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Tumor homing peptides are small peptides that home specifically to tumor and tumor associated
microenvironment i.e. tumor vasculature, after systemic delivery. Keeping in mind the huge therapeutic
importance of these peptides, we have made an attempt to analyze and predict tumor homing peptides. It
was observed that certain types of residues are preferred in tumor homing peptides. Therefore, we developed
support vector machine based models for predicting tumor homing peptides using amino acid composition
and binary profiles of peptides. Amino acid composition, dipeptide composition and binary profile-based
models achieved a maximum accuracy of 86.56%, 82.03%, and 84.19% respectively. These methods have
been implemented in a user-friendly web server, TumorHPD. We anticipate that this method will be helpful
to design novel tumor homing peptides. TumorHPD web server is freely accessible at http://crdd.osdd.net/
raghava/tumorhpd/.

ancer is a major public health concern and remains a leading cause of mortality across the globe. This

devastating disease affects both developed and developing countries. Despite the considerable progress in

understanding the molecular basis of cancer, mortality rate is still high'. The chemotherapy is the principal
mode of current cancer treatment, but it is limited by significant toxicity and frequently acquired resistance’. In
the last decade, treatment options for cancer have shifted towards the more specific targeted therapies**. Many
strategies have been exploited to target tumors. The most commonly used strategy is engineered antibodies or
antibody fragments®. Though monoclonal antibodies are very selective, poor penetration inside the tumors and
high production cost hinders their usage as therapeutic agents®. Nowadays, use of peptides for tumor targeting is
getting much attention. In this context, tumor homing peptides (THPs) have become a very promising strategy to
deliver therapeutics at tumor site. In the last decade, much attention has been paid on targeting tumor cells or
tumor vasculature using THPs’.

THPs are short peptides (3-15 amino acids), which specifically recognize and bind to tumor cells or tumor
vasculature. Since the introduction of tumor homing concept in 1998, a large number of THPs have been
identified by in vitro and in vivo phage display technology. THPs have some common motifs like RGD, NGR,
which specifically bind to a surface molecule on tumor cells or tumor vasculature. For example, RGD peptide
binds to o integrins® and NGR binds to a receptor aminopeptidase N, which is present on the surface of tumor
endothelial cells®. Due to their tumor homing capability, THPs are being used in cancer diagnosis and treatment.
Many anti-cancer drugs and imaging agents have been targeted to tumor site in mice models once conjugated
with THPs'. The results of such studies are very encouraging and few THPs are already in clinical trials'".

With such potential of THPs in cancer therapeutics, the computer aided prediction of THPs would be very
beneficial in designing and developing novel THPs, thus saving time and labor of experimental biologists. To the
best of authors’ knowledge, no method has been developed for predicting/designing THPs. In the present study, a
systematic attempt has been made to develop highly accurate support vector machine (SVM)-based models using
various features of proteins/peptides like amino acid composition (AAC), dipeptide composition (DPC) and
binary profile patterns (BPP). A user-friendly web server has also been developed to help the cancer biologists to
predict and design THPs.

Results

Analysis of THPs. Compositional analysis. In order to find out overall dominant residues in THPs, we computed
and compared percent amino acid composition of THPs and non-THPs in the main dataset. It was observed that
certain types of residues like C, R, G, W, P, L and S are more abundant in THPs (Figure 1). In order to understand
preference of residues at N- and C-terminals, we computed and compared percent AAC of N- and C-terminus
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Figure 1| Average amino acid composition. Comparison of percent average amino acid composition of peptides (THPs and non-THPs (randomly

generated peptides)).

residues of THPs and non-THPs. However, we did not find any
significant difference in AAC in terminal residues (data not shown).

Preference of residues. In order to understand preference of certain
types of residues at different positions in THPs, we generated
sequence logos. The sequence logos of 10 N-terminal and C-terminal
residues of peptides are shown in Figure 2 & 3, respectively. As shown
in Figure 2, certain residues are preferred at specific positions, e.g., C,
A, S, Gatfirst position; G, R, P, E at 2™ position efc. Overall, THPs are
dominated by certain type of residues like C, G, L, P etc., being
present at most of the positions. Similarly, certain residues are pre-
ferred at the C-terminus (Figure 3), for example, residues P, R, C, N
and S are preferred at most of the positions.

AAC-based model. In compositional analysis of THPs, it has been
observed that certain residues are dominated over others. This means

1.5 1

bits

Figure 2 | Sequence logo of first ten residues (N-terminus) of THPs. The
figure depicts the sequence logo of first ten residues (N-terminus) of THPs,
where size of residue is proportional to its propensity.

that THPs and non-THPs can be discriminated on the basis of their
AAC. Based on this observation, we developed SVM model on main
dataset. The performance of AAC-based SVM model has been
shown in Table 1. The model developed on main dataset achieved
a maximum accuracy of 82.52% with an MCC and area under the
curve (AUC) of 0.65 and 0.90 respectively. Similarly, SVM models
were developed on subsets NT5, CT5, NTCT5, NT10, CT10, and
NTCT10 and performances of these models have been summa-
rized in Table 1. Model developed with NTCT10 dataset achieved
a little higher accuracy of 86.56% with MCC 0.70 and AUC 0.91.

DPC-based model. DPC has been used previously to discriminate
different classes of proteins'®>. Dipeptide encapsulates the global
information of the amino acid fraction as well as the local order of
amino acids. Thus, DPC is a better feature as compared to AAC.
Therefore, SVM models based on DPC have been constructed on all
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Figure 3 | Sequence logo of last ten residues (C-terminus) of THPs. The
figure depicts the sequence logo of last ten residues (C-terminus) of THPs,
where size of residue is proportional to its propensity.
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Table 1 | Performances of SYM models developed using amino
acid composition of peptides

Table 3 | Performances of SYM models developed using binary
profile of peptides

“MCC: Matthew’s correlation coefficient; AUC: Area under curve.

the datasets. Performances of DPC-based models are summarized in
Table 2. Overall, performance of DPC-based models is poorer than
AAC-based model. DPC-based model developed with main dataset
achieved maximum accuracy of 81.29% with MCC and AUC values
0f 0.63 and 0.90 respectively, which is less than the models based on
AAC (Table 2). Model developed with NTCT10 dataset achieved a
maximum accuracy of 82.03% with MCC and AUC values of 0.63
and 0.88, respectively.

BPP-based method. In THPs, certain residues are preferred at
specific positions on N- and C-terminus (Figure 2 & 3). Therefore,
to implement the information about frequency as well as the order of
residues, we made an attempt to develop a method using binary
profiles of peptides. We have generated BPP of peptides. In binary
pattern, a vector of dimension 20 represents a residue, and for N
residues the input vector of dimension is 20 X N. We have used
the following three approaches:

N-terminal approach: In this approach, we used subsets NT5 and
NT10, consist of 5 and 10 N-terminal residues of THPs and non-
THPs (See Material and Methods). We extracted 5 and 10 N-
terminus residues from each peptide, and generated binary profile
of dimension 5 X 20, and 10 X 20, respectively. These profiles
were then used to develop SVM models. The accuracy of models
developed on NT5 and NT10 datasets were 77.08% and 81.03%
with MCC 0.54, 0.62 and AUC 0.84, 0.89 respectively (Table 3).

C-terminal approach: We adopted same strategy for the C-terminal
as used for the N-terminal except taking the residues from C-
terminal instead of N, using subsets CT5 and CT10. The perform-
ance of BPP-based SVM model using 5 and 10 C-terminal resi-
dues was almost similar to N-terminal approach. As shown in
table 3, we achieved maximum accuracy of 76.38% and 79.84%
with MCC of 0.53 and 0.60 for 5 and 10 C- terminal residues of
peptides respectively.

N- and C-terminal approach: In order to check, if using the N- and C-
terminal of the peptides together would enhance the accuracy of
the method, we developed models using N- and C-terminal
residues. In this approach, we made two subsets named NTCT5
and NTCT10. First model was developed using BPP of first 5

Table 2 | The performances of SVM models developed using
dipeptide composition of peptides

Dataset Sensitivity ~ Specificity ~Accuracy MCC*  AUC
Main dataset  83.87 78.71 81.29 0.63 0.90
NTS 71.49 72.81 72.15 0.44  0.79
CT5 71.49 72.35 71.92 0.44  0.79
NTCTS 63.48 89.25 76.38 0.55 0.85
NT10 79.84 75.1 7747 0.55 0.85
CTi0 74.7 81.03 77.87 0.56 0.84
NTCT10 84.58 80.67 82.03 0.63  0.88

“MCC: Matthew’s correlation coefficient; AUC: Area under curve.

Dataset Sensivity  Specificity Accuracy ~ MCC AUC DATASET Sensitivity ~ Specificity Accuracy MCC*  AUC
Main dataset ~ 81.57 83.46 82.52 0.65 0.90 NT5 76.12 78.03 77.08 054 0.84
NT5 70.88 83.41 77.15 0.55 0.83 CT5 70.57 82.18 7638 053 0.83
CT5 70.57 81.72 76.15 0.53 0.82 NTCT5 74.88 87.25 81.08 0.63 0.88
NTCTS 77.2 84.95 81.08 0.62 0.88 NT10 77.87 84.19 81.03 0.62 0.89
NT10 78.66 79.45 79.05 0.58 0.86 CT10 80.24 79.45 79.84 060 0.85
CTi10 84.19 78.26 81.23 0.63 0.87 NTCT10 80.63 87.75 84.19 0.69 0.91
NTCT10 80.63 89.71 86.56 0.70 0.91

*MCC: Matthew's correlation coefficient; AUC: Area under curve.

residues from N-terminal and 5 residues from C-terminal.
Second model was developed using BPP of 10 residues from N-
terminal and 10 residues from C-terminal. As shown in Table 3,
we achieved maximum accuracy 84.19% with MCC 0.69 and
AUC 0.91 for NTCT10 subset.

SVM model on peptides with length up to 10. Since the most of the
THPs have length between 4 and 10, therefore, we have constructed a
dataset (469 peptides) consisting of peptides having length up to 10.
SVM models were developed using all the above features and
terminal of window size 5. Performances of all models are summa-
rized in Table 4. Maximum accuracy of 81.88% with MCC of 0.65
and AUC 0.88 was achieved in binary profile of dataset NTCT5
(Table 4).

ROC Plot. In order to have a threshold-independent evaluation of
our models, we have generated receiver operating characteristic
(ROC) curve for these models. PASW statistical package was used
for creating ROC plots with area under curve (AUC). The AUC gave
a single value to evaluate the performance of a method. BPP-based
method in case of hybrid of N-terminal and C- terminal residues
(window size 5 and 10) performed better as compared to AAC-based
method. ROC plots are shown in Figure 4.

Performance on independent dataset. In order to validate our in
silico methods, performances of our best methods (whole compo-
sition, NTCT5, NTCT10, and NTCTS5 (up to 10)) were evaluated on
independent dataset. All these models performed reasonably good as
shown in Table 5, demonstrating that these models are useful or
effective in real life. Composition-based model achieved highest
accuracy of 83.73% among all these models.

Implementation and utility of TumorHPD. TumorHPD not only
provides facility to predict THPs, but also offers opportunity to
design analogues with better tumor homing abilities. TumorHPD
first generates all possible single substitution mutants of original
peptide; then it predicts whether mutants and original peptide is
tumor homing or not. It also calculates SVM score for each pep-
tide, which is propotional to reliability of prediction. Along with
prediction, server also calculates important physicochemical proper-
ties (e.g. hydrophobicity, amphipathicity, charge, pl, etc.) in an
aesthetic tabular format with sorting option. This feature is helpful
for user to select better analogues based on desired physicochemical
properties, as many peptide analogues may have higher SVM score
or better-desired properties than the original peptide. In addition,
users can further generate all possible mutants (2nd round) of their
selected analogue if they wish to, and may get even better peptide
analogues with higher tumor homing abilities (based on SVM score).
This cycle can be run until the peptide analogue with desired pro-
perties (tumor homing and physicochemical) is obtained. Similarly,
protein scanning is another tool, which allows user to submit protein
sequence and it scan putative THPs in protein sequence. Graphical
display of the scanned results speeds-up the identification of THP
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Table 4 | Performance of monopeptide, dipeptide and binary profiles-based SVM models on dataset of peptides having length up to 10

INPUT VECTOR DATASET Sensitivity Specificity Accuracy MCC AUC
Monopeptide Main dataset 80.81 79.74 80.28 0.61 0.87
Dipeptide Main dataset 74.63 82.09 78.36 0.57 0.85
Monopeptide NTCTS 78.25 80.6 79.42 0.59 0.85
Dipeptide NTCT5 70.15 84.86 77.51 0.56 0.83
Binary NTCT5 73.13 90.62 81.88 0.65 0.88

“MCC: Matthew's correlation coefficient; AUC: Area under curve.

specific regions from protein. In addition, users can also predict
secondary structures of their peptides using Psipred". TumorHPD
is accessible from URL http://crdd.osdd.net/raghava/tumorhpd/.

Discussion
In the past, THPs have been successfully used as delivery vehicles
to target imaging agents, drug molecules, oligonucleotides, and
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inorganic nanoparticles to tumors™'®. Most of the THPs have been
identified by in vivo phage display technology, which is a very time
consuming and laborious process. Therefore, development of an in
silico method for predicting THPs will be very useful for biologists
working in the field of peptide-based drug delivery. Thus, keeping
these facts in mind, in the present study, we have made a systematic
attempt to develop an in silico approach to predict/design THPs. The
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Figure 4 | ROC curves of SVM models developed using (A) Whole amino acid composition, (B) NTCT10 binary, (C) NTCT5 binary (main
dataset), and (D) NTCT5 binary of dataset of peptides having length up to 10 as input features (where 1-specificity represents the false positive rate and

values show the area under curve).
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Table 5 | Performances on independent dataset

Model Sensitivity ~ Specificity Accuracy MCC  AUC
Composition 7711 90.36 83.73 0.68 0.94
NTCTS5 (whole) 73.17 87.80 80.49 062 0.86
NTCT10 (whole) ~ 43.28 85.07 64.18 0.31 076
NTCTS (upto10)  64.18 89.55 7687 056 0.82

“MCC: Matthew’s correlation coefficient; AUC: Area under curve.

overall approach is summarized in Figure 5. We have collected 651
THPs from TumorHoPe database and analyzed them. THPs have
wide variation in length ranging from 3 to 35 residues and majority of
peptides have length between 5 and 10 residues.

In preliminary analysis of THPs, we have observed that certain
residues are dominated over others and certain residues are preferred
at specific positions. Based on these observations, we developed
models for discriminating THPs and non-THPs using machine
learning techniques. We have developed SVM models of various
features using AAC, DPC and BPPs. The DPC-based models

performed poorer than AAC-based method. However, BPP-based
method performed well over other methods. Since binary profiles
incorporate information about both frequency as well as order of
amino acids, it is a better feature than AAC alone. Among all the
subsets, NTCT5 and NTCT10 achieved the maximum AUC of 0.88
and 0.91 respectively. Binary performance was also best in case of
peptides with length range in between 5 and 10 residues. Based on
above approaches, an online web service-TumorHPD has been
developed. To the best of our knowledge, TumorHPD is first in silico
method in its kind for the prediction of THPs. Therefore, there are no
existing methods for comparison. We hope that establishment of
such methods will speed up the pace of identifying novel THPs.
Thus, it will facilitate better drug delivery system for cancer.

Methods

Main dataset. Recently, our group has collected and compiled experimentally
validated THPs (peptides bind/home to tumor) from literature and developed a
public database TumorHoPe'. In this study, we have obtained 651 THPs from
TumorHoPe. These peptides are considered as positive examples. In order to develop
a classification method, we needed negative examples (i.e. peptides, which do not bind
to tumor or non-THPs). Unfortunately, experimentally validated non-THPs have not
been reported in the literature. In order to generate negative dataset, we have
generated 651 random peptides from proteins obtained from SwissProt. These
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Figure 5 | Overall approach for in silico prediction of THPs.
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random peptides were considered as non-THPs. Though it is possible that some of the
random peptides may have tumor homing property, but probability is very low. This
is a standard procedure to use random peptides as negative examples in situations
where experimentally validated negative examples are not available'**. Finally, main
dataset is consists of 651 THPs (experimentally validated) and 651 non-THPs
(random peptides).

Small dataset. It was observed that most of the THPs have 10 or less than 10 residues.
Therfore, we created a sub dataset from main dataset where peptides (THPs or non-
THPs) have minimum four residues and maximum ten residues. This small dataset
contains 469 THPs and equal number of non-THPs (random peptides).

Terminus datasets. In order to understand the role of N- and C-terminal residues of
THPs, we have created terminus datasets considering the N- and C-terminal residues
of peptides from main dataset. Following type of terminus datasets have been derived
from main dataset; (i) NT5 contains first five residues (5 N-terminus residues) of
peptides, (ii) CT5 contains last five residues (5 C-terminus residues) of peptides, and
(iii) NTCTS5: in this dataset, various features (amino acid composition, dipeptide
composition and binary profiles) of first five and last five residues of peptides were
generated and combined them for developing models. Similarly, NT10, CT10 and
NTCT10 terminus datasets were derived from main dataset where ten residues were
taken either from any one terminus or from both termini.

Sequence logos. In order to understand frequency of different types on amino acids at
different positions in THPs, we created sequence logos using WebLogo software'”.
The size of the residue in logo represents the frequency of residues at a given position.
The height of the residue is a measure of the variability of that residue at that
particular position: the taller the logo, the lesser variability at that position.

Support vector machine. SVM is a machine-learning tool based on the structural
risk minimization principle of statistics learning theory. SVMs are a set of
related supervised learning methods used for classification and regression. The
user can choose and optimize number of parameters and kernels (e.g. Linear,
polynomial, radial basis function and sigmoidal) or any user-defined kernel. In
this study, we implemented SVMlight Version 6.02 package of SVM'®, which
requires a fixed number of inputs for training, thus necessitating a strategy for
encapsulating the global information about proteins of variable length in a fixed
length format. The fixed length format was obtained from protein sequences of
variable length using amino acid composition, dipeptide composition and binary
profile.

Amino acid composition (AAC). It has been shown in previous studies that simple
frequency of 20 amino acids in a protein sequence can be used to predict various
functions of proteins like sub-cellular localization and classification of proteins®. In
this study, we have used AAC of peptides for discriminating THPs and non-THPs.
Thus, peptide information was encapsulated in a vector of 20 dimensions, using
amino acid composition of the peptide. AAC is the fraction of each amino acid type
within a peptide. The fractions of all 20 natural amino acids were calculated by using
the following equation:
. R
Comp (i) = N * 100

Where Comp (i) is the percent composition of amino acid (i); R; is number of
residues of type i, and N is the total number of residues in the peptide.

Dipeptide composition (DPC). DPC provides composition of pair of residues

(e.g. Ala-Ala, Ala-Leu) present in peptide, and used to transform the variable length of
peptides to fixed length feature vectors. It gives a fixed pattern length of 400 (20 X 20)
and encapsulates information about the fraction of amino acids as well as their local
order. It is calculated using following equation:

Total number of Dipeptide (i)
Total number of all possible dipeptides

Fraction of Dipeptide (i) =
Where dipeptide (i) is one out of 400 dipeptides.

Binary profile patterns (BPP). BPP were generated for each peptide,

where a vector of dimensions of 20 represents each amino acid (e.g. Ala by
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). A pattern of window length W was represented
by a vector of dimensions 20 X W. We have created binary profile patterns for first 5
and 10 residues from N-terminus, similarly for last 5 and 10 residues from
C-terminus of peptides in datasets. The BPP has been used in a number of existing
methods* .

Cross-validation technique. One of the major challenges in developing in silico
models is to validate these models using standard techniques. One of the well known
and commonly used technique for validation is jack-knife or leave-one-out
cross-validation where one peptide is used for testing and remaining peptides for
training. This process is repeated in such a way that each peptide is used for testing.
This technique is CPU time intensive, so in this study we have used five-fold
cross-validation technique. Here all peptides are randomly divided into five sets,
where four sets used for training and remaining set for testing. The process is repeated

five times in such a way that each set is used once for testing. Final performance is
obtained by averaging the performance of all the five sets.

Performance measure. The performance of various models developed in this study
was evaluated by using threshold-dependent as well as threshold-independent
parameters. In threshold dependent parameters we used sensitivity (Sn), specificity
(Sp), overall accuracy (Ac) and Matthew’s correlation coefficient (MCC) using
following equations.

L P
Sensitivity = TPTEN x 100

s TN
Specificity = TN FP x 100

TP + TN
Accuracy= —————————— x 100
TP + FP + TN + FN
_ (TP) (TN) — (FP) (FN)
\/ (TP+FP) (TP+FN) (TN + FP) (TN +FN)

Where TP and TN are correctly predicted positive and negative examples,
respectively. Similarly, FP and FN are wrongly predicted positive and negative
examples, respectively.

We created receiver-operating characteristic (ROC) for all of the models in order to
evaluate performance of models using threshold-independent parameters. ROC plots
with area under the curve (AUC) were created using PASW statistical package.

MCC

Independent dataset. In order to evaluate the performance of our methods, we have
created an independent dataset of 83 novel experimentally validated THPs and equal
number of random peptides (non-THPs), which have not been included in the
training, feature selection and parameters optimization of the model. Experimentally
validated THPs were collected manually from recent research papers and patents,
while random peptides were generated randomly from proteins obtained from
Swissprot as discribed in methods.

1. Hanna, T. P. & Kangolle, A. C. Cancer control in developing countries: using
health data and health services research to measure and improve access, quality
and efficiency. BMC Int Health Hum Rights 10, 24 (2010).

2. Lee, C, Raffaghello, L. & Longo, V. D. Starvation, detoxification, and multidrug
resistance in cancer therapy. Drug Resist Updat 15, 114-22 (2012).

3. Flaherty, K. T., Hodi, F. S. & Fisher, D. E. From genes to drugs: targeted strategies
for melanoma. Nat Rev Cancer 12, 349-61 (2012).

4. Higgins, M. J. & Baselga, J. Targeted therapies for breast cancer. J Clin Invest 121,
3797-803 (2011).

5. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat Rev
Cancer 12, 278-87 (2012).

6. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies:
successes, limitations and hopes for the future. Br ] Pharmacol 157, 220-33
(2009).

7. Laakkonen, P. & Vuorinen, K. Homing peptides as targeted delivery vehicles.
Integr Biol (Camb) 2, 326-37 (2010).

8. Zitzmann, S., Ehemann, V. & Schwab, M. Arginine-glycine-aspartic acid (RGD)-
peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res 62,
5139-43 (2002).

9. Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides

and a target for inhibiting angiogenesis. Cancer Res 60, 7227 (2000).

Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Targeting of drugs and nanoparticles to

tumors. J Cell Biol 188, 759-68 (2010).

. Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for

nanoparticles. Adv Mater 24, 3747-56 (2012).

Petrilli, P. Classification of protein sequences by their dipeptide composition.

Comput Appl Biosci 9, 205-9 (1993).

13. McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure
prediction server. Bioinformatics 16, 404-5 (2000).

14. Kapoor, P. et al. TumorHoPe: a database of tumor homing peptides. PLoS One 7,
35187 (2012).

15. Sanders, W. S., Johnston, C. L, Bridges, S. M., Burgess, S. C. & Willeford, K. O.
Prediction of cell penetrating peptides by support vector machines. PLoS Comput
Biol 7, €1002101 (2011).

16. Wang, P. et al. Prediction of antimicrobial peptides based on sequence alignment
and feature selection methods. PLoS One 6, €18476 (2011).

17. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence
logo generator. Genome Res 14, 1188-90 (2004).

18. Joachims, T. Making large-scale support vector machine learning practical. In

Advances in kernel methods: support vector learning Edited by: Scholkopf B,

Burges C, Smola A. Cambridge, MA: MIT Press, 169-184 (1999).

Garg, A., Bhasin, M. & Raghava, G. P. Support vector machine-based method for

subcellular localization of human proteins using amino acid compositions, their

order, and similarity search. J Biol Chem 280, 14427-32 (2005).

1

=4

1

—

1

4

1

©°

| 3:1607 | DOI: 10.1038/srep01607



20. Xiao, X., Shao, S., Ding, Y., Huang, Z. & Chou, K. C. Using cellular automata
images and pseudo amino acid composition to predict protein subcellular
location. Amino Acids 30, 49-54 (2006).

21. Xiao, X., Wang, P. & Chou, K. C. GPCR-CA: A cellular automaton image
approach for predicting G-protein-coupled receptor functional classes. ] Comput
Chem 30, 1414-23 (2009).

22. Lata, S., Sharma, B. K. & Raghava, G. P. Analysis and prediction of antibacterial
peptides. BMC Bioinformatics 8, 263 (2007).

Acknowledgements

Authors are thankful to funding agencies Council of Scientific and Industrial Research
(project Open Source Drug Discovery and GENESIS BSC0121) and Department of
Biotechnology (project BTISNET), Govt. of India.

Author contributions

AS.,PK, A.G. and K.C. collected the data and created the datasets. A.S., A.T. and P.K.
developed computer programs, implemented S.V.M. A.S. and J.S.C. created the back end
server. A.S., P.X, A.G,, RK. and K.C. developed the front end user interface. A.G., P.K. and
A.S. wrote the manuscript. G.P.S.R. conceived and coordinated the project, helped in the
interpretation of data, refined the drafted manuscript and gave overall supervision to the
project. All of the authors read and approved the final manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Sharma, A. et al. Computational approach for designing tumor
homing peptides. Sci. Rep. 3, 1607; DOI:10.1038/srep01607 (2013).

| 3:1607 | DOI: 10.1038/srep01607


http://creativecommons.org/licenses/by-nc-nd/3.0

	Computational approach for designing tumor homing peptides
	Introduction
	Results
	Analysis of THPs
	Compositional analysis
	Preference of residues

	AAC-based model
	DPC-based model
	BPP-based method
	SVM model on peptides with length up to 10
	ROC Plot
	Performance on independent dataset
	Implementation and utility of TumorHPD

	Discussion
	Methods
	Main dataset
	Small dataset
	Terminus datasets
	Sequence logos
	Support vector machine
	Amino acid composition (AAC)
	Dipeptide composition (DPC)
	Binary profile patterns (BPP)
	Cross-validation technique
	Performance measure
	Independent dataset

	Acknowledgements
	References


