Chemo-photothermal therapy is one of the emerging therapies for treating triple-negative breast cancer. In this study, we have used ionotropic gelation method to fabricate chitosan and IR806 dye-based polyelectrolyte complex (CIR-PEx) nanoparticles. These nano-complexes were in size range of 125 ± 20 nm. The complexation of IR 806 dye with chitosan improved photostability, photothermal transduction, and showed excellent biocompatibility. Cancer cells treated with CIR-PEx NPs enhanced intracellular uptake within 5 h of incubation and also displayed mitochondrial localization. With the combination of CIR-PEx NPs and a chemotherapeutic agent (i.e., mitoxantrone, MTX), a significant decline in cancer cell viability was observed in both 2D and 3D cell culture models. The chemo-photothermal effect of CIR-PEx NPs + MTX augmented apoptosis in cancer cells when irradiated with NIR light. Furthermore, when tested in the 4 T1-tumor model, the chemo-photothermal therapy showed a drastic decline in tumor volume and inhibited metastatic lung nodules. The localized hyperthermia caused by photothermal therapy reduced the primary tumor burden, and the chemotherapeutic activity of mitoxantrone further complemented by inhibiting the spread of cancer cells. The proposed chemo-photothermal therapy combination could be a promising strategy for treating triple-negative metastatic breast cancer. © 2022 Elsevier B.V.