and the underlying BFO 

layer. Figure 3(d) shows the IP-PFM of the bilayer sample with STO on top, which does not 

exhibit any domain contrast. The absence of in-plane orientation of domains in the bilayer 

with STO on top could be purely due to the constraints on polarization variants of STO-an 

incipient ferroelectric-considering the thickness of the STO top layer.24 Extensive studies on 

the correlation of individual layer thickness, periodicity and strain in domain orientation of 

(BFO)m(STO)n superlattices are currently under progress. Nevertheless, the domain images 

observed on the superlattice structures and the bilayers, respectively, confirm that the strain 

constraints introduced in an epitaxial superlattice structure of BFO and STO, grown on 

STO<001> substrates, drives the orientation of FE domains along the growth direction, and 

hinders the in-plane domain orientations. Poling experiments were also carried out at the 

surface of superlattices over 4 µm2 square area by applying a – 10.5 V dc bias on the probe 

during scanning. As observed on the OP-PFM image (Fig. 4), black contrast evidences the 

existence of poled domains with downward upward polarization. No white or grey 

intermediate contrasts coexist in this area confirming the 180° switching of the out-of-plane 

upward domains. 

In summary, ferroelectric domains of (BFO)4(STO)8 superlattice structures were 

analyzed by PFM imaging. A significant variation in domain size was observed in the 

superlattice structures in comparison to the BFO thin films of same total thickness. The 

analyses of the OP-PFM and the IP-PFM domain images of superlattices with different 

stacking configuration, confirmed that the interfacial strain present in the superlattice, 

confines the domain orientation along the direction normal to the film surface. The analysis of 

OP-PFM and IP-PFM of BFO and STO heterostructures suggest a possible structural 
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modification of BFO layers in a (BFO)m(STO)n superlattice structure. Consequently, the 

interfacial strain present in a superlattice structure can be utilized to externally control the 

density of domain walls, and the domain orientation, which could be a potential tool in terms 

of application of these superlattices utilizing domain orientation and domain wall, mediated 

functional properties. 
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Figure Captions: 

 

 Figure 1: (Color online) (BFO)4(STO)8 superlattice (a) High resolution TEM image  

showing the regular alternation of BFO and STO layers. Inset (Right) shows the SAED 

pattern, corresponding to a [100]STO zone axis orientation. Insert (Left) shows the intensity 

profile from a line scan across the row of satellites attached to the 00ī STO reflection. (b) 

Isointensity contour plot in logarithmic scale of the (103) reciprocal map. The logarithmic 

scale ranges from 2 to 4000. The Laue indices H and L are defined the lattice parameters of 

the SrTiO3  substrate. The (103) peaks of LNO, STO substrate and average structure SL0 are 

indicated on the map.  

 

 Figure 2: (Color online) (a) OP-PFM image of a (BFO)4(STO)8 superlattice structure 

with BFO on top, (b) corresponding IP-PFM. (c) OP-PFM image of a (BFO)4(STO)8 

superlattice structure with STO on top, (d) corresponding IP-PFM. (Scanning speed for 

imaging: 0.4 Hz and a lock-in time constant of 3.0 ms.)  

 

 Figure 3: (Color online) (a) OP-PFM image of a (BFO)(STO) bilayer structure with 

BFO on top, (b) IP-PFM image of a (BFO)(STO) bilayer structure with BFO on top. (c) OP-

PFM image of a (BFO)(STO) bilayer structure with STO on top, (d) corresponding IP-PFM 

of (BFO)(STO) bilayer structure with STO on top. 

 

Figure 4: (Color online) Characteristic OP-PFM image of a (BFO)4(STO)8 

superlattice structure when square area (2 x 2 µm2) has been polarized (white region) by 

applying a –10.5 V dc bias on the probe during scanning. The scan size of the image is 5 x 5 

µm2. 
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