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Abstract We take up a recently proposed compart-

mental SEIQR model with delays, ignore loss of immu-

nity in the context of a fast pandemic, extend the model

to a network structured on infectivity and consider the

continuum limit of the same with a simple separable

interaction model for the infectivities β. Numerical

simulations show that the evolving dynamics of the

network is effectively captured by a single scalar func-

tion of time, regardless of the distribution of β in the

population. The continuum limit of the network model

allows a simple derivation of the simpler model, which

is a single scalar delay differential equation (DDE),

wherein the variation in β appears through an integral

closely related to the moment generating function of

u = √
β. If the first few moments of u exist, the gov-

erning DDE can be expanded in a series that shows a

direct correspondence with the original compartmental

DDE with a single β. Even otherwise, the new scalar

DDE can be solved using either numerical integration

over u at each time step, or with the analytical integral if

available in some useful form. Our work provides a new

academic example of complete dimensional collapse,

ties up an underlying continuum model for a pandemic
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with a simpler-seeming compartmental model and will

hopefully lead to new analysis of continuum models

for epidemics.
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1 Introduction

The global pandemic of COVID-19 has prompted sev-

eral studies of epidemic models from a dynamic sys-

tems point of view. Pandemics can be studied using

simple mean-field models or compartmental models,

where the entire population is divided into suscepti-

ble (S), exposed (E), infectious (I), quarantined (Q),

and recovered (R) groups. More groups like hospital-

ized (H), vaccinated (V), etc., can be added, or groups

can be removed, depending on modeling goals. These

models are primarily developed based on the original

SIR model due to Kermack and McKendrick [1]. Many

models include other complexities like prior immu-

nity, temporary immunity transferred at birth, vacci-

nation history, a carrier population that never recovers

[2], reinfection due to loss of immunity after recov-

ery [3], exposed but asymptomatic populations [4], a

quarantined population [5], and the influence of vital

dynamics [6].

The fidelity of such models can be improved by

developing structured network models [7–12], where

each node in the network is a compartmental model
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with different parameters. In other words, the entire

population is divided into N subgroups or structures.

Each such subgroup or structure can have its own S, E, I,

Q, and R subpopulations. These subgroups or structures

can be based on age, lifestyle, demography, geography,

or other aspects. The network topology [12] can be uni-

form, time-varying, or random. Recently, for example,

the initial spread of COVID-19 in India was explored

using an age-structured SIR network model with sim-

ulated social lockdown conditions [13].

In contrast to such network models, an alternative

high-dimensional approach uses reaction–diffusion [14–

17] type partial differential equations (PDEs) to capture

the spatial and temporal evolution of an epidemic. Such

models with spatial dimensions allow solutions with

concentrated pockets of infection which emerge and

spread. Sometimes, PDEs with a single spatial vari-

able are converted into integro-differential equations

[15,18].

Time delays [19] are often present in the progression

of diseases due to latency and incubation times. Sev-

eral researchers have studied the spread of infections

like Zika, HIV, Hepatitis, and Influenza using delay dif-

ferential equations [20–25]. Recently, an SEIQR [20]

model with time delays was proposed to study the pro-

gression of a generic epidemic. In recent work of our

own [26], we have studied the time delayed SEIQR

model of [20] after neglecting loss of immunity over

time, which is appropriate for a fast pandemic.

In the lumped approach of [20,26], the infectivity

or transmission rate of the disease is modeled using a

single positive parameter

β = β̃m. (1)

In Eq. (1), β̃ is a characteristic of the pathogen; and m,

the density of contacts, is a characteristic of the behav-

ior of individuals.

In this paper, we address the situation where the

parameterβ is a distributed quantity over the entire pop-

ulation. After all, some people have greater exposure to

infection than the population average (e.g., police per-

sonnel, people providing other essential services, hos-

pital staff, as well as people less willing to cooperate

with government-recommended social distancing mea-

sures). Others have less exposure than average (e.g.,

older people, people who cooperate more with recom-

mended social distancing measures). Some have strong

immune systems, and others have weak immune sys-

tems, which might be reflected in differing values of

the underlying parameter β̃ in Eq. (1). All these people

interact to various degrees in modern society, where

travel and mixing are common. The details of this vari-

ation, if incorporated, will yield a richer model that can

hopefully make more realistic predictions. We clarify

that we do not stratify the population by age, occupa-

tion, health status, or social behavior. In our model, all

these factors contribute to a final effective β for each

person. We stratify the population according to β alone,

because that is what affects the dynamics of infection.

We ask the following question: for a general distribu-

tion of β in the population, and for a reasonable model

for how different sections with different β’s interact

during the pandemic, how does the continuum solution

evolve from infinitesimal initial infection all the way

to final saturation?

In the rest of this paper, we show the following.

Under a simple separable interaction model for dif-

ferent β’s, and upon neglecting loss of immunity for

those who have recovered from the disease, the contin-

uum model reduces to two nonlinear integrodifferential

equations with delays, with the continuously variable

β appearing as a parameter. However, due to a remark-

able dimensional collapse, the dynamics is exactly

described by a single scalar nonlinear delay differen-

tial equation without integrals, where the parameter β

appears only through the first derivative of its moment

generating function. If some required moments of the

distribution are finite, then a local expansion can be eas-

ily computed for small levels of overall infection, and

the correspondence with the lumped model of [20,26]

is transparent and close. If the moments are unbounded,

alternative, slightly more complex, single DDE approx-

imations can still be developed, at least in principle. In

this way, both the justification for the lumped model, as

well as corrections needed for variable β, are exactly

demonstrated. From a practical viewpoint, our results

clarify the role of, e.g., higher versus lower variability

of β in the population in the spread, saturation, and

containment of the disease. From an academic view-

point, our work presents a new and satisfying example

of extreme model order reduction. We mention that

a preprint of this article has been uploaded at [27]

(https://arxiv.org/abs/2004.12405).
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Fig. 1 The SEIQR compartmental model with delays

2 Network model

In [20,26], a single fixed parameter β is used to model

the whole population. Our presentation begins with

a brief statement of this model. Figure 1 shows the

schematic of the single-β SEIQR model and is adapted

from [20]. The governing equations, included for com-

pleteness, are:

Ṡ(t) = −βS(t)I (t) + αR(t) (2)

Ė(t) = β [S(t)I (t) − S(t − σ)I (t − σ)] (3)

İ (t) = βS(t − σ)I (t − σ) − γ I (t)

−βpe−γ τ S(t − σ − τ)I (t − σ − τ) (4)

Q̇(t) = βpe−γ τ S(t − σ − τ)I (t − σ − τ)

−βpe−γ τ S(t − σ − τ − κ)I (t − σ − τ − κ)

(5)

Ṙ(t) = −αR(t) + γ I (t)

+βpe−γ τ S(t − σ − τ − κ)I (t − σ − τ − κ)

(6)

Here, S(t) represents healthy individuals. The infec-

tion rate constant is β. Asymptomatic and infected indi-

viduals E(t) remain non-infectious for σ units of time.

Later, they become infectious and are represented by

I (t), but show no symptoms for another τ units of time.

When symptoms appear, these infected people are iso-

lated or quarantined with probability p for a time κ ,

and are represented by Q(t). A few asymptomatic but

infectious individuals may recover on their own, at a

rate γ . The cured population R(t) after quarantine may

lose immunity at a small rate α, but we use α = 0

over the time scale of a fast-spreading pandemic, like

COVID-19.

Fig. 2 A schematic representation of N interacting population

groups with different infection spread rates among each group.

Every connection between two groups is bidirectional and sym-

metric, and every group is connected to all other groups (a dense

network)

In Eq. (2), the right hand side has two terms: the rate

of change of the susceptible population S(t) depends

on an infection rate βS(t)I (t) and a rate of reintroduc-

tion of susceptible people through loss of immunity

modeled using αR(t). When β varies within the popu-

lation, we use a network model. Figure 2 illustrates the

idea. Here, the total population is partitioned into N sub

groups P1,P2,...,PN ; and each group is modeled with

different βk ranging from β1 to βN . The primary con-

sequence is that in the network’s equivalent of Eq. 2

for group k, the I (t) must be replaced by something

that represents interaction effects from all groups. We

will model this using a quantity Λ(t) that applies to the

entire network, as explained below.

The main idea is simple. A susceptible person in

group k, for any 1 ≤ k ≤ N , can get infected

through interaction with a person in any group r , with

1 ≤ r ≤ N . Thus, the total infection rate of the single-

β model, i.e., βS(t)I (t), is to be replaced by the sum

of contributions from all groups. The contribution from

one single group r is taken to be

F(βk, βr )Sk(t)Ir (t),
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for some suitable interaction coefficient F(βk, βr ) that

has to be specified as part of the mathematical model.

The function F(βk, βr ) is understood to be symmetric

[28], i.e.,

F(x, y) = F(y, x).

It must monotonically increase with respect to each of

its arguments, i.e.,

∂ F(x, y)

∂x
> 0,

∂ F(x, y)

∂y
> 0.

Clearly, we require

F(x, 0) = 0

regardless of x , because a person who meets nobody

at all will not get infected. Further, it seems reason-

able to assume that if a person who mixes very little

meets another person who mixes very little, then the

probability of infection spreading is much lower than

if the second person mixes widely. Mathematically, we

assume that

if 0 < βk ≪ βr , then F(βk, βk) ≪ F(βk, βr )

≪ F(βr , βr ). (7)

All the above conditions are met by the separable

choice

F(βk, βr ) =
√

βk

√

βr . (8)

There could be other formulas for F(βk, βr ) satisfy-

ing the conditions mentioned above, but the separable

nature of Eq. (8) makes it simple as well as appealing.

Finally, in the special case where the entire popula-

tion moderates its behavior to produce a single effective

β, the net effect should ideally reduce to Eq. (2), and

this is something that will turn out to be true for Eq. (8).

The above choice of F(βk, βr ) leads us to define

Λ(t) =
N

∑

r=1

√

βr Ir (t), (9)

and the dynamics of the network is governed by

Ṡk(t) = −
√

βk Sk(t)Λ(t) + αRk(t) (10)

Ėk(t) =
√

βk [Sk(t)Λ(t) − Sk(t − σ)Λ(t − σ)] (11)

İk(t) =
√

βk Sk(t − σ)Λ(t − σ) − γ Ik(t)

−
√

βk pe−γ τ Sk(t − σ − τ)Λ(t − σ − τ)

(12)

Q̇k(t) =
√

βk pe−γ τ Sk(t − σ − τ)Λ(t − σ − τ)

−
√

βk pe−γ τ Sk(t − σ − τ − κ)Λ(t

−σ − τ − κ) (13)

Ṙk(t) = −αRk(t) + γ Ik(t)

+βk pe−γ τ Sk(t − σ − τ − κ)Λ(t

−σ − τ − κ)

k = 1, 2, ..., N (14)

In this model, except for βk , all other parameters

namely σ , τ , κ , p, γ , and α are the same for each node

in the network. This assumption is motivated by the

idea that, in a well-functioning society, the degree of

mixing practiced by individuals varies a lot more than

the time taken for an infected person to be detected and

quarantined; and that the rate of self-recovery γ is a bio-

logical quantity independent of an individual’s social

behavior. Note that we assume the loss of immunity

rate, α, to be zero.

We observe from Eqs. (10)–(14) that if α = 0, the

states Ek(t), Qk(t), and Rk(t) become slave variables.

Only Sk(t) and Ik(t) need to be solved for. Further, we

can always scale time by setting σ = 1, making τ , βk ,

and γ effectively dimensionless. Equations (10)–(14),

after dropping Ė , Q̇ and Ṙ and defining

ν = 1 + τ

become:

Ṡk(t) = −
√

βk Sk(t)Λ(t) (15)

İk(t) =
√

βk Sk(t − 1)Λ(t − 1) − γ Ik(t)

−
√

βk pe−γ τ Sk(t − ν)Λ(t − ν)

k = 1, 2, . . . , N . (16)

3 Initial numerical observations

We have integrated Eqs. (15) and (16) using Matlab’s

built-in solver dde23 for many different initial func-

tions or history functions, with error tolerances set to be

10−7 or better. For ease of presenting results, we define

β̂ = [β1, β2, . . . , βN ]T ,

Ŝ(t) = [S1(t), S2(t), . . . , SN (t)]T ,

Î (t) = [I1(t), I2(t), . . . , IN (t)]T .

It should be noted that β1 < β2 < · · · < βN . The his-

tory functions for numerical integration are selected in

terms of nonnegative functions Û (β̂) and V̂ (β̂) as

Ŝ(t) = Û (β̂) − 10−8

(

1 + t

ν

)

,−ν ≤ t ≤ 0, (17)
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Î (t) = V̂ (β̂) × 10−8

(

1 + t

ν

)

,−ν ≤ t ≤ 0. (18)

In the above, Û (β̂) was chosen to satisfy ||Ŝ(−ν)||1 =
1. It is clear that || Î (−ν)||1 = 0 regardless of V̂ (β̂).

Such initial conditions, with small initial infection, are

of interest because we wish to study whether the infec-

tion remains small or grows significantly within the

population. It is clear that Û (β̂) plays the role of a

probability density function of people’s β̂-values in the

population. If Û (β̂) is large for small values of β̂ and

decays rapidly for large values of β̂, then most people

are in a regime of low infection rates. Conversely, if

Û (β̂) decays slowly with increasing values of β̂, then

a significant proportion of the population is in a regime

of high infection rates. The dynamic consequences of

such different distributions will be studied using initial

numerical simulations in this section, before proceed-

ing to analytical treatment.

The net effect of the pandemic, or net damage, is

taken to be

D̂(t) = Ŝ(−ν) − Ŝ(t).

For total percentage affected, we use

D(t) = ||D̂(t)||1 × 100 =
[

1 − ||Ŝ(t)||1
]

× 100.

For our initial numerical case study, we use N = 500

and select β̂ values uniformly spaced between β1 = 0

and βN = 6, i.e., β̂ values are distributed within a

strictly finite range. Figure 3a shows Ŝ(t) at three dif-

ferent time instants at t = −ν (initial time), t = 40,

and t = 100. Also shown is a fit of the form

Ŝ(t) = Ŝ(−ν) ◦ e− f (t)
√

β̂ , (19)

at these three instants of time. Where “◦” denotes ele-

mentwise multiplication of two arrays. The initial con-

ditions were

Û (β̂) = 1

baΓ (a)
β̂(a−1)e

−β̂
b ,

which matches the Gamma distribution, with a = 5

and b = 0.4 (technically, the Gamma distribution has

infinite support, but for the parameters chosen it has

decayed to tiny values for β̂ = 6). Also, the other ini-

tial function V̂ (β̂) was taken to be identical to Û (β̂) in

the simulations of Fig. 3.

We emphasize that in Fig 3a, f (−ν) = 0 by defini-

tion and there are only two fitted numbers: f (40) and

f (100). The match is essentially perfect and shows

that the evolution of all the Sk(t) together have a one-

dimensional behavior. The solution at any time t is

fitted, essentially perfectly, by a function of the form

shown in Eq. (19).

Figure 3b shows − f (t) and the total infected pop-

ulation D(t) during the progression of the pandemic.

Parameters used for generating the results are shown in

the text boxes inside the figure.

Other simulations with different a and b in the under-

lying Gamma distribution are shown in subplot pairs

Fig. 3c, d and Fig. 3e, f. The quality of the match

remains excellent, as is shown graphically for different

intermediate time instants in Fig. 3c and e, although the

net percentage of people infected changes with a and

b (more people are infected if typical β̂ values in the

distribution are higher).

In Fig 4, we show results for initial conditions Û (β̂)

chosen arbitrarily on the finite interval [0, 6], without an

underlying asymptotic approach to zero for large β̂ (see

figure caption). The choices for Û (β̂) are now polyno-

mials on the interval [0, 6]. From Fig. 4, we observe

that for several different Û (β̂) and V̂ (β̂) and for generic

small-infection history functions [Eqs. (17) and (18)],

a fit of the form given by Eq. (19) is essentially exact. In

other words, the variation over β̂ is one-dimensional,

in terms of a scalar f (t). We refer to this great reduc-

tion in dimensionality, where the variation with respect

to the continuous variable β̂ is accounted for by a sin-

gle scalar, as complete dimensional collapse. Numerics

indicate the collapse is exact.

It remains only to extract the governing equation for

the scalar f (t), and we will do this using a continuum

formulation.

4 Continuum model

We consider a continuum limit of Eqs. (15) and (16),

as N → ∞. We replace the summation in Eq. (9) with

integrals and assume S(β, t) and I (β, t) to be functions

of β and t . In the continuum limit, Eqs. (15) and (16)

become

Ṡ(β, t) = −
√

βS(β, t)

∫ ∞

0

√

ξ I (ξ, t) dξ (20)

İ (β, t) =
√

βS(β, t − 1)

∫ ∞

0

√

ξ I (ξ, t − 1) dξ

−γ I (β, t)

− p̄
√

βS(β, t − ν)

∫ ∞

0

√

ξ I (ξ, t − ν) dξ,

(21)
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Fig. 3 Simulations with

different initial values

Ŝ(−ν). Here, a Gamma

distribution is used for

Û (β̂) = 1
baΓ (a)

β̂(a−1)e
−β̂
b ,

along with V̂ (β̂) = Û (β̂).

Also shown is the fit of the

form of Eq. (19) at different

instants of time. We note

that as the β values in the

distribution get smaller on

average, D(∞) decreases
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where

p̄ = pe−γ τ . (22)

In the above integrals, if β takes only finite values (in

the numerical examples above, β was between 0 and

6), then the upper limits of the integrals can be replaced

with finite values; we write ∞ as a formal upper limit.

Note that Eqs. (20) and (21) represent infinitely many

coupled delay differential equations, parameterized by

the distributed infectivity parameter β.

The fraction of the population that is susceptible is

now understood to be
∫ ∞

0

S(β, t) dβ,

and the fraction of the presently infectious population

is understood to be
∫ ∞

0

I (β, t) dβ.

At the start of the pandemic, we have initial conditions

that satisfy
∫ ∞

0

S(β, 0) dβ ≈ 1,

and
∫ ∞

0

I (β, 0) dβ ≪ 1,

by which we mean a tiny initiation of infection.
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Fig. 4 Simulations with

different initial values

Ŝ(−ν) = Û (β̂). Here,

finitely supported

polynomials of the form

Û (β̂) = rn ·
(

1 + β̂n
)

, 0 ≤
β̂ ≤ 6 are considered, with

rn chosen to make the sum

(or 1-norm) of Û (β̂) equal

to 1. The distribution of

initial values for Î (β̂) uses

V̂ (β̂) that is random,

initially uniformly

distributed between 1 and 2,

and then normalized to unit

1-norm. Also shown is the

fit Ŝ(t) = Ŝ(−ν) ◦ e− f (t)
√

β̂

at different instants of time.

These results demonstrate

that provided the initial

infected population

distribution is small, the

subsequent evolution obeys

a simple one-dimensional

description with a scalar

variable f (t)
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Introduction of a tiny infected population can, with

suitable initial distributions of S, make the pandemic

grow. A society that has strong social distancing will

have S(β, 0) decaying to zero rapidly with increas-

ing β and may not see strong growth of the infec-

tion. Conversely, a society where the population has

greater social mixing, i.e., S(β, 0) that decays slowly

with increasing β, may see an outbreak of the infection.

A point to note during numerical solution of Eqs. (20)

and (21) is that S(β, t) and I (β, t) are nonnegative. It

is in principle possible for I (β, t) to start positive and

become exactly zero at some instant (based on hypo-

thetical initial functions used in the delayed variables),

and it corresponds to all infected people becoming

quarantined before fresh people are infected. However,

such a situation corresponds to the pandemic being

quenched by eliminating infection and is not of inter-

est when either infection cannot be eliminated, or when

even elimination of infection leaves the system unsta-

ble (i.e., introduction of infinitesimal infection leads

to an outbreak). As seen in the numerical solutions of

Figs. 3 and 4 , there are clearly also other solutions of

interest where the pandemic progresses, infects a per-

centage of the population and reaches an eventual equi-

librium with the infection not progressing further. For
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such solutions, the nonnegativity constraint of S(β, t)

and I (β, t) turns out to be satisfied.

Motivated by the foregoing observations from numer-

ical simulations, we now look for solutions of the form

S(β, t) = φ(β)e− f (t)
√

β ,

where φ(β) can be determined from initial conditions.

Substituting into Eq. (20) yields

−
√

βφ(β) ḟ (t)e− f (t)
√

β =

−
√

βφ(β)e− f (t)
√

β

∫ ∞

0

√

ξ I (ξ, t) dξ. (23)

The integral on the right hand side is purely a function

of time t : let us call it g(t). Then, we have

ḟ (t) = g(t). (24)

Also, Eq. (21) becomes

İ (β, t) =
√

βφ(β)e− f (t−1)
√

βg(t − 1) − γ I (β, t)

− p̄
√

βφ(β)e− f (t−ν)
√

βg(t − ν). (25)

We multiply both sides above by
√

β and integrate with

respect to β. Defining

H(t) =
∫ ∞

0

βφ(β)e− f (t)
√

βdβ, (26)

and assuming the integral and the derivative on the left

hand side can be interchanged, Eq. (25) becomes

ġ(t) = H(t − 1)g(t − 1) − γ g(t)

− p̄H(t − ν)g(t − ν). (27)

Any solution of Eqs. (24) and (27), with H(t) defined

by Eq. (26), corresponds to an exact solution of

Eqs. (20) and (21). Differentiating Eq. (24) with respect

to time and substituting for ġ(t) from Eq. (27), we

obtain:

f̈ (t) = H(t − 1) ḟ (t − 1) − γ ḟ (t)

− p̄H(t − ν) ḟ (t − ν). (28)

Separately, multiplying both sides Eq. (26) by ḟ (t), we

obtain

H(t) ḟ (t) =
∫ ∞

0

βφ(β)e− f (t)
√

β ḟ (t)dβ, (29)

where we notice that the right hand side is integrable

with respect to time, giving
∫

H(t) ḟ (t)dt = −
∫ ∞

0

√

βφ(β)e− f (t)
√

βdβ

+C, (30)

where C is a time-independent constant (it does not

depend on β either, because β here is a dummy vari-

able of integration). Let the integral on the right hand

side of Eq. (30) be called G( f (t)), i.e.,

G( f (t)) =
∫ ∞

0

√

βφ(β)e− f (t)
√

βdβ, (31)

where we notice that the time t within this definition is

merely a parameter that determines f , and so we can

also simply write

G( f ) =
∫ ∞

0

√

βφ(β)e− f
√

βdβ (32)

if it suits our purpose. Equation (28) becomes, upon

one integration,

ḟ (t)=−G( f (t − 1))+ p̄G( f (t − ν))−γ f (t) + C0,

(33)

where C0 is a constant of integration and can be eval-

uated by setting f (t) = 0 when ḟ (t) = 0 (at the time

of infinitesimal initiation of infection) and is given by

C0 = (1 − p̄)

∫ ∞

0

√

βφ(β)dβ. (34)

For many initial distribution functionsφ(β), G( f (t))

and C0 can be evaluated in closed form. For example,

for the uniform distribution

φ(β) = 1

B
, 0 ≤ β ≤ B,

we have

G( f (t)) = K ( f (t))R( f (t))

where

K ( f (t)) = −2e−
√

B f (t)

B1/2 f (t)3
,

R( f (t)) = −2e
√

B f (t)B3/2 + f (t)2 B5/2

+2 f (t)B2 + 2B3/2,

and

C0 = (1 − p̄)
2
√

B

3
.

In this way, at least in principle (even if the integrals

cannot be evaluated in closed form), Eq. (33) is a first-

order scalar DDE that governs the dynamics of the con-

tinuum limit of our network. The infinite-dimensional

variability with respect to the distributed parameter β

has collapsed into a single dimension. This observation

of complete dimensional collapse is one of the main
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Fig. 5 Comparison between the continuum solution − f (t) of

Eq. (33) and the discrete network solution [Eqs. (15) and (16)]

with N = 500 fitted using Ŝ(t) = Ŝ(−ν) ◦ e− f (t)
√

β̂ . a

Û (β̂) = 1
baΓ (a)

β̂(a−1)e
−β̂
b and V̂ (β̂) = Û (β̂). b Û (β̂) =

rn · (1 + β̂n), 0 ≤ β̂ ≤ 6 and V̂ (β̂) randomized as in Fig. 4. The

history function for Eq. (33) is taken as f (t) = ω × (1 + t
ν
),

with ω is adjusted to match the results from [Eqs. (15) and (16)].

Other numerical parameters are mentioned in text boxes within

subplots

contributions of the paper. Our result is independent of

the distribution φ(β).

Figure 5 compares the continuum solution − f (t)

obtained from Eq. (33), and the finite network solution

[Eqs. (15) and (16)] fitted to Ŝ(t) = Ŝ(−ν)◦ e− f (t)
√

β̂

for different parameter values (see figure caption for

details). The results match closely. From Fig. 5, it is

evident that, if the initial conditions for the infected

population are all sufficiently small, the subsequent

evolution does not depend very much on them. This

is because the interaction term smoothes out all those

initial variations, and the dimensional collapse occurs,

which is the main point of the paper. In particular, see

the simulation results in Fig. 5a and b. In one case, the

infective population is taken to have a smooth variation

with respect to β, and in the other case, it is a random

variation with respect to β. The results are essentially

the same, and the match is nearly perfect.

We now proceed to interpret G( f ) in terms of the

moment generating function of an underlying randomly

distributed quantity,
√

β = u, (35)

by defining an intermediate quantity (using an overbar

to formally distinguish the two functions)

φ(β) = φ̄(u). (36)

For example, if φ(β) = β, then we mean φ̄(u) = u2.

Equation (31), written as Eq. (32), becomes

G( f ) = 2

∫ ∞

0

u2φ̄(u)e− f udu. (37)

Now, if we interpret φ(β) as the probability density

function of the random variable β in the population and

think of ψ(u) as the probability density function of the

transformed variable u =
√

β in the same population,

then it must be true that

φ(β) = φ̄(u) = ψ(u)

2u
, (38)

which gives

G( f ) =
∫ ∞

0

uψ(u)e− f udu, (39)

where we see that, except for a sign change in f , G( f )

is the first derivative with respect to f of the moment

generating function [29] of the distributed quantity

u = √
β.

If we expand in a series for small f , we obtain

G( f ) = m1 − m2 f + m3
f 2

2! − m4
f 3

3! + · · · , (40)

where the coefficients mk are moments of u, given by

mk =
∞

∫

0

ukψ(u)du, (41)

assuming these moments exist. In other words, m1 is

the population mean of
√

β, m2 is the population mean

of β, m3 is the population mean of β3/2, and so on.

Returning to Eq. (33) and expanding for small f , and

retaining up to cubic terms (i.e., retaining up to second-

order nonlinear correction terms), we have

ḟ (t) =
(

−m1 + m2 f (t − 1) − m3
f (t − 1)2

2!
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+m4
f (t − 1)3

3!

)

+ p̄

(

m1 − m2 f (t − ν) + m3
f (t − ν)2

2!

−m4
f (t − ν)3

3!

)

−γ f (t) + C0. (42)

In Eq. (42), if we are interested in an outbreak that starts

from an infinitesimal infection, such that f = 0 when

ḟ = 0, then the constant

C0 = m1(1 − p̄),

consistent with Eq. (34), leaving

ḟ (t) =
(

m2 f (t − 1) − m3
f (t − 1)2

2!

+m4
f (t − 1)3

3!

)

+ p̄

(

−m2 f (t − ν) + m3
f (t − ν)2

2!

−m4
f (t − ν)3

3!

)

−γ f (t). (43)

Linearizing Eq. (43) for small f , we obtain

ḟ (t) = m2 f (t − 1) − p̄m2 f (t − ν) − γ f (t). (44)

Substituting f (t) = est , we find

s = m2e−s − m2 p̄e−νs − γ (45)

This characteristic equation matches one studied in

[20,26], and the stability condition is known to be

[recall Eq. (22)]

R0 = m2
(1 − p̄)

γ
< 1. (46)

In fact, since m2 is the second moment of
√

β, i.e., the

population average of β, this validates the use of an

average value in the lumped model [Eqs. (2)–(6], stud-

ied in [20,26]. Since our continuum model allows a

general distribution for β, we can consider the specific

case of a Dirac delta function (i.e., β is not random)

ψ(u) = δ
(

u −
√

β0

)

. (47)

Equation (39) yields

G( f ) =
√

β0 e− f
√

β0 . (48)

Equation (33) becomes (inserting C0 to match initial

conditions of f = 0 when ḟ = 0)

ḟ (t) = −
√

β0 e− f (t−1)
√

β0 + p̄
√

β0 e− f (t−ν)
√

β0 · · ·
−γ f (t) +

√

β0(1 − p̄).

Setting f (t) = √
β0 P(t), we obtain

Ṗ(t) = p̄e−β0 P(t−ν) − e−β0 P(t−1) − γ P(t) + 1 − p̄,

(49)

which exactly matches Eq. (15) of [26].

Further, even for variable β, the correpondence

between Eqs. (33) and (49) actually holds up to second

order. If the expansion for small f in Eq. (43) is trun-

cated at second order, i.e., we retain only the second

and third moments of u, then it is easy to show that

a simple scaling of f makes that equation match the

second-order expansion of Eq. (49). The implication is

that, for relatively small outbreaks, the dynamics under

distributed β (i) depends on the expected values of β

and β3/2, and (ii) is the same, up to a linear scaling, as

the dynamics with a single fixed β as studied in [26].

For larger outbreaks, higher moments of the distribu-

tion of β begin to play a role, and the match with Eq.

(49) deteriorates.

Finally, we close with an example where the required

moments in Eq. (43) do not all exist. Let the probability

density function of β be

φ(β) = 3 · a3/2

2(a + β)5/2
, a > 0, (50)

for which, in Eq. (43), m2 = 2a and m3 = ∞. This dis-

tribution has a long tail. The integral G( f ) for f > 0

[recall Eq. (40)] can be found (using Maple) in terms of

special functions, and the first few terms of an asymp-

totic series for small f > 0 is as shown below:

G( f ) =
√

a − 2a f

−3a3/2 f 2

2

(

γE − 1

6
− ln 2 + ln a

2
+ ln f

)

+4a2 f 3

3

+5a5/2 f 4

16

(

γE − 21

20
− ln 2

+ ln a

2
+ ln f

)

+ · · · (51)

where γE = 0.57721566 · · · is Euler’s constant, also

called the Euler–Mascheroni constant. The series has

an f 2 ln f term, reflecting the unbounded third moment
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Fig. 6 An example with unbounded moment m3 (see Eq. (50)).

a R0 on the horizontal axis governs stability. Each circle, labeled

“numerical,” represents the saturation value observed in a numer-

ical solution based on integration of Eq. (33) combined with

Eq. (39). At every time step, the integral in Eq. (39) is evaluated

numerically for the truncated domain 0 < u < 1000. The contin-

uous line labeled “analytical” is from Eq. (33) with Eq. (51) used

directly. b Comparison of time responses − f (t), with “numer-

ical” and “analytical” implying the same as in (a). The initial

function used was f (t) = 1 × 10−9 + 1 × 10−9
(

1 + t
ν

)

, t ≤ 0

of u. Equation (51) can be used in a numerical solution

of the DDE in Eq. (33) with Eq. (34), provided the out-

break is not too big. For comparison, straightforward

solution of the governing equations can be tried with

direct numerical integration of Eq. (33) combined with

Eq. (39) truncated at some suitably large value of u

(we used u = 1000). Some such solutions are shown

in Fig. 6. The match is essentially perfect, which indi-

cates that finiteness of moments of u, and hence the

moments of β are not needed for the underlying DDE

to have useful solutions.

5 Discussion and conclusions

In this paper, we have considered the extension of a

compartmental model for an epidemic or pandemic to

a network model, structured on the infectivity param-

eter β rather than background factors like age or occu-

pation. We have considered a simple interaction model

between susceptible individuals with different infec-

tivity parameters βk and βr and examined the case

where the effective interaction parameter between these

groups is monotonic in each parameter, symmetric, and

separable. Under reasonable qualitative requirements,

we settled on an interaction term of the form
√

βkβr .

With this interaction, the continuum limit of the net-

work model yielded a pair of delayed integrodifferen-

tial equations parameterized by β. However, numerical

solutions also suggested a remarkable dimensional col-

lapse in the underlying dynamics, such that the entire

variation due to the continuously distributed β could be

captured using a single function of time. The dynamics

in terms of this function, f (t), turned out to be given

by a single first-order nonlinear DDE. We have referred

to this dramatic simplification as complete dimensional

collapse.

We are aware of similar dimensional collapse for the

Fokker–Planck equation for a plasma in an ion trap (a

parametrically forced system without delays): see [30]

and references therein. However, we are not aware of

such collapse being previously noted for any models

within mathematical epidemiology.

The DDE governing the new variable f (t)has strong

connections with the lumped-model DDE where β is

assumed to be a single constant for the entire popu-

lation. When the first few moments of the underly-

ing parameter u = √
β in the population are finite, a

direct correspondence up to second order can be estab-

lished with the single-β equation. Even if the required

moments are not finite, the DDE remains well posed,

although its small- f behavior may be more compli-

cated.

There are interesting social implications that emerge

from our model. For example, in the finite-moments

case, even if β is distributed such that a small pro-

portion of the population has rather high β values,

there is no immediate catastrophic growth because that

subpopulation, being small, tends to interact mostly

with other parts of the population whose β values

are smaller. Even in a population where some peo-
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ple engage in behavior corresponding to high β (i.e.,

not obeying social distancing), low-β behavior from

other members of the population can help to both limit

the pandemic and provide differential benefits based

on adopted risk levels. Satisfyingly, the criterion for

unstable growth from small initial infection is gov-

erned solely by the population average of β, although

the final saturation value of the infection depends on

higher moments. In particular, for a small outbreak

due to weak instability under infinitesimal initiation,

the saturation value is essentially determined by the

population averages of β and β3/2, or of u2 and u3,

respectively.

Future work with such continuum models may

incorporate additional features for greater realism,

including non-separable interaction terms, behavior

modification by the population as the outbreak pro-

gresses, new approximate solutions for various spe-

cial cases including cases with unbounded moments

of u, and direct comparisons of model predictions with

national or international data.
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