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Introduction

It has been estimated that approximately 40% of the commer-

cially available pharmaceutical drugs target G protein–coupled 

receptors (GPCRs).1 Accordingly, quantification of GPCR-

mediated live cell response is crucial for efficient drug screen-

ing. Specifically, it remains a challenge to identify the optimal 

drug and the corresponding drug dose based on GPCR-

mediated responses from a cell population. Since calcium is a 

universal secondary messenger and plays a vital role in con-

trolling cellular processes, including differentiation, prolifera-

tion, migration, and transcription,2 quantification of cytosolic 

calcium can be used as a universal tool for screening the drugs 

for various diseases.3,4 Also, calcium encoding is a well-known 

mechanism that transfers the stimulus/drug effect and regu-

lates various physiological processes.5 Many complex disease 

conditions, such as Alzheimer’s disease, are linked to the dys-

regulation of the calcium response.6

Cell-based drug screening assays have been used to mea-

sure calcium responses using fluorescent imaging plate reader 

(FLIPR).7–9 Recently, a high-throughput drug screening for 

Alzheimer’s disease has been proposed based on calcium 

imaging and dynamic response quantification.4 Despite the 

popularity of calcium flux measurement for the screening of 

drugs, automated data analysis for a large volume of time-

series data pertaining to various drug doses generated by 
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G protein–coupled receptors (GPCRs) are targets for designing a large fraction of the drugs in the pharmaceutical industry. 

For GPCR-targeting drug screening using cell-based assays, measurement of cytosolic calcium has been widely used to obtain 
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α2AR. We measured the calcium dynamics using confocal microscopy and compared the responses for SDF-1α and 

norepinephrine. The results clearly show that the clustering patterns of responses for the two GPCRs are significantly 

different. Additionally, we show that different drugs targeting the same GPCR induce different calcium response signatures. 

We also implemented principal component analysis and k means for feature extraction and used nondominated (ND) 

sorting for ranking a group of drugs at various doses. The presented approach can be used to model a cell population as 

a mixture of subpopulations. It also offers specific advantages, such as higher spatial resolution, classification of responses, 

and ranking of drugs, potentially providing a platform for high-content drug screening.
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high-resolution imaging still remains a challenge. In traditional 

drug screening studies with calcium imaging, quantification of 

cell responses is performed using population-average mea-

surements.3,4 Generally, the dose–response curves obtained 

based on average measurement are fitted to the Hill equation 

and EC
50

 values are reported for comparing drug potency and 

efficacy.10 However, single-cell studies may not provide typi-

cal sigmoidal curves similar to those obtained from popula-

tion-based studies.3 Further, construction of drug-specific dose 

responses becomes rather challenging, as the responses show 

high cell-to-cell variability. In contrast to the population mean, 

we leveraged the heterogeneity present in drug–cell responses 

and identified clustering patterns that can be used as the scor-

ing parameter for ranking drugs. 

Recent trends on drug classification are based on the 

assessment of cellular heterogeneity from immunofluores-

cent images.11 Additionally, a density-based algorithm has 

been used to visualize the heterogeneity present in single-cell 

responses.12 Generally, algorithms for analysis of cell 

responses incorporate cell response classification and feature 

analysis.11,13 Principal component analysis (PCA) and 

Gaussian mixture modeling (GMM) have been used to ana-

lyze high-resolution images from fixed cells,11 and a combi-

nation of PCA and k-means classification have been used to 

automate the analysis of large-scale calcium imaging in neu-

rons.13 However, limited effort has been directed at imple-

menting these techniques in drug screening and ranking.

Recent studies suggest that the variability in the system 

may inform classification of cell states.14,15 A major chal-

lenge is to correlate such cell states to the biological param-

eters that are relevant for the scoring and ranking of 

drugs.16 As specific biological hypotheses and statistical 

properties of the system indicate the choice of data analy-

sis tools, it remains challenging to identify a general algo-

rithm that satisfactorily analyzes the time course of 

molecular response data for multiple drugs. On the other 

hand, picking a different tool to analyze data from each 

drug is also suboptimal. We addressed this by taking an 

engineering approach to identify tools that can be applied 

to a broad range of drugs.

Traditionally, the FLIPR assay is employed to measure 

calcium flux for quick identification of agonist and antago-

nist activities. This method is adaptable to a wide variety of 

cell receptor systems.7,9 However, this approach is associ-

ated with lower spatial resolution of cell responses, prone to 

nonspecific signals, and does not provide information 

regarding the ratio of nonresponding to responding cells. 

Furthermore, xCELLigence/multielectrode array (MEA) is 

a label-free technique based on measurement of membrane 

potential that can be used for real-time monitoring of cell 

viability.17 However, fabrication of the microelectrodes 

used in this method is generally expensive, and placing 

cells in the close proximity to the electrodes remains chal-

lenging.18 Therefore, the collection of responses at a 

single-cell level has been difficult. In this context, we 

employ multicell imaging using confocal microscopy and 

single-cell response analysis to achieve higher spatial reso-

lution. Moreover, imaging combined with the classification 

of calcium response and drug ranking is proposed as a 

method for drug screening.

Here, we selected two endogenous GPCRs in HeLa cells 

for analysis, CXCR4 (chemokine receptor-4) and α2AR (α2 

adrenergic receptor), both belonging to the Gαi-coupled 

GPCR family,19 and pharmacological targets for neurode-

generative diseases. Specifically, we chose to compare two 

agonists, a peptide, stromal cell–derived factor-1α (SDF-1α), 

for the CXCR4 receptor, and a small molecule, norepineph-

rine, for α2AR. It has been reported that both SDF-1α and 

norepinephrine play a protective role in neural injury.20,21 

Specifically, norepinephrine is a crucial neurotransmitter, and 

depletion of this molecule is associated with Alzheimer’s dis-

ease.22 Since drug selection may demand the comparison of 

multiple chemotypes targeting the same GPCR, we used the 

calcium imaging assay to compare the performances of three 

other neuroprotective drugs that target α2AR: clonidine, tiza-

nidine, and dexmeditomidine.21,23,24

To the best of our knowledge, limited investigations have 

been performed on Gαi pathway–mediated calcium responses 

and detailed quantification of the drug–cell interactions.25–27 

The current work proposes an integrated framework for con-

structing clustering patterns and dose–response features from 

calcium responses. Here, we provide a detailed comparison 

of GPCR-targeting drugs based on calcium imaging using 

confocal microscopy, along with automated analysis of the 

resultant time-series responses. Finally, to provide a proof of 

concept for the feasibility of this technique for compound 

screening, we explored a small group of neuroprotective 

drugs that cover both Gαq- and Gαi-coupled receptors and 

ranked their performances as well.

Materials and Methods

Cell Culture

HeLa cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) (Cellgro, Manassas, VA) supplemented 

with 10% dialyzed fetal bovine serum (Atlanta Biologicals, 

Flowery Branch, GA) and antibiotics. HeLa cells were 

tested for mycoplasma contamination using MycoAlert 

PLUS Mycoplasma Detection Kit (Washington University 

Medical School, St. Louis, MO). Cells were seeded on 29 

mm glass-bottom dishes (In Vitro Scientific, Sunnyvale, 

CA) at 0.2 × 106 cells/mL and maintained in culture until 

70%–80% confluency in a 37 °C and 5% CO
2
 incubator. 

Typically, the cells were cultured for 48 h before drug treat-

ments. In order to have a cell population with similar prop-

erties and reproducible results, calculated amounts of cells 

were delivered to each of the imaging dishes.
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Drug and Concentrations

Time-series data obtained from calcium imaging for a set of 

GPCR-targeting drugs were used in the analysis. SDF-1α 

(Sigma, St. Louis, MO; Cayman Chemical, Ann Arbor, MI) in 

Hank’s balanced salt solution (HBSS) was used to activate the 

CXCR4 receptor at different concentrations (1 –400 ng/mL). 

Also, histamine (0.001–1 µM) and endothelin (0.05–1 µM) 

(Sigma) were used to activate histamine and endothelin recep-

tors respectively. A set of drugs having various chemotypes, 

namely, norepinephrine, tizanidine, clonidine, and dexmedito-

midine (Sigma, Cayman Chemical), in HBSS were used to 

activate α2AR at different concentrations (0.1 µM–1 mM). For 

drug exposure, the dishes with cells were randomly selected in 

an unbiased manner.

Live Cell Imaging and Image Analysis

To obtain the time course of calcium responses, Hela cells 

were imaged on 29 mm glass-bottom dishes using Leica-

Andor and Nikon-Andor spinning disc confocal imaging sys-

tems with an EM-CCD camera. Further, a 20× objective was 

used to perform calcium imaging (in HBSS; Invitrogen, Life 

Technologies, Grand Island, NY). Cells were loaded with the 

fluorescent dye Fluo-4 (2 µM; Molecular Probes, Life 

Technologies, Grand Island, NY; Ex, 488 nm; Em, 510 nm) for 

30 min in HBSS. Then the cells were washed with HBSS three 

times (each time, 15 min incubation). Time-lapse imaging was 

performed every second before and after drug addition. Raw 

image data were analyzed with Andor IQ software to obtain 

the time course of fluorescence levels in single cells. The 

image background correction was done by subtracting back-

ground intensity. For each cell, cytosolic calcium increase was 

measured by quantifying the fold change of the fluorescence 

level of Fluo-4 with respect to the basal level. Further, at least 

20% of the cells were required to respond (be activated) to 

elicit a response in a cell population.

Kernel Density Analysis and Hypothesis Testing

In order to find the probability distribution of different proper-

ties (maximum intensity of Fluo-4, time required to reach the 

peak intensity, and area under the curve [AUC]), we performed 

kernel density analysis. For comparison of cell populations at 

different drug doses, a nonparametric kernel density function 

was fitted using MATLAB (The Mathworks, Natick, MA). 

The data set for different properties was tested for normality 

using the Jarque–Bera test, and nonnormally distributed data 

were compared using the Kruskal–Wallis test in MATLAB (a 

p value of 0.05 was taken as statistically significant).

Classification of the Cells Using PCA and  

k-Means Analysis

Here, we used PCA to reduce the dimension of the matrix 

containing the time series of calcium concentration in a cell 

population containing ≥27 cells. Principal components 

(PCs) were calculated using eigenvalue decomposition of a 

data covariance matrix. For each drug dose, the raw data 

(time-series data for the cell population) were arranged in a 

vector of size 27 × 130 and PCA was used to reduce the 

dimensionality from 27 × 130 to 27 × 8 (Suppl. Fig. S1). 

The final dimension was determined through the computa-

tion of the eigenvalues of the covariance matrix.

We used the k-means algorithm (an unsupervised clus-

tering method) to classify the cells treated with SDF-1α and 

norepinephrine for a given number of clusters, k. After clus-

tering of the cell responses, we calculated the percentages 

of cells P1, P2, and P3 corresponding to three clusters hav-

ing three different centroids: (Ca
max,1

, T
max,1

), (Ca
max,2

, 

T
max,2

), and (Ca
max,3

, T
max,3

).

Silhouette Plot: Cluster Validation and 

Determination of Cluster (k)

To validate the cluster analysis, we used a silhouette plot 

where silhouette values of each cell in its own cluster 

show how closely related they are to each other.28 The sil-

houette value s(i) for the ith cell was calculated as 

follows:
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(1)

where a(i) = average distance (Euclidian distance) of the ith 

cell from all other cells within the same cluster, and b(i) = 

lowest average distance (Euclidian distance) of the ith cell 

from any other cluster (the ith cell is not a member of this 

cluster).

To determine the number of clusters, k, we performed 

simulation of clustering for various k values (k = 2, 3, 4) 

(Suppl. Figs. S2–S5). For each of the k values, the perfor-

mance of the k-means classification is validated by the sil-

houette plot (Suppl. Figs. S6 and S7). The Silhouette plot 

for the clustering corresponding to various k values shows 

that for k = 3, k-means clustering gives the clusters that are 

tightly grouped for SDF-1α.

Ranking of Drugs Using ND Sorting

Drug ranking was performed based on identification of the 

fraction of cells having relatively higher Ca
max

 and lower 

T
max

 values by k-means clustering of normalized calcium 

response of all the drugs with different doses (representa-

tive clusters for all drugs are presented in Suppl. Fig. S8). 

In order to accomplish this task, we chose two of the three 

clusters for each cell response, where one belongs to cells 

with high Ca
max

 (red) and the other belongs to cells with 
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high T
max

 (cyan) (Suppl. Fig. S8). The percentage of cells 

corresponding to the two clusters was calculated for each 

response, and then the drugs were ranked using nondomi-

nated (ND) sorting,29 where our objective was to maximize 

the fraction of cells having higher Ca
max

 and minimize the 

fraction of cells having higher T
max

. The fractions having 

high Ca
max

 and high T
max

 have a proportional relationship 

(an increase in one increases the other); the objective was to 

maximize one while minimizing the other. The complicated 

issue of optimizing several conflicting objectives was tack-

led using ND sorting, where each of these competitive 

drugs was compared with the others and sorted into several 

fronts, as indicated by ranks. It was not straightforward to 

identify a single drug and dose of optimal performance in 

this case, as the objectives were conflicting; hence, there 

exist multiple optimal solutions, called Pareto optimal solu-

tions. The drugs with corresponding doses within the same 

front are ND in nature (each drug dose is better than the 

other, at least in terms of one objective), whereas at least 

one drug in the front dominates another drug from the 

remaining fronts. In this way, the drugs in front 1 show the 

best performance and equally compete. Based on the user’s 

preference between the objectives, any drug from front 1 

can be chosen.

Results

Evaluation of Cell–Drug Interaction Using Live 

Cell Calcium Imaging

Live Cell Imaging Using Microscopy. First, we performed 

imaging of intracellular calcium of HeLa cells. In order to 

show that the assay is robust and generate similar signals on 

different days, we performed the assay for several days. 

Supplemental Figure S9 shows the plot for calcium 

response in HeLa cells for 100 µM norepinephrine on vari-

ous days. The result shows that the responses are compara-

ble on various days, and the ranges of Ca
max

 and T
max

 are 

similar between the days.

Next, we identified the specific difference between the two 

drugs targeting different receptors with respect to their calcium 

signatures using short-time (130 s) live imaging. Figure 1A 

shows the time-lapse images of HeLa cells for SDF-1α for 

various doses: 1 ng/mL (Fig. 1A, I), 40 ng/mL (Fig. 1A, II), 

100 ng/mL (Fig. 1A, III), and 400 ng/mL (Fig. 1A, IV). 

Supplemental Videos 1 and 2 show that the SDF-1α (CXCR4 

specific agonist) induces an increase in cytosolic calcium 

through CXCR4 receptor activation (Fig. 1A). The time course 

of the fluorescence intensity of Fluo-4 in HeLa cells for differ-

ent doses clearly shows that the responses in cell populations 

are heterogeneous at all drug doses (Fig. 1B, a–d). A calcium 

response in the cell population indicates that some of the cells 

showed a delayed response (the increase in cytosolic calcium 

is not immediately after addition of the drug, indicative of 

higher T
max

). Similarly, norepinephrine was used to activate 

α2AR, and calcium imaging was performed for various doses 

(Fig. 1C, a–d). The result shows that a fraction of cells shows 

one peak at 0.1 µM (Fig. 1C, a), and there is a bifurcation in 

peaks with a delay at 100 µM (Fig. 1C, b). At 200 µM, we 

found oscillatory calcium responses (Fig. 1C, c), and at doses 

greater than 200 µM, the cells showed reduced delay in cal-

cium response (Fig. 1C, d). Although we used the same time 

range of 130 s for norepinephrine and SDF-1α, the specific 

properties of the calcium response show variation for two Gαi-

coupled drugs.

In order to test the specificity and robustness of the 

assay, we also performed calcium imaging using confocal 

microscopy in the presence of an endogenous G protein 

g-subunit and in the presence of an overexpressed G protein 

g-subunit in HeLa cells (Suppl. Fig. S10). The result shows 

that the Ca
max

 for the calcium response corresponding to the 

overexpressed G protein was found to be significantly dif-

ferent (p < 0.05, Kruskal–Wallis test) from that of the 

endogenous expression (Suppl. Fig. S10). This suggests 

that the assay is sensitive to protein expression level and 

can be used to discriminate between endogenous and over-

expressed conditions.

Comparison of Drugs Targeting Two Gαi-

Coupled Receptors

Statistical Analysis of Ca
max

, T
max

, and AUC. We performed a 

statistical analysis of the raw time-series data, and the 

results indicate that the two drugs, SDF-1α and norepineph-

rine, show significant variability in responses in regards to 

the maximum value of Fluo-4 intensity (Ca
max

), the time 

corresponding to the maximum peak (T
max

), and the AUC 

(Suppl. Table S1). Hence, we chose Ca
max

, T
max

, and AUC 

as the drug scoring parameters (three-parameter output) for 

the calcium signals obtained from imaging. The box plot for 

these three parameters shows that the dose responses for the 

two drugs are different (Fig. 2A,B). It also shows that Ca
max

 

and AUC are both higher for SDF-1α than for norepineph-

rine, whereas the range of T
max

 values are comparable for 

the two drugs for the selected range of drug doses. But the 

variances in Ca
max

, T
max

, and AUC indicate that the cell-to-

cell variability is less for norepinephrine than for SDF-1α 

(Suppl. Table S1). The kernel density function fitted to 

these parameters (Ca
max

, T
max

, and AUC) at various drug 

doses indicates a similar trend (Suppl. Figs. S11A–C and 

S11G-I).

Nonlinearity in Dose Responses. The mean for all the param-

eters, Ca
max

, T
max

, and AUC, varied nonlinearly (the func-

tion may not be fitted to a Hill equation like a dose–response 

curve), with an increase in drug doses for both drugs (Suppl. 

Figs. S11D–F and S11J-L, Fig. 2A,B). For example, in the 

case of SDF-1α–CXCR4 interactions, the population mean 
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Figure 1. Confocal imaging of cytosolic calcium shows heterogeneity in the calcium response for Gαi-coupled GPCR-targeting drugs. 
(A) Representative images of HeLa Cells showing calcium responses in the presence of increasing concentration of SDF-1α (CXCR4 
specific agonist) (I = 1 ng/mL, II = 40 ng/mL, III = 100 ng/mL, IV = 400 ng/mL). (B,C) Time course of calcium response induced by two 
drugs, SDF-1α and norepinephrine. The experiments were performed for four doses of SDF-1α (1 ng/mL, 40 ng/mL,100 ng/mL, and 
400 ng/mL) and four doses of norepinephrine (0.1 µM, 100 µM, 200 µM, 400 µM). Drugs were added at 30 s (dashed line), and then 
responses were measured up to 130 s. The intensity of Fluo-4 corresponding to the maximum calcium response (Ca

max
) and the time 

corresponding to the maximum Fluo-4 intensity (T
max

) were calculated for each cell (red stars).
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shifts to a higher AUC with an increase in the drug dose (in 

the range of 1–400 ng/mL), followed by a decrease in AUC 

with a further increase in drug dose (in the range of 1–400 

ng/mL) (Suppl. Fig. S11F). Additionally, the results show 

that the cell-to-cell variability is a function of drug dose, 

and the features of the variability in calcium responses are 

specific to the drug type (Suppl. Fig. S11).

Comparison of the Drug Features: Clustering

Classification of Cells Based on Ca
max

 and T
max

: Comparison of 

Drugs Using Method I. We compared the two drugs with 

respect to the clustering pattern present in the cell population. 

The flowchart for the two clustering methods (Methods I and 

II) used here are shown in Figure 3. For this, we performed 

classification of the population response for the two drugs 

based on the known parameters Ca
max

 and T
max

 using k 

means. Each cell is represented through its Ca
max

 (x axis) and 

T
max

 (y axis) values (Fig. 4A,B). The automated classifica-

tion of SDF-1α- and norepinephrine-mediated responses 

indicates that the cell population can be presented as the mix-

ture of subpopulations. The centroid of each subpopulation 

was shown (black x mark) to represent the average behavior 

in each cluster with various drug doses (Fig. 4A,B). How-

ever, the results clearly show that norepinephrine at 100 and 

400 µM doses evokes a homogeneous response compared 

with SDF-1α at 100 and 400 ng/mL. Although we used k = 3 

for comparison, the comparison of the two drugs with clas-

sification using k = 2 indicates similar conclusions (Suppl. 

Fig. S2A,B). Since automated classification is capable of dif-

ferentiating between the two Gαi-coupled GPCR-targeting 

drugs, the technique can be used for scoring of drugs with 

respect to Ca
max

 and T
max

.

Percentage of Responding Cells and Stacked Bar Plot. We per-

formed subpopulation profiling to create a dose response 

using Ca
max

 and T
max

 that can be used for the identification 

of optimum drug doses. The stacked bar plot shows the rela-

tive distribution of each member of the subpopulation. For 

CXCR4-mediated responses, at a lower drug dose concen-

tration (40 ng/mL), ~45% of the cells responded (as shown 

in the representative plot for each subpopulation with the 

three colors) (Suppl. Fig. S2C,a). A further increase in drug 

concentration (100 ng/mL) resulted in ~94% of the cells 

responding (as shown in representative plots for each  

subpopulation) (Suppl. Fig. S2C,a). By comparing the 100 

and 400 ng/mL drug dose responses, the 100 ng/mL drug 

dose resulted in ~94% responding cells, compared with 

~88% responding cells at indicating that 400 ng/mL can be 

regarded as an optimum dose to get the highest activity 
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Figure 2. Comparison of calcium responses induced by drugs targeting two Gαi-coupled GPCRs. Box plot analysis was used to 
quantify and compare the calcium responses (with respect to Ca

max
, T

max
, and AUC). (A) Dose response for cytosolic calcium for 

SDF-1α. (B) Dose response for cytosolic calcium for norepinephrine.



Gupta et al. 7

(Suppl. Fig. S2C,a). A similar analysis was performed for 

norepinephrine, and the trend in percentage of responding 

cell versus dose shows a different characteristic, indicating 

that the optimal dose can be 100 µM (Suppl. Fig. S2C,b).

Automation of Classification Based on Time-Series Data: Com-

parison of Drugs. In the previous method, we used two 

parameters, Ca
max

 and T
max

, for the classification of cells. To 

improve on the generality in handling any dynamic data 

obtained from live imaging, we next used a combination of 

dimension reduction by PCA and k-means clustering for 

automation of the analysis. For visualization, we used PCA, 

and the results for the two drugs are shown in two dimen-

sions (Fig. 4C,D). The results show that the SDF-1α- and 

norepinephrine-mediated responses in cell population can 

be classified as a mixture of subpopulations. The automated 

analysis of two drugs reveal that even two GPCR (Gαi-

coupled)-targeting drugs show distinct features with respect 

to dose responses. The specific differences are (1) the het-

erogeneity in calcium response is less in norepinephrine 

than in SDF-1α, as we did not find enough cells in each 

cluster (with k = 3); (2) the distance between the clusters for 

norepinephrine is less than that of SDF-1α; and (3) the dis-

tance between the points within the cluster is similar for 

norepinephrine SDF-1α. Although we used k = 3 for com-

parison, the classification using k = 2 indicates similar con-

clusions (Suppl. Fig. S3A,B). This information can be 

further used to infer that norepinephrine can be used as a 

potential drug for inducing a synchronous calcium flux, 

even though the amplitude of its calcium response is lower 

than that of SDF-1α.

Next, we performed subpopulation profiling using the 

stacked bar plot obtained from the clustering using Method 

II, and the results indicate that the clustering pattern or the 

features of the calcium responses from the two Gαi-coupled 

receptor–targeting drugs are distinctly different (Suppl. 

Fig. S3C, a and b). It was found that the relative proportion 

of various responses follows a nonlinear response with 

respect to the drug dose of the two drugs. Subpopulation 

profiles allow quantitative comparison of the dynamic cal-

cium responses across doses. In order to obtain faster activity 

in a large fraction of cells, 100 ng/mL of SDF-1α and 200 µM 

of norepinephrine can be used. Although the mean Ca
max

 for 

norepinephrine is lower than that for SDF-1α, norepineph-

rine can be selected as the drug for obtaining synchronous 

calcium peaks in a larger cell population. On the other hand, 

SDF-1α can be selected as a drug if a smaller fraction of cells 

are to be activated with a higher value of Ca
max.

Drug Selection and Dose Optimization: Ranking 

of Drugs Using ND Sorting

In order to set up a screening platform for a library of mol-

ecules and to test unknown compounds, we developed a 

strategy for ranking drugs using ND sorting. Various che-

motypes are needed to be tested against the same target 

receptor in the case of compound screening. Hence, we per-

formed a comparison of ligands of different chemotypes, 
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Figure 3. Schematic diagram representing an integrated platform for live cell calcium imaging using confocal microscopy, classification 
of calcium responses, and drug ranking.
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such as clonidine, tizanidine, norepinephrine, and dex-

meditomidine, that target α-2AR (at 500 µM and 1 mM). 

Figure 5A,B shows the comparison of the time course of 

calcium dynamics and a Ca
max

 versus T
max

 plot for the four 

drugs at 500 µM. Similarly, the comparison is presented for 

a drug dose of 1 mM (Suppl. Fig. S12). The results clearly 

show that the performances of the drugs targeting the same 

receptor are distinctly different. We compared the action of 

these drugs, and the results show that these ligands generate 

distinct signals. Then, we ranked the drugs based on maxi-

mizing the percentage of cells having a higher value of 

Ca
max

 and minimizing the percentage of cells having a 

higher value of T
max

. The result indicates that the perfor-

mances of norepinephrine at 500 µM and clonidine at 1 mM 

are better compared with the others (Fig. 6A). This in turn 

establishes the specificity and robustness of the assay.

In order to show the feasibility of this assay for com-

pound screening, we took a set of GPCR-targeting drugs 

(norepinephrine, SDF-1α, histamine, and endothelin) con-

taining both Gαq- and Gαi-coupled drugs and compared 

their performances (Fig. 6B). The result shows that hista-

mine at a lower dose (1 µM) is comparable to norepineph-

rine at 100 µM and SDF-1α at 100 ng/mL, and these drugs 

are assigned to the highest rank. As these drugs are assigned 

an equal rank, this implies that one is better with reference 

to the first objective, and the other is better with reference 

to the second objective.

Discussion

Traditional techniques like FLIPR and xCELLigence can be 

used for screening the agonist activity based on calcium flux 

measurement and real-time monitoring of the cell viabil-

ity.7–9,17,18 However, these assays suffer from limited spatial 

and temporal resolution. The major disadvantages of FLIPR 

are its susceptibility to capture nonspecific/false-positive 

responses and the use of pooled responses during the analysis 

of a large number of cells. The xCELLigence system is appro-

priate mainly for excitable cells, such as neurons and muscle 

cells, while it is not suitable for drug screening using nonexcit-

able cells.18 In both instances, obtaining single-cell responses, 

classifying them, and estimating the percentage of responding 

cells remain challenging.

In the current study, we demonstrate a scheme for high-

resolution imaging of cytosolic calcium using confocal micros-

copy and automated analysis of the calcium dynamics. In 

contrast to fixed-cell-based immunoassays for drug selection, 

the proposed technique is based on live cell imaging. 

Advantages of the proposed framework over existing tech-

niques include (1) improved spatial and temporal resolution 
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Figure 5. Comparison of the drug action through calcium imaging assay for four drugs (tizanidine, clonidine, dexmedetomidine, and 
norepinephrine) activating α2AR at 500 µM. (A) Time course of calcium responses for the four drugs above. The drugs were added 
at 30 s (dashed line), and then the response was measured up to 230 s. The Fluo-4 intensity corresponding to the maximum Ca2+ 
response (Ca

max
) and the time corresponding to the maximum Fluo-4 intensity (T

max
) were calculated for each cell (red stars). Calcium 

responses show that these ligands generate distinct signals at 500 µM. (B) Plot of Ca
max

 vs. T
max

 for calcium responses in HeLa cells 
induced by the four drugs.
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obtained by means of imaging, (2) unbiased analysis through 

automated feature extraction and clustering of a large amount 

of imaging data generated from time-series videos (manual 

analysis may yield subjective variability), (3) estimation of the 

relative proportion of responding and nonresponding cells, and 

(4) suitability to both excitable and nonexcitable cells.

The output of this technique is a dose–response feature 

for a specific drug through which multiple drugs can be 

compared and ranked. Since cells can be imaged in 96-well 

plates using a high-content imaging system having robotic 

arms,30 and automated analysis can be performed from cal-

cium responses, such a technique can be integrated to a 

high-content assay. The typical time frame required for run-

ning the clustering analysis for 96-, 384-, and 1536-well 

plates ranges from 1 to 10 min (Suppl. Table S2). 

Additionally, the stacked bar plot can be used for the identi-

fication of a specific feature of a drug during the drug 

screening process, and this technique can also be imple-

mented for the determination of the optimal dose during 

drug screening. The proposed ranking strategy based on 

clustering can be implemented for scoring a large number 

of drugs in the case of high-throughput screening. The tech-

nique can also be used for testing unknown compounds and 

ranking them compared with a list of known compounds 

based on their calcium response with time.

The initial cost for setting up a confocal microscope for 

single-cell calcium imaging is comparable to the cost of 

FLIPR and xCELLigence. Additionally, epifluorescence 

imaging can also be used for obtaining calcium dynamics. 

Therefore, the assay can also be performed in an incubation 

chamber attached to a relatively inexpensive fluorescence 

microscope. Further, the assay can be improved through 

long-term imaging (50–70 min) of intracellular calcium 

concentration, which will provide high-resolution informa-

tion on calcium spiking over time. One major limitation of 

this assay lies in the fact that the region of interest defining 

each cell boundary needs to be manually marked. This can 

be circumvented by developing an efficient image segmen-

tation tool for the specific cell line of interest.

The clustering technique employed here can be used for 

the identification of distinct patterns corresponding to any 

drug from time-series data obtained from any cell line 

through calcium imaging. The sorting technique can also 

be used for ranking a large set of drugs for pharmacologi-

cal studies based on multiple objectives. Here, we demon-

strated that the assay can be used for comparing multiple 

drugs targeting different receptors, as well as the same 

receptor, and identifying differences between them. 

Further, this approach can be implemented to classify cal-

cium responses and rank a large number of GPCR-

targeting drugs to screen the optimal drug for neuronal 

regeneration, a process known to be regulated by calcium 

signaling. The throughput of this process can be improved 

by automating the selection process of the cluster number 

for various drugs and including advanced cell segmenta-

tion algorithms.

Figure 6. Ranking of drug performance/activity for a set of compounds at various doses based on the maximization of subpopulation 
showing higher Ca

max
 and the minimization of subpopulation showing higher T

max
 using ND sorting. (A) Ranking of drugs targeting the 

same receptor (α2AR) (-norepinephrine, o-clonidine, ◊-dexmeditomidine, and ∇-tizanidine) at various doses. (B) Ranking of drugs 
targeting different receptors, such as Gαi- and Gαq-coupled receptors (∇-norepinephrine, o-SDF-1α, -histamine, and ◊-endothelin) 
at various doses. Red, rank 1; blue, rank 2; green, rank 3; cyan, rank 4; magenta, rank 5.
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