Header menu link for other important links
X
Comparison of Different Processing Routes for the Synthesis of Semiconducting AlSb
Published in Springer New York LLC
2018
Volume: 27
   
Issue: 11
Pages: 6196 - 6205
Abstract
AlSb is a low-cost, high-band-gap semiconducting material, yet largely limited in its potential due to difficulty in the synthesis of single-phase AlSb. The present work compares different processing routes in their potency to produce bulk and nanocrystalline AlSb. Vacuum arc melting has been successfully employed, for the first time, to synthesize single-phase bulk AlSb. Owing to high vapor pressure of Sb, an optimum amount of excess Sb (3%) needs to be added to achieve single-phase line compound AlSb. Two methods, viz. mechanical alloying of elemental powders and mechanical milling of cast alloy, have been used to synthesize nanocrystalline AlSb. Nanocrystalline AlSb could be produced after ball milling the cast alloy; however, prolonged milling results in the appearance of Sb along with a non-stoichiometric Al-Sb-O oxide. Mechanical alloying of Al and Sb does not lead to appearance of single-phase AlSb, and the mixture largely consists of starting material and amorphous products. Therefore, the effectiveness of a synthesis route in producing single-phase AlSb is governed by the tendency of oxygen pickup during the processing. © 2018, ASM International.
About the journal
JournalData powered by TypesetJournal of Materials Engineering and Performance
PublisherData powered by TypesetSpringer New York LLC
ISSN10599495